Skip to main content

Experimental Challenges in the Investigation of Dynamic Fracture of Brittle Materials

  • Chapter
Physical Aspects of Fracture

Part of the book series: NATO Science Series ((NAII,volume 32))

Abstract

Experimental investigation of dynamic fracture of brittle materials has a long history, beginning with the early pioneering experiments of Schardin [1] and continuing currently with more sophisticated experimental tools. In examining the dynamic fracture of brittle materials, it is important to perform carefully controlled experiments, where a well-controlled loading is applied and the resulting response is evaluated through proper diagnostic tools. The interpretation of the experiments further requires a theoretical foundation from which the results could be understood. In this paper, we describe the basic experimental schemes that have been used along with a discussion of some of the conclusions and unresolved issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schardin, H., 1959, “Velocity effects in fracture”, in Fracture, Edited by Averbach et al., John Wiley, 297–330.

    Google Scholar 

  2. Freund, L.B., 1990, Dynamic Fracture Mechanics, Cambridge University Press.

    Google Scholar 

  3. Nakano, A., Kalia, R.K. and Vashishta, P., 1995, “Dynamics and morphology of brittle cracks: A molecular-dynamics study of silicon nitride”, Physical Review Letters, 75, 3138–3141.

    Article  CAS  Google Scholar 

  4. Abraham, F.F., Brodbeck, D., Rudge, W.E., and Xu, X., 1997, “A molecular dynamics investigation of rapid fracture mechanics”, Journal of the Mechanics and Physics of Solids, 45, 1595–1619.

    Article  CAS  Google Scholar 

  5. Kalthoff, J.F., Beinert, J., Winkler, S., and Klemm, W., 1980, “Experimental analysis of dynamic effects in different crack arrest test specimens”, ASTM STP 711 — Crack Arrest Methodology and Application, American Society for Testing and Materials, Philedelphia, 109–127.

    Chapter  Google Scholar 

  6. Carlsson, J., Dahlberg, L., and Nilsson, F., 1973, “Experimental studies of the unstable phase of crack propagation in metals and polymers”, in Dynamic Crack Propagation, (G.C. Sih Ed.), Noordhoff International Publishing, Leyden, 165–181.

    Google Scholar 

  7. Kobayashi, A.S., Wade, B.G., and Bradley, W.B., 1973, “Fracture dynamics of Homalite-100”, in Deformation and Fracture of High Polymers, H.H. Hausch et al., Editors, Plenum Press, New York, 487–500.

    Google Scholar 

  8. Brickstad, B. 1983, “A FEM analysis of crack arrest experiments”, International Journal of Fracture, 21, 177–194.

    Article  Google Scholar 

  9. Taudou, C., Potti, S., and Ravi-Chandar, K., 1992, “On the dominance of the dynamic crack tip stress field under high rate loading”, International Journal of Fracture, 56, 41–59.

    Article  Google Scholar 

  10. Fineberg, J., Gross, S.P., Marder, M., and Swinney, H.L., 1991, “Instability in dynamic fracture”, Physical Review Letters, 67, p.457.

    Article  CAS  Google Scholar 

  11. Beebe, W.M., Ph.D Thesis, California Institute of Technology, Pasadena, CA, 1966.

    Google Scholar 

  12. ASM Handbook, 1994, Volume 11, Materials Park, Ohio.

    Google Scholar 

  13. Ravichandran, G., and Clifton, R.J., 1989, “Dynamic fracture under plane wave loading”, International Journal of Fracture, 40, 157–201.

    Article  CAS  Google Scholar 

  14. Costin, L.S., Duffy, J., and Freund, L.B., 1977, “Fracture initiation in metals under stress wave loading”, in Fast Fracture and Crack Arrest, ASTM STP 627, 301–308.

    Article  Google Scholar 

  15. Maigre, H., and Rittel, D., 1995, “ Dynamic fracture detection using the force-displacement reciprocity: Application to the compact compression specimen”, International Journal of Fracture, 73, 67–79.

    Article  CAS  Google Scholar 

  16. Shukla, A., and Rossmanith, H.P., 1995, “Dynamic photoelastic investigation of wave propagation and energy transfer across contacts”, Journal of Strain Analysis, 21, 213–218.

    Article  Google Scholar 

  17. Ravi-Chandar, K., and Knauss, W.G., 1982, “Dynamic crack tip stresses under stress wave loading — A comparison of theory and experiment”, International Journal of Fracture, 20, 209–222.

    Article  Google Scholar 

  18. Field, J.E., 1970, “Brittle fracture: its study and application”, Contemporary Physics, 12, 1–31.

    Article  Google Scholar 

  19. Dulaney, E.N., and Brace, W.F., 1960, “Velocity behavior of a growing crack”, Journal of Applied Physics, 31, 2233–2236.

    Article  Google Scholar 

  20. Cotterell, B., 1965, “Velocity effects in fracture propagation”, Applied Materials Research, 4, 227–232.

    CAS  Google Scholar 

  21. Cotterell, B., 1968, “Fracture propagation in organic glasses”, International Journal of Fracture Mechanics, 4, p. 209.

    Article  Google Scholar 

  22. Anthony, S.R., Chubb, J.P., and Congleton, J., 1970, “The crack branching velocity”, Philosophical Magazine, 22, 1201–1261.

    Article  Google Scholar 

  23. Paxson, T.L., and Lucas, R.A., 1973, “An investigation of the velocity characteristics of a fixed boundary fracture model”, in Dynamic Crack Propagation, (G.C. Sih Ed.), Noordhoff International Publishing, Leyden, 415–426.

    Google Scholar 

  24. Stalder, B., Beguelin, P., and Kausch, H.H., 1983, “A simple velocity gauge for measuring crack growth”, International Journal of Fracture, 22, R47–R54.

    Article  Google Scholar 

  25. Fineberg, J., Gross, S.P., Marder, M., and Swinney, H.L., 1992, “Instability in the propagation of fast cracks, Physical Review, D45, 5146–5154.

    Google Scholar 

  26. Wallner, H., 1938, “Linienstrukturen an bruchflächen”, Z Physik, 114, 368–370.

    Google Scholar 

  27. Congleton, J., and Petch, N.J., 1967, “Crack-branching”, Philosophical Magazine, 16, 749–760.

    Article  CAS  Google Scholar 

  28. Hull, D., 1997, “Influence of stress intensity and crack speed on fracture surface topography: mirror to mist transition”, Journal of Materials Science, 31, 1829–1841.

    Article  Google Scholar 

  29. Hull, D., 1997, “Influence of stress intensity and crack speed on fracture surface topography: mirror to mist to macroscopic bifurcation”, Journal of Materials Science, 31, 4483–4492.

    Article  Google Scholar 

  30. Morrissey, J.W., and Rice, J.R., 1998, “Crack front waves”, Journal of the Mechanics and Physics of Solids, 46, 467–487.

    Article  CAS  Google Scholar 

  31. Sharon, E., Cohen, G., and Fineberg, J., 2000, “Crack front waves: Localized solitary waves in dynamic fracture”, preprint.

    Google Scholar 

  32. Kerhkof, F., 1973, “Wave fractographic investigation of brittle fracture dynamics”, in Dynamic Crack Propaga-tion, (G.C. Sih Ed.), Noordhoff International Publishing, Leyden, 3–35.

    Google Scholar 

  33. Richter, H.G., and Kerkhof, F, 1994, “Stress wave fractography”, in Fractography in Glass, (Edited by R.C. Bradt and R.E. Tressler), Plenum Press, New York, 75–109.

    Google Scholar 

  34. Kinra, V.K., and Bowers, C.L., 1981, “Brittle fracture of plates in tension. Stress field near the crack”, Interna-tional Journal of Solids and Structures, 17, 175–182.

    Article  Google Scholar 

  35. Khanna, S.K., and Shukla, A., 1995, “On the use of strain gauges in dynamic fracture mechanics”, Engineering Fracture Mechanics, 51, 933–948.

    Article  Google Scholar 

  36. Ravi-Chandar, K., “A note on the dynamic stress field near a propagating crack”, International Journal of Solids and Structures, 19, (1983), 839–841.

    Article  Google Scholar 

  37. Kobayashi, A.S., Editor, The Handbook of Experimental Mechanics, Prentice Hall

    Google Scholar 

  38. Rosakis, A.J. 1993, “Two optical techniques sensitive to gradients of optical path difference: The method of caustics and the coherent gradient sensor”, in Experimental Techniques in Fracture, J.S. Epstein, Editor, VCH Publishers, Inc, New York, p.327–425.

    Google Scholar 

  39. Rosakis, A.J., and Ravi-Chandar, K., 1986, “On crack tip stress state: An experimental evaluation of three-dimensional effects”, International Journal of Solids and Structures, 22, 121–134.

    Article  Google Scholar 

  40. Ravi-Chandar, K., and Knauss, W.G., 1987, ” On the characterization of the transient stress field near the tip of a crack”, Journal of Applied Mechanics, 54, 72–78.

    Article  Google Scholar 

  41. Pfaff, R.D., Washabaugh, P.D., and Knauss, W.G., 1995, “An interpretation of Twyman-Green interferograms from static and dynamic fracture experiments”, International Journal of Solids and Structures, 32, 939–955.

    Article  Google Scholar 

  42. Dadkah, M.S., and Epstein, J.S., 1993, “Moire interferometry in fracture research”, in Experimental Technfques in Fracture, J.S. Epstein, Editor, VCH Publishers, Inc, New York, p.427–508.

    Google Scholar 

  43. Ravi-Chandar, K., and Knauss, W.G., 1984, “An experimental investigation into dynamic fracture — I. Crack initiation and crack arrest”, International Journal of Fracture, 25, 247–262.

    Article  Google Scholar 

  44. Liu, C, Knauss, W.G., and Rosakis, A.J., 1998, “Loading rates and the dynamic initiation toughness in brittle solids”, International Journal of Fracture, 90, 103–118.

    Article  Google Scholar 

  45. Owen, D.M., Zhuang, S, Rosakis, A.J., and Ravichandran, G., 1998, “Experimental determination of dynamic crack initiation and propagation fracture toughness in thin aluminum alloys”, International Journal of Fracture, 90, 153–174.

    Article  CAS  Google Scholar 

  46. Marder, M., and Gross, S.P., 1995, “Origin of crack tip instabilities”. Journal of the Mechanics and Physics of Solids, 43, 1–48.

    Article  CAS  Google Scholar 

  47. Kobayashi, A.S., and Mall, S., 1978, “Dynamic fracture toughness of Homalite-100”, Experimental Mechanics, 18, 11–18.

    Article  Google Scholar 

  48. Dally, J.W., Fourney, W.L., and Irwin, G.R., 1985, “On the uniqueness of the stress intencity factor-crack velocity relationship”, International Journal of Fracture, 27, 159–168.

    Article  Google Scholar 

  49. Ravi-Chandar, K., and Knauss, W.G., 1984, “An experimental investigation into dynamic fracture — III. Steady state crack propagation and crack branching”, International Journal of Fracture, 26, 141–154.

    Article  Google Scholar 

  50. Arakawa, K., and Takahashi, K., 1987, “Dependence of crack acceleration of the dynamic stress intensity factor in polymers”, Experimental Mechanics, 27, 195–200

    Article  Google Scholar 

  51. Ma, C.C., and Freund, L.B., 1986, “The extent of the stress intensity factor field during crack growth under dynamic loading conditions”, ASME Journal of Applied Mechanics, 53, 303–310.

    Article  Google Scholar 

  52. Ravi-Chandar, K., and Knauss, W.G., 1984, “An experimental investigation into dynamic fracture — II. Micro-structural aspects”, International Journal of Fracture, 26, p.65–80.

    Article  Google Scholar 

  53. Ravi-Chandar, K., and Knauss, W.G., 1984, “An experimental investigation into dynamic fracture — IV. On the interaction of stress waves with propagating cracks”, International Journal of Fracture, 26, 189–200.

    Article  Google Scholar 

  54. Yoffe, E., 1951, “The moving Griffith crack”, Philosophical Magazine, 42, 739–750. Yoffe, E., 1951, “The moving Griffith crack”, Philosophical Magazine, 42, 739-750.

    Google Scholar 

  55. Xu, X.-P., and Needleman, A., 1994, “Numerical simulations of fast crack growth in brittle solids”, Journal of the Mechanics and Physics of Solids, 42, 1397–1434.

    Article  Google Scholar 

  56. Johnson, E., 1992, “Process region changes for rapidly propagating cracks”, International Journal of Fracture, 55, 47–63.

    Article  Google Scholar 

  57. Gao, H., 1996, “A theory of local limiting speed in dynamic fracture”, Journal of the Mechanics and Physics of Solids, 44, 1453–1474.

    Article  CAS  Google Scholar 

  58. Levengood, W.C., 1958, “Effect of origin flaw characteristics on glass strength”, Journal of Applied Physics, 29, 820–826.

    Article  CAS  Google Scholar 

  59. Shand, E.B., 1959, “Breaking stress of glass determined from dimensions of fracture mirrors”, Journal of the Americal Ceramic Society, 42, 474–477.

    Article  Google Scholar 

  60. Johnson, J.W., and Holloway, D.G., 1966, “On the shape and size of the fracture zones on glass fracture surfaces”, Philosophical Magazine, 14, 731–743.

    Article  CAS  Google Scholar 

  61. Abdel-Latif, A.I.A., Bradt, R.C., and Tressler, R.E., 1977, “Dynamics of fracture mirror boundary formation in glass”, International Journal of Fracture, 13, 349–359.

    CAS  Google Scholar 

  62. Mecholsky, J.J., 1994, “Quantitative fractographic analysis of fracture origins in glass”, in Fractography of Glass, edited by R.C. Bradt and R.E. Tressler, Plenum Press, New York, 37–73.

    Google Scholar 

  63. Arakawa, K., and Takahashi, K., 1991, “Relationship between fracture parameters and surface roughness of brittle polymers”, International Journal of Fracture, 48, 103–114.

    Article  CAS  Google Scholar 

  64. Bouchaud, E., 1997, “Scaling properties of cracks”, Journal of Physics: Condensed Matter, 9, 4319–4344

    Article  CAS  Google Scholar 

  65. Ravi-Chandar, K., and Yang, B., 1997, “On the role of microcracks in the dynamic fracture of brittle materials”. Journal of the Mechanics and Physics of Solids, 45, 535–563.

    Article  CAS  Google Scholar 

  66. Smekal, A., 1953, “Zum Bruchvorgang bei sprödem Stoffverhalten unter ein-and mehrachsigen Beanspruchungen”, Osterr. Ing. Arch, 7, 49–70.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ravi-Chandar, K. (2001). Experimental Challenges in the Investigation of Dynamic Fracture of Brittle Materials. In: Bouchaud, E., Jeulin, D., Prioul, C., Roux, S. (eds) Physical Aspects of Fracture. NATO Science Series, vol 32. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0656-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0656-9_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7147-2

  • Online ISBN: 978-94-010-0656-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics