Skip to main content
Log in

Influence of stress intensity and crack speed on fracture surface topography: mirror to mist transition

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The transition from very smooth “mirror” crack growth to the early stages of roughening associated with “mist” has been investigated using a range of surface topography techniques. The fracture mechanics properties of the brittle, glassy and isotropic epoxy resin used in this work were characterized using compact tension (CT) and double torsion (DT) tests (K Ic=0.65 MN m−3/2). In the DT test, the mist to mirror transition occurred over a large section of the test sample and this facilitated examination by optical microscopy, scanning electron microscopy, atomic force microscopy and non-contact laser profilometry. Measurements on Wallner lines and river lines were used to map the crack velocities and directions over the fracture surface. The transition from mist to mirror, for a decelerating crack, occurred at a crack velocity, v c=0.1 v t, where v t is the shear wave velocity. There was a sharp change in roughness at the transition but no discontinuity in the crack deceleration behaviour. Two main topographical features were observed at the transition: firstly, undulations in the mirror region which decreased in amplitude away from the transition for a decelerating crack and, by implication, vice versa; secondly, a progressive decrease in river line density (for a decelerating crack). Detailed atomic force microscope profilometry was used to determine the surface topography associated with these features. The results provide an insight into the development of crack instabilities under dynamic conditions and a basis for interpreting the progressive development of roughness up to macroscopic bifurcation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. J. Johnson and D. G. Holloway, Philos. Mag. 14 (1966) 731.

    Article  CAS  Google Scholar 

  2. R. W. Rice, in “Fractography of Metal and Ceramic Failures”, ASTM STP 827, edited by J. J. Mecholsky and S. R. Powell (American Society for Testing and Materials, Philadelphia, PA, 1984) pp. 5–103.

    Chapter  Google Scholar 

  3. B. R. Lawn, “Fracture of Brittle Solids”, 2nd Edn (Cambridge University Press, Cambridge, 1993).

    Book  Google Scholar 

  4. D. Bahat, “Tectonofractography” (Springer, Berlin, 1991).

    Book  Google Scholar 

  5. H. P. Kirchner and J. W. Kirchner, J. Am. Ceram. Soc. 62 (1979) 198.

    Article  CAS  Google Scholar 

  6. H. P. Kirchner and J. C. Conway, ibid.70 (1987) 413.

    Article  CAS  Google Scholar 

  7. Idem, ibid.,70 (1987) 419.

    Article  CAS  Google Scholar 

  8. D. K. Shetty, G. K. Bansal, A. R. Rosenfield and W. H. Duckworth, ibid.63 (1983) 106.

    Article  Google Scholar 

  9. D. Hull and P. Beardmore, in “Proceedings of the First International Conference of Fracture”, edited by T. Yokobori, T. Kawasaki and J. L. Swedlow (Japan Society for Strength and Fracture of Materials, Sendai, 1966) Vol. 2, pp. 629–45.

    Google Scholar 

  10. Y. L. Tsai and J. J. Mecholsky, Int. J. Fract. 57 (1992) 167.

    Article  Google Scholar 

  11. A. S. Kobayashi, B. G. Wade, in “Deformation and fracture of high polymers,” edited by H. H. Kausch, J. A. Hassell and R. I. Jaffee (Plenum Press, New York, London, 1973) pp. 487–500.

    Chapter  Google Scholar 

  12. J. W. Dally, W. L. Fourney and G. R. Irwin, Int. J. Fract. 27 (1985) 159.

    Article  Google Scholar 

  13. J. F. Kalthoff, ibid.27 (1985) 277.

    Article  Google Scholar 

  14. K. Ravi-Chandar and W. G. Knauss, ibid.25 (1984) 247.

    Article  Google Scholar 

  15. Idem, ibid.,26 (1984) 65.

    Article  Google Scholar 

  16. Idem, ibid.,26 (1984) 141.

    Article  Google Scholar 

  17. Idem, ibid.,26 (1984) 189.

    Article  Google Scholar 

  18. K. Takahashi and K. Arakawa, Exp. Mech. 44 (1987) 195.

    Article  Google Scholar 

  19. K. Arakawa and K. Takahashi, Int. J. Fract. 48 (1991) 103.

    Article  CAS  Google Scholar 

  20. J. E. Field, Contemp. Phys. 12 (1971) 1.

    Article  Google Scholar 

  21. J. Congleton and N. J. Petch, Philos. Mag. 16 (1967) 749.

    Article  CAS  Google Scholar 

  22. E. H. Yoffe, ibid.42 (1951) 739.

    Article  Google Scholar 

  23. L. B. Freund, “Dynamic fracture mechanics” (Cambridge University Press, Cambridge, 1990).

    Book  Google Scholar 

  24. W. J. Johnson and D. G. Holloway, Philos. Mag. 17 (1968) 899.

    Article  Google Scholar 

  25. D. Hull, (1996) in preparation.

  26. Idem,, Int. J. Fract. 66 (1994) 295.

    Article  Google Scholar 

  27. A. J. Kinloch, S. J. Shaw, D. A. Tod and D. L. Hunston, Polymer 24 (1983) 1341.

    Article  CAS  Google Scholar 

  28. “Annual ASTM Standards” (ASTM, Philadelphia, PA 1983) pp. 686–710.

  29. P. S. Leevers, J. Mater. Sci. 17 (1982) 2469.

    Article  CAS  Google Scholar 

  30. B. Stalder and H. H. Kausch, ibid.17 (1982) 2481.

    Article  CAS  Google Scholar 

  31. S. Yamini and R. J. Young, Polymer 18 (1977) 1075.

    Article  CAS  Google Scholar 

  32. D. Hull, Int. J. Fract. 62 (1993) 119.

    Article  Google Scholar 

  33. H. Wallner, Z. Phys. 114 (1939) 368.

    Article  Google Scholar 

  34. A. Smekal, Glastechn. Ber. 23 (1950) 57.

    Google Scholar 

  35. J. H. Greenwood, J. Mater. Sci. 6 (1971) 390.

    Article  CAS  Google Scholar 

  36. E. Sommer, Eng. Fract. Mech. 1 (1969) 539.

    Article  Google Scholar 

  37. D. Hull, Int. J. Fract. 70 (1995) 59.

    Article  Google Scholar 

  38. Z. V. Djordjevic, X. Feng Li, W. S. Shim, S. L. Wunder and G. R. Baran, J. Mater. Sci. 30 (1995) 2968.

    Article  CAS  Google Scholar 

  39. D. Hull, J. Mater. Sci. Lett. (1996) accepted.

  40. C. De Freminville, Rev. Metall. 11 (1914) 971.

    Article  Google Scholar 

  41. J. R. Rice, Y. Ben-Zion and K.-S. Kim, J. Mech. Phys. Solids 42 (1994) 813.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Emeritus Goldsmiths' Professor of Metallurgy, University of Cambridge, UK.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hull, D. Influence of stress intensity and crack speed on fracture surface topography: mirror to mist transition. Journal of Materials Science 31, 1829–1841 (1996). https://doi.org/10.1007/BF00372198

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00372198

Keywords

Navigation