Skip to main content

Abstract

An overview of the results obtained from the collaboration of mathematicians and physiologists in mathematical simulation of muscle contraction is presented. Next a mathematical model taking into account the heterogeneity of the muscle, is presented. A mathematical analysis of the model is given along with a numerical approach and some physiological implications.

Work supported by M.P.I. (fondi per la ricerca scientifica) and by I.A.N. of C.N.R. Pavia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. ALLAIN G., COLLI P., “A mathematical study of a muscle contraction model in which the fibre is a continuum of elements”, to appear in Advances in Applied Mathematics.

    Google Scholar 

  2. CAPELO A., COMINCIOLI V., MINELLI R., POGGESI C., REGGIANI C., RICCIARDI L., “Study and parameters identification of a rheological model for excised quiescent cardiac muscle”, J. Biomechanics, 14, 1–11 (1981).

    Article  MathSciNet  Google Scholar 

  3. COLLI P., “A mathematical model of heterogeneous behavior of single muscle fibres”, J. Math. Biol, 24, 103–118 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  4. COLLI P., “Remarks on a nonlinear and nonlocal evolution equation arising in muscle contraction”, to appear.

    Google Scholar 

  5. COMINCIOLI V., POGGESI C., REGGIANI C, “A simple cardiac muscle model can predict changes in the load sensitivity”, to appear.

    Google Scholar 

  6. COMINCIOLI V., TORELLI A., “Mathematical aspects of the cross-bridge mechanism in muscle contraction”, Nonlinear Analysis, Theory, Methods and Applications, 7, 661–683 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  7. COMINCIOLI V., TORELLI A., “A mathematical study of a continuum-state model of muscle contraction”, to appear in Math. Methods in the Appi. Sci.

    Google Scholar 

  8. COMINCIOLI V., TORELLI A., “A mathematical model of contracting muscle with viscoelastic elements”, to appear in SIAM J. Math. Anal.

    Google Scholar 

  9. COMINCIOLI V., TORELLI A., POGGESI C., REGGIANI C., “A four-state cross bridge model for muscle contraction. Mathematical study and validation”, J. Math. Biol., 20, 277–304 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  10. COMINCIOLI V., TORELLI A., POGGESI C., REGGIANI C., “Mathematical models for contracting muscle”, France-Italy-URSS 6th joint symposium 1983, I.N.R.I.A. 52–65 (1984).

    Google Scholar 

  11. DOUGLAS J., MILNER F.A., “Numerical methods for a model of a cardiac muscle contraction”, Calcolo, XX, 123–141 (1983).

    MathSciNet  Google Scholar 

  12. EDM AN K.A.P., REGGIANI C., “Redistribution of sarcomere length during isometric contraction of frog muscle fibres and its relation to tension creep”, J. Physiol., 351, 169–198 (1984).

    Google Scholar 

  13. EDMAN K.A.P., REGGIANI C., “The sarcomere length tension relation determined in short segment of intact muscle fibres of the frog”, J. Physiol., 385, 709–732 (1987).

    Google Scholar 

  14. EDMAN K.A.P., REGGIANI C., KRONNIE G., “Differences in maximum velocity of shortening along single muscle fibres of the frog”, J. Physiol., 365, 147–163 (1985).

    Google Scholar 

  15. EISENBERG E., HILL T.L., “A cross-bridge model of muscle contraction”, Prog. Biophys. Mol. Biol, 33, 55–82 (1978).

    Article  Google Scholar 

  16. EISENBERG E., HILL T.L., CHEN Y.D., “Cross-bridge model of muscle contraction: quantitative analysis”, Biophys. J., 29, 195–227 (1980).

    Article  Google Scholar 

  17. FORD L.E., HUXLEY A.F., SIMMONS R.M., “The relation between stiffness and filament overlap in stimulated frog muscle fibres”, J. Physiol., 311, 219–249 (1981).

    Google Scholar 

  18. GASTALDI L., TOMARELLI F., “A nonlinear hyperbolic Cauchy problem arising in the dynamic of cardiac muscle”, Pubi. I.A.N. of C.N.R. Pavian. 340 (1983).

    Google Scholar 

  19. GASTALDI L., TOMARELLI F., “A uniqueness result for a non linear hyperbolic equation”, Ann. Mat. Pura Appi, (4), 137, 175–205 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  20. GASTALDI L., TOMARELLI F., “A nonlinear and nonlocal evolution equation describing the muscle contraction”, Nonlinear Analysis, Theory, Methods and Applications, 11, 163–182 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  21. GASTALDI L., TOMARELLI F., “Numerical approximation of a nonlinear problem arising in physiology”, Pubi. I.A.N. of C.N.R. Pavian. 429 (1984).

    Google Scholar 

  22. GLANTZ A.S., “A three-element description for muscle with viscoelastic passive elements”, J. Biomechanics, 10, 5–20 (1977).

    Article  Google Scholar 

  23. HILL A.V., “The heat of shortening and the dynamic constants of muscle”, Proc. R. Soc., B 126, 136–195 (1938).

    Article  Google Scholar 

  24. HILL T.L., Theoretical formalism for the sliding filament model of contraction of striated muscle.Part f, Prog. Biophys. Mol Biol., 28. 267–340 (1974).

    Article  Google Scholar 

  25. HILL T.L., “Theoretical formalism for the sliding filament model of contraction of striated muscle.Part II”, Prog. Biophys. Mol. Biol, 29, 105–159 (1975).

    Article  Google Scholar 

  26. HLXLEY A.F., “Muscle structure and theories of contraction”, Prog. Biophys. Biophys. Chem., 7, 255–318 (1957).

    Google Scholar 

  27. HUXLEY A.F., “Reflections on muscle”, Liverpool University Press 1980.

    Google Scholar 

  28. MANNION J.D., BITTO T., HAMMOND R.L., RUBINSTEIN N.A., STEPHENSON L.W., “Histochemical and fatigue characteristics of conditioned canine latissimus dorsi muscle”, Circulation Research, 58, 298–304 (1986).

    Google Scholar 

  29. MINELLI R., REGGIANI C., DIONIGI R., CAPPELLI V., “Cardiac muscle models for both isotonic and isometric contractions”, Pflugers Arch., 359, 69–80 (1975).

    Article  Google Scholar 

  30. NALDI G., “Multiple actin sites model of muscle contraction: mathematical study”, to appear.

    Google Scholar 

  31. POLLACK G.H., “The cross-bridge theory”, Physiological Reviews, 63, 3, 1049–1113 (1983).

    Google Scholar 

  32. POGGESI C., COMINCIOLI V., REGGIANI C, RICCIARDI L., MINELLI R., “A model of contracting cardiac muscle”, Proc. Third Meeting of the European Society of Biomechanics, Nijmegen (1982).

    Google Scholar 

  33. REGGIANI C, COMINCIOLI V., CAPPELLI V., POGGESI C. “Age dependent changes in time course and load sensitivity of the relaxation phase in rat cardiac muscle”, to appear.

    Google Scholar 

  34. REGGIANI C., POGGESI C., MINELLI R., “The analysis of some mechanical properties of quiescent myocardium”, J. Biomechanics, 12, 173–182 (1979).

    Article  Google Scholar 

  35. TORELLI A., “A non linear hyperbolic equation related to the dynamics of cardiac muscle”, Portugaliae Mathematica, 41, 171–188 (1982).

    MathSciNet  MATH  Google Scholar 

  36. WHITE, D.C.S., THORSON J., “The kinetics of muscle contraction”, Pergamon Press 1975.

    Google Scholar 

  37. WOOD J.E., MANN R.W., “A sliding filament cross-bridge ensemble model of muscle contraction for mechanical transients”, Math. Biosciences, 57, 211–263 (1981).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Colli, P., Comincioli, V., Naldi, G., Reggiani, C. (1988). Mathematical modelling for contracting muscle. In: Ricciardi, L.M. (eds) Biomathematics and Related Computational Problems. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2975-3_54

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2975-3_54

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7836-8

  • Online ISBN: 978-94-009-2975-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics