Skip to main content
Log in

A four-state cross bridge model for muscle contraction. Mathematical study and validation

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

A mathematical model of contracting skeletal muscle is studied. The model is composed by an elastic element (SE) in series with a contractile element (CE) that describes the cross bridge kinetics with a formulation derived by that proposed by Eisenberg and Hill (1978).

An analytical study of the system of nonlinear partial differential equations of the model allows the existence and the uniqueness of the solution to be proved.

A suitable approach to the numerical solution is defined and a series of numerical tests are performed. These tests lead to select an appropriate set of parameters and allow to compare model predictions and experimental observations on frog skeletal muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bagshaw, C. R., Trentham, D.R.: The reversibility of ATP cleavage by myosin. Biochem. J. 133, 323–328 (1973)

    Google Scholar 

  2. Blinks, J. R., Rudel, R., Taylor, S. R.: Calcium transients in isolated amphibian skeletal muscle fibers: detection with aequorin. J. Physiol. 277, 291–323 (1978)

    Google Scholar 

  3. Browder, F.: Problèmes non lineaires. Lectures Notes University of Montreal 1966

  4. Chock, S. P., Chock, P. B., Eisenberg, E.: Pre-steady-state kinetic evidence for a cyclic interaction of myosin subfragment one with actin during the hydrolysis of ATP. Biochemistry 15, 3244–3253 (1976)

    Article  Google Scholar 

  5. Civan, M. M., Podolsky, R. J.: Contraction kinetics of striated muscle fibres following quick changes in load. J. Physiol. 184, 511–534 (1966)

    Google Scholar 

  6. Close, R. I.: The relations between sarcomere length and characteristics of isometric twitch contractions of frog sartorius muscle. J. Physiol. 220, 745–762 (1972)

    Google Scholar 

  7. Comincioli, V., Torelli, A.: Mathematical aspects of the cross bridge mechanism in muscle contraction. Nonlinear Analysis, Theory, Methods and Applications. 7, 661–683 (1983)

    Article  MathSciNet  Google Scholar 

  8. Coray, A., Fry, C. H., Hess, P., McGuigan, J. A. S., Weingart, R.: Resting calcium in sheep cardiac tissue and in frog skeletal muscle measured with ion-selective micro-electrodes. J. Physiol. 305, 60P (1980)

  9. Curtin, N. A., Woledge, R. C.: Energy changes and muscular contraction. Physiol. Rev. 58, 690–761 (1978)

    Google Scholar 

  10. Douglas, J., Milner, F. A.: Numerical methods for a model of cardiac muscle contraction. Calcolo XX, 123–141 (1983).

    MathSciNet  Google Scholar 

  11. Ebashi, S., Endo, M.: Calcium ion and muscle contraction. Prog. Biophys. Mol. Biol. 18, 123–183 (1968)

    Google Scholar 

  12. Edman, K. A. P.: The velocity of unloaded shortening and its relation to sarcomere length and isometric force in vertebrate muscle fibres. J. Physiol. 291, 143–159 (1979)

    Google Scholar 

  13. Edman, K. A. P., Flitney, F. W.: Laser diffraction studies of sarcomere dynamics during “isometric” relaxation in isolate muscle fibres of the frog. J. Physiol. 329, 1–20 (1982)

    Google Scholar 

  14. Edman, K. A. P., Hwang, J. C.: The force-velocity relationship in vertebrate muscle fibres at varied tonicity of the extracellular medium. J. Physiol. 269, 255–272 (1977)

    Google Scholar 

  15. Eisenberg, E., Greene, L. E.: The relation of muscle biochemistry to muscle physiology. Ann. Rev. Physiol. 42, 293–309 (1980)

    Google Scholar 

  16. Eisenberg, E., Hill, T. L.: A cross-bridge model of muscle contraction. Prog. Biophys. Mol. Biol. 33, 55–82 (1978)

    Google Scholar 

  17. Eisenberg, E., Hill, T. L., Chen, Y. D.: Cross-bridge model of muscle contraction: quantitative analysis. Biophys. J. 29, 195–227 (1980)

    Google Scholar 

  18. Flitney, F. W., Hirst, D. G.: Cross-bridge detachment and sarcomere “give” during stretch of active frog's muscle. J. Physiol. 276, 449–465 (1978)

    Google Scholar 

  19. Ford, L. E., Huxley, A. F., Simmons, R. M.: Tension responses to sudden length change in stimulated frog muscle fibres near slack length. J. Physiol. 269, 441–515 (1977)

    Google Scholar 

  20. Hill, T. L.: Theoretical formalism for the sliding filament model of contraction of striated muscle. Part I. Prog. Biophys. Mol. Biol. 28, 267–340 (1974)

    Google Scholar 

  21. Hill, T. L.: Theoretical formalism for the sliding filament model of contraction of striated muscle. Part II. Prog. Biophys. Mol. Biol. 29, 105–159 (1975)

    Google Scholar 

  22. Huxley, A. F.: Muscle structure and theories of contraction. Prog. Biophys. Biophys. Chem. 7, 255–318 (1957)

    Google Scholar 

  23. Huxley, A. F., Simmons, R. M.: Proposed mechanism of force generation in striated muscle. Nature (London) 233, 533–538 (1971)

    Article  Google Scholar 

  24. Huxley, A. F.: Reflections on muscle. Liverpool U.K., Liverpool University Press 1980

    Google Scholar 

  25. Johnson, J. D., Charlton, S. C., Potter, J. D.: A fluorescence stopped flow analysis of Ca2+ exchange with troponin C. J. Biol. Chem. 254, 3497–3502 (1979)

    Google Scholar 

  26. Julian, F. J., Sollins, K. R., Sollins, M. R.: A model for the transient and steady-state mechanical behaviour of contracting muscle. Biophys. J. 14, 546–562 (1974)

    Google Scholar 

  27. Lymn, R. W., Taylor, E. W.: Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry 10, 4617–4624 (1971)

    Article  Google Scholar 

  28. Podolsky, R. J., Nolan, A. C., Zavaler, S. A.: Cross-bridge properties derived from muscle isotonic velocity transients. Proc. Natl. Acad. Sci. USA 64, 504–511 (1969)

    Google Scholar 

  29. Pollack, G. H.: The cross-bridge theory. Physiol. Rev. 63, 1049–1113 (1983)

    Google Scholar 

  30. Rall, J. A.: Effects of temperature on tension, tension-dependent heat, and activation heat in twitches of frog skeletal muscle. J. Physiol. 291, 265–275 (1979).

    Google Scholar 

  31. Robertson, S. P., Johnson, J. D., Potter, J. D.: The time-course of Ca2+ exchange with calmodulin, troponin, parvalbumin and myosin in response to transient increases in Ca2+. Biophys. J. 34, 559–569 (1981)

    Google Scholar 

  32. Smart, D. R.: Fixed Points Theorems. Cambridge: Cambridge University Press 1974

    Google Scholar 

  33. Sugi, H.: Tension changes during and after stretch in frog muscle fibres. J. Physiol. 225, 237–253 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work partially supported by M.P.I., by CNR through I.A.N. of Pavia and by HUSPI Project

Rights and permissions

Reprints and permissions

About this article

Cite this article

Comincioli, V., Torelli, A., Poggesi, C. et al. A four-state cross bridge model for muscle contraction. Mathematical study and validation. J. Math. Biology 20, 277–304 (1984). https://doi.org/10.1007/BF00275989

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00275989

Key words

Navigation