Skip to main content

Abstract

The advances in recombinant DNA technology which have occurred in the past two decades have led to the increasing use of genetically engineered micro-organisms (GEMs) in the production of a variety of therapeutic and industrially important products such as human insulin, interferons and growth hormones.1 Other examples which involve use of GEMs in practical applications include the development of recombinant vaccines,2 of ice bacteria to reduce frost damage to crops3 and microbial and virus insecticides.4,5 The use of genetically engineered bacteria constructed to degrade specific recalcitrant pollutants has also been suggested.6,7

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davies J. Engineering organisms for use. In: Sussman M, Collins CH, Skinner FA, Stewart-Tull DE eds. The release of genetically-engineered micro-organisms. London: Academic Press, 1988: 21–28.

    Google Scholar 

  2. Mackett M, Smith GL. Vaccinia virus expression vectors. J Virol 1986; 67: 2067–2082.

    Article  CAS  Google Scholar 

  3. Lindow SE. Competitive exclusion of epiphytic bacteria by Ice- mutants of Pseudomonas syringae. Appl Environ Microbiol 1987; 53: 2520–2527.

    PubMed  CAS  Google Scholar 

  4. Bishop DHL, Entwistle PF, Cameron IR, Allen CJ, Possee RD. Field trials of genetically-engineered Baculovirus insecticides. In: Sussman M, Collins CH, Skinner FA, Stewart-Tull DE, eds. The release of genetically- engineered micro-organisms. London: Academic Press, 1988: 143–179.

    Google Scholar 

  5. Scanferlato VS, Orvos DR, Cairns J Jr, Lacy GH. Genetically engineered Erwinia carotovora in aquatic microcosms: survival and effects on functional groups of indigenous bacteria. Appl Environ Microbiol 1989; 55: 1477–1482.

    PubMed  CAS  Google Scholar 

  6. Rojo F, Pieper DH, Engesser K-H, Knackmuss H-J, Timmis KN. Assemblage of ortho-cleavage route for simultaneous degradation of chloro- and methylaromatics. Science 1987; 238: 1395–1398.

    Article  PubMed  CAS  Google Scholar 

  7. Weightman AJ, Don RH, Lehrbach PR, Timmis KN. The identification and cloning of genes encoding haloaromatic catabolic enzymes and construction of hybrid pathways for substrate mineralisation. In: Omenn GS, Hollaender A., eds. Genetic control of environmental pollutants. New York: Plenum Press, 1984: 47–79.

    Google Scholar 

  8. Bentjen SA, Fredrickson JK, Van Voris P, Li SW. Intact soil microcosms for evaluating the fate and ecological impact of the release of genetically engineered microrganisms. Appl Environ Microbiol 1989; 55: 198–202.

    PubMed  CAS  Google Scholar 

  9. Devanas MA, Stotsky G. Fate in soil of a recombinant plasmid carrying a Drosophila gene. Curr Microbiol 1986; 13: 279–283.

    Article  CAS  Google Scholar 

  10. Dwyer DF, Rojo F, Timmis KN. Bacteria with new pathways for the degradation of pollutants and their fate in model ecosystems. In: Klingmul- ler W, ed. Risk assessment for deliberate releases. Berlin Heidelberg: Springer-Verlag, 1988: 100–109.

    Google Scholar 

  11. Drahos DJ, Barry GF, Hemming BC, et al. Pre-release testing procedure: US field test of a lacZY - engineered soil bacterium. In: Sussman M, Collins CH, Skinner FA, Stewart-Tull DE, eds. The release of genetically- engineered microorganisms. London: Academic Press, 1988: 21–28.

    Google Scholar 

  12. Willetts NS, Crowther C, Holloway BW. The insertion sequence IS21 of R68.45 and the molecular basis for mobilization of the bacterial chromo¬some. Plasmid 1981; 6: 30–52.

    Article  PubMed  CAS  Google Scholar 

  13. Krishnapillai V. Molecular genetic analysis of bacterial plasmid promiscuity. FEMS Micro Rev 1988; 54: 223–238.

    Article  CAS  Google Scholar 

  14. Bagdasarian M, Lurz R, Ruckert B, Franklin FCH, Bagdasarian MM, Frey J, Timmis KN. Specific purpose plasmid cloning vectors II. Broad host range, high copy number, RSF 1010 - derived vectors, and a host-vector system for gene cloning in Pseudomonas. Gene 1981; 16: 237–247.

    Article  PubMed  CAS  Google Scholar 

  15. Franklin FCH. Broad host range cloning vectors for Gram-negative bacteria. In: Glover DM, ed. DNA cloning Vol. 1.: a practial approach. Oxford: IRL Press, 1985: 165–184.

    Google Scholar 

  16. Schwien U, Schmidt E. Improved degradation of monochlorophenols by a constructed strain. Appl Environ Microbiol 1982; 44: 33–39.

    PubMed  CAS  Google Scholar 

  17. Latorre J, Reineke W, Knackmuss H-J. Microbial metabolism of chloro- anilines. Arch Microbiol 1984; 140: 159–165.

    Article  CAS  Google Scholar 

  18. Bruhn C, Bayley RC, Knackmuss H-J. The in vivo construction of 4-chloro- 2-nitrophenol assimilatory bacteria. Arch Microbiol 1988; 150: 171 - 177.

    Article  CAS  Google Scholar 

  19. Pike EB. Aerobic bacteria: In: Curds CR, Hawkes HA, eds. Ecological aspects of used-water treatment. Volume 1. The organisms and their ecology. New York: Academic Press, 1983: 203–268.

    Google Scholar 

  20. Khalil TA, Gealt MA. Temperature, pH and cations affect the ability of Escherichia coli to mobilize plasmids in L-broth and synthetic wastewater. Canadian J Microbiol 1987; 33: 733–737.

    Article  CAS  Google Scholar 

  21. Bale MJ, Fry JC, Day MJ. Transfer and occurrence of large mercury resistance plasmids in river epilithon. Appi Environ Microbiol 1988; 54: 972–978.

    CAS  Google Scholar 

  22. Trevors JT, Starodub ME. R-plasmid transfer in non-sterile agricultural soil. Syst Appi Microbiol 1987; 9: 312–315.

    CAS  Google Scholar 

  23. Grabow WOK, Middendorf IG, Prozesky OW. Survival in maturation ponds of coliform bacteria with transferable drug resistance. Water Res 1973; 7: 1589–1597.

    Article  Google Scholar 

  24. Grabow WOK, Prozesky OW, Burger JS. Behaviour in a river and dam of coliform bacteria with transferable or non-transferable drug resistance. Water Res 1975; 9: 777–781.

    Article  Google Scholar 

  25. Sagik BP, Sorber CA, Moore BE. The survival of EK1 and EK2 systems in sewage treatment plant models. In: Levy SB, Clowes RC, Koenig FL, eds. Molecular biology, pathogenicity and ecology of bacterial plasmids. New York: Plenum Press; 1989: 449–460.

    Google Scholar 

  26. Hansen CL, Zwolinski G, Martin D, Williams JM. Bacterial removal of mercury from sewage. Biotechnol Bioeng 1984; 26: 1330–1333.

    Article  PubMed  CAS  Google Scholar 

  27. Mach PA, Grimes DJ. R-Plasmid transfer in a wastewater treatment plant. Appl Environ Microbiol 1982; 44: 1395–1403.

    PubMed  CAS  Google Scholar 

  28. Altherr MR, Kasweck KL. In situ studies with membrane diffusion chambers of antibiotic resistance transfer in Escherichia coli. Appl Environ Microbiol 1982; 43: 838 - 843.

    Google Scholar 

  29. Gealt MA, Chai MD, Alpert KB, Boyer JC. Transfer of plasmids pBR322 and pBR325 in wastewater from laboratory strains of Escherichia coli to bacteria indigenous to the waste disposal system. Appl Environ Microbiol 1985; 49: 836–841.

    PubMed  CAS  Google Scholar 

  30. McPherson P, Gealt MA. Isolation of indigenous wastewater bacterial strains capable of mobilizing plasmids pBR325. Appl Environ Microbiol 1986; 51: 904–909.

    PubMed  CAS  Google Scholar 

  31. Mancini P, Fertels S, Nave D, Gealt MA. Mobilization of plasmid pHSV106v from Escherichia coli HB101 in a laboratory-scale waste treatment facility. Appl Environ Microbiol 1987; 53: 665–671.

    PubMed  CAS  Google Scholar 

  32. Sojka SA, Ying WC. Genetic engineering and process technology for hazardous waste control. Dev Ind Microbiol 1987; 27: 129–133.

    CAS  Google Scholar 

  33. Trevors JT. Use of microcosms to study genetic interactions between microorganisms. Microbiol Sci 1988; 5: 132–136.

    PubMed  CAS  Google Scholar 

  34. McClure NC, Weightman AJ, Fry JC. The Survival of Pseudomonas putida UWC1 containing cloned catabolic genes in a model activated sludge unit. Appl Environ Microbiol 1989; 55: 2627–2634.

    PubMed  CAS  Google Scholar 

  35. Curds CR, Cockburn A. Protozoa in biological sewage treatment processes -I. A survey of the protozoan found of British percolating filters and activated sludge plants. Water Res 1970; 4: 225–236.

    Article  Google Scholar 

  36. Curds CR, Cockburn A. Protozoa in biological sewage treatment processes -II. Protozoa as indicators in the activated sludge process. Water Res 1970; 4: 237–249.

    Article  Google Scholar 

  37. Poole JEP. A study of the relationships between the mixed liquor fauna and plant performance for a variety of activated sludge treatment works. Water Res 1984; 18: 281–287.

    Article  CAS  Google Scholar 

  38. Don RH, Weightman AJ, Knackmuss H-J, Timmis N. Transposon mutagenesis and cloning analysis of the pathways for degradation of 2, 4-dichlorophenoxyacetic acid and 3-chlorobenzoate in Alcaligenes eutrophus JMP134 (pJP4). J Bacteriol 1985; 161: 85–90.

    PubMed  CAS  Google Scholar 

  39. Genthner FJ, Chatterjee P, Barkay T, Bourquin AW. Capacity of aquatic bacteria to act as recipients of plasmid DNA. Appl Environ Microbiol 1988; 54: 115–117.

    PubMed  CAS  Google Scholar 

  40. Kado CI, Liu ST. Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol 1981; 145: 1365–1373.

    PubMed  CAS  Google Scholar 

  41. Holmes DS, Quigley M. A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem 1981; 114: 195–197.

    Article  Google Scholar 

  42. King EO, Ward MK, Raney DF. Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med. 1964; 44: 301–307.

    Google Scholar 

  43. Rollinger Y, Dott W. Survival of selected bacterial species in sterilized activated carbon filters and biological activated carbon filters. Appl Environ Microbiol 1987; 53: 777–781.

    PubMed  CAS  Google Scholar 

  44. Colwell RR. Genetically engineered organisms in the ocean environment - risk and benifits. In: Sleigh MA, ed. Microbes in the sea. Chichester: Ellis Harwood Ltd, 1987: 182–189.

    Google Scholar 

  45. Curtis III R. Engineering organisms for safety; what is necessary? In: Sussman M, Collins CH, Skinner FA, Stewart-Tull DF, eds. The release of genetically-engineered micro-organisms. London: Academic Press, 1988: 7–20.

    Google Scholar 

  46. Morrison WD, Miller RV, Sayler GS. Frequency of F116 - mediated transduction of Pseudomonas aeruginosa in a freshwater environment. Appl Environ Microbiol 1978; 36: 724–730.

    PubMed  CAS  Google Scholar 

  47. Saye DJ, Ogunseitan O, Sayler GS, Miller RV. Potential for transduction of plasmids in a natural freshwater environment: Effect of plasmid donor concentration and a natural microbiol community on transduction in Pseudomonas aeruginosa. Appl Environ Microbiol 1987; 53: 987–995.

    PubMed  CAS  Google Scholar 

  48. Kobayashi HA. Application of genetic engineering to industrial wastewater treatment. In: Omenn GS, Hollaender A, eds. Genetic control of environmental pollutants. New York: Plenum Press, 1984: 195–214.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Chapman and Hall

About this chapter

Cite this chapter

McClure, N.C., Fry, J.C., Weightman, A.J. (1990). Gene transfer in activated sludge. In: Fry, J.C., Day, M.J. (eds) Bacterial Genetics in Natural Environments. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1834-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1834-4_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7318-9

  • Online ISBN: 978-94-009-1834-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics