Skip to main content

Soluble Klotho as Biomarker of Vascular Dysfunction in Chronic Kidney Disease

  • Reference work entry
  • First Online:
General Methods in Biomarker Research and their Applications

Abstract

Disturbed mineral metabolism in patients with chronic kidney disease (CKD), known as CKD-mineral and bone disorder (CKD-MBD), is associated with bone disease as well as a high risk of cardiovascular disease (CVD) and reduced patient survival due to the development of vascular calcification. Hyperphosphatemia is a risk factor for vascular calcification, CVD, and mortality. The fibroblast growth factor-23 (FGF-23)-Klotho system plays a key role in the regulation of mineral metabolism. Klotho was originally identified as an aging-suppressor gene and is predominantly expressed in the distal renal tubules. Klotho exists in two forms: membrane Klotho functions as an obligate coreceptor for FGF-23 in the kidneys and parathyroid gland, while secreted Klotho functions as a humoral factor with antiaging, renoprotective, and cardiovascular protective properties. The urinary and circulating Klotho levels have been found to be decreased in patients with acute kidney injury and CKD, and experimental studies have shown that Klotho has beneficial effects on the vascular system. Furthermore, Klotho exerts pleiotropic effects on the endothelium, including anti-inflammatory, antithrombotic, and vasodilatory effects, and increases the availability of nitric oxide, and Klotho deficiency is associated with the vascular calcification observed in CKD patients. Therefore, soluble Klotho has the potential to serve as a biomarker for diagnosing early CKD and predicting the progression of both CKD and CVD. The renoprotective and cardiovascular protective functions of Klotho have also led researchers to hope that this protein may be used as a therapeutic agent for improving the kidney function and CVD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1,25D:

1,25-Dihydroxyvitamin D

ACI:

Aortic Calcification Index

ADAM:

A Disintegrin and Metalloproteinase Domain

ADPKD:

Autosomal Dominant Polycystic Kidney Disease

AKI:

Acute Kidney Injury

ARB:

Angiotensin II Receptor Blocker

BACE:

Beta-Site APP-Cleaving Enzyme

baPWV:

Brachial-Ankle Pulse Wave Velocity

CAD:

Coronary Artery Disease

CGN:

Chronic Glomerulonephritis

CKD:

Chronic Kidney Disease

CKD-MBD:

CKD-Mineral And Bone Disorder

CRP:

C-Reactive Protein

CVD:

Cardiovascular Disease

DCT:

Distal Convoluted Tubule

eGFR:

Estimated Glomerular Filtration Rate

ELISA:

Enzyme-Linked Immunosorbent Assay

ESKD:

End-Stage Kidney Disease

FePi:

Fractional Excretion of Phosphorus

FGF:

Fibroblast Growth Factor

FGFR:

Fibroblast Growth Factor Receptor

FMD:

Flow-Mediated Dilatation

HDL-C:

High-Density Lipoprotein Cholesterol

HMG-CoA:

3-Hydroxy-3-Methylglutaryl Coenzyme A

HUVEC:

Human Umbilical Vein Endothelial Cell

IgAN:

IgA Nephropathy

IMT:

Intima-Media Thickness

IS:

Indoxyl Sulfate

KIM-1:

Kidney Injury Molecule 1

LVH:

Left Ventricular Hypertrophy

MBP:

Mean Blood Pressure

MCD:

Minimal Change Disease

mRNA:

Messenger Ribonucleic Acid

NGAL:

N-Gelatinase-Associated Lipocalin

NO:

Nitric Oxide

Npt:

Sodium-Dependent Phosphate Cotransporters

PPAR:

Peroxisome Proliferator-Activated Receptor

PTH:

Parathyroid Hormone

ROMK:

Renal Outer Medullary Potassium Channel

SDS-PAGE:

Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis

TRPC6:

Transient Receptor Potential Channel 6

TRPV:

Transient Receptor Potential Vanilloid

VEGF:

Vascular Endothelial Growth Factor

VEGFR:

Vascular Endothelial Growth Factor Receptor

VSMC:

Vascular Smooth Muscle Cell

References

  • Akimoto T, Shiizaki K, Sugase T, et al. The relationship between the soluble Klotho protein and the residual renal function among peritoneal dialysis patients. Clin Exp Nephrol. 2012a;16(3):442–7.

    Article  CAS  PubMed  Google Scholar 

  • Akimoto T, Yoshizawa H, Watanabe Y, et al. Characteristics of urinary and serum soluble Klotho protein in patients with different degrees of chronic kidney disease. BMC Nephrol. 2012b;13:155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arking DE, Krebsova A, Macek Sr M, et al. Association of human aging with a functional variant of klotho. Proc Natl Acad Sci U S A. 2002;99(2):856–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arking DE, Becker DM, Yanek LR, et al. KLOTHO allele status and the risk of early-onset occult coronary artery disease. Am J Hum Genet. 2003;72(5):1154–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arking DE, Atzmon G, Arking A, Barzilai N, Dietz HC. Association between a functional variant of the KLOTHO gene and high-density lipoprotein cholesterol, blood pressure, stroke, and longevity. Circ Res. 2005;96(4):412–8.

    Article  CAS  PubMed  Google Scholar 

  • Asai O, Nakatani K, Tanaka T, et al. Decreased renal α-Klotho expression in early diabetic nephropathy in humans and mice and its possible role in urinary calcium excretion. Kidney Int. 2012;81(6):539–47.

    Article  CAS  PubMed  Google Scholar 

  • Bloch L, Sineshchekova O, Reichenbach D, et al. Klotho is a substrate for alpha-, beta- and gamma-secretase. FEBS Lett. 2009;583(19):3221–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpenter TO, Insogna KL, Zhang JH, et al. Circulating levels of soluble klotho and FGF23 in X-linked hypophosphatemia: circadian variance, effects of treatment, and relationship to parathyroid status. J Clin Endocrinol Metab. 2010;95(11):E352–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen CD, Podvin S, Gillespie E, Leeman SE, Abraham CR. Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17. Proc Natl Acad Sci U S A. 2007;104(50):19796–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devaraj S, Syed B, Chien A, Jialal I. Validation of an immunoassay for soluble Klotho protein: decreased levels in diabetes and increased levels in chronic kidney disease. Am J Clin Pathol. 2012;137(3):479–85.

    Article  CAS  PubMed  Google Scholar 

  • Doi S, Zou Y, Togao O, et al. Klotho inhibits transforming growth factor-beta1 (TGF-beta1) signaling and suppresses renal fibrosis and cancer metastasis in mice. J Biol Chem. 2011;286(10):8655–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donate-Correa J, Mora-Fernandez C, Martinez-Sanz R, et al. Expression of FGF23/KLOTHO system in human vascular tissue. Int J Cardiol. 2013;165(1):179–83.

    Article  PubMed  Google Scholar 

  • Dou L, Bertrand E, Cerini C, et al. The uremic solutes p-cresol and indoxyl sulfate inhibit endothelial proliferation and wound repair. Kidney Int. 2004;65(2):442–51.

    Article  CAS  PubMed  Google Scholar 

  • Fang Y, Ginsberg C, Sugatani T, Monier-Faugere MC, Malluche H, Hruska KA. Early chronic kidney disease-mineral bone disorder stimulates vascular calcification. Kidney Int. 2014;85(1):142–50.

    Article  CAS  PubMed  Google Scholar 

  • Faul C, Amaral AP, Oskouei B, et al. FGF23 induces left ventricular hypertrophy. J Clin Invest. 2011;121(11):4393–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fliser D, Kollerits B, Neyer U, et al. Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: the Mild to Moderate Kidney Disease (MMKD) Study. J Am Soc Nephrol. 2007;18(9):2600–8.

    Article  CAS  PubMed  Google Scholar 

  • Foley RN, Parfrey PS, Harnett JD, Kent GM, Murray DC, Barre PE. The prognostic importance of left ventricular geometry in uremic cardiomyopathy. J Am Soc Nephrol. 1995;5(12):2024–31.

    CAS  PubMed  Google Scholar 

  • Fukino K, Suzuki T, Saito Y, et al. Regulation of angiogenesis by the aging suppressor gene klotho. Biochem Biophys Res Commun. 2002;293(1):332–7.

    Article  CAS  PubMed  Google Scholar 

  • Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351(13):1296–305.

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez OM, Januzzi JL, Isakova T, et al. Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation. 2009;119(19):2545–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heijboer AC, Blankenstein MA, Hoenderop J, de Borst MH, Vervloet MG. Laboratory aspects of circulating alpha-Klotho. Nephrol Dial Transplant. 2013;28:2283–7.

    Article  CAS  PubMed  Google Scholar 

  • Hu MC, Moe OW. Klotho as a potential biomarker and therapy for acute kidney injury. Nat Rev Nephrol. 2012;8(7):423–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu MC, Shi M, Zhang J, et al. Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J. 2010a;24(9):3438–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu MC, Shi M, Zhang J, Quinones H, Kuro-o M, Moe OW. Klotho deficiency is an early biomarker of renal ischemia-reperfusion injury and its replacement is protective. Kidney Int. 2010b;78(12):1240–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu MC, Shi M, Zhang J, et al. Klotho deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol. 2011;22(1):124–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu MC, Shiizaki K, Kuro-o M, Moe OW. Fibroblast growth factor 23 and Klotho: physiology and pathophysiology of an endocrine network of mineral metabolism. Annu Rev Physiol. 2013;75:503–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang CL. Regulation of ion channels by secreted Klotho: mechanisms and implications. Kidney Int. 2010;77(10):855–60.

    Article  PubMed  Google Scholar 

  • Huang CL, Moe OW. Klotho: a novel regulator of calcium and phosphorus homeostasis. Pflugers Arch. 2011;462(2):185–93.

    Article  CAS  PubMed  Google Scholar 

  • Imamura A, Okumura K, Ogawa Y, et al. Klotho gene polymorphism may be a genetic risk factor for atherosclerotic coronary artery disease but not for vasospastic angina in Japanese. Clin Chim Acta. 2006;371(1–2):66–70.

    Article  CAS  PubMed  Google Scholar 

  • Imura A, Iwano A, Tohyama O, et al. Secreted Klotho protein in sera and CSF: implication for post-translational cleavage in release of Klotho protein from cell membrane. FEBS Lett. 2004;565(1–3):143–7.

    Article  CAS  PubMed  Google Scholar 

  • Imura A, Tsuji Y, Murata M, et al. alpha-Klotho as a regulator of calcium homeostasis. Science. 2007;316(5831):1615–8.

    Article  CAS  PubMed  Google Scholar 

  • Isakova T, Wahl P, Vargas GS, et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 2011;79(12):1370–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kacso IM, Bondor CI, Kacso G. Soluble serum Klotho in diabetic nephropathy: relationship to VEGF-A. Clin Biochem. 2012;45(16–17):1415–20.

    Article  CAS  PubMed  Google Scholar 

  • Karalliedde J, Maltese G, Hill B, Viberti G, Gnudi L. Effect of renin-angiotensin system blockade on soluble Klotho in patients with type 2 diabetes, systolic hypertension, and albuminuria. Clin J Am Soc Nephrol. 2013;8(11):1899–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • KDIGO (2009) KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl 76:S3–S8.

    Google Scholar 

  • Kim Y, Jeong SJ, Lee HS, et al. Polymorphism in the promoter region of the klotho gene (G-395A) is associated with early dysfunction in vascular access in hemodialysis patients. Korean J Intern Med. 2008;23(4):201–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HR, Nam BY, Kim DW, et al. Circulating alpha-klotho levels in CKD and relationship to progression. Am J Kidney Dis. 2013;61(6):899–909.

    Article  CAS  PubMed  Google Scholar 

  • Kitagawa M, Sugiyama H, Morinaga H, et al. A decreased level of serum soluble Klotho is an independent biomarker associated with arterial stiffness in patients with chronic kidney disease. PLoS One. 2013;8(2):e56695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koh N, Fujimori T, Nishiguchi S, et al. Severely reduced production of klotho in human chronic renal failure kidney. Biochem Biophys Res Commun. 2001;280(4):1015–20.

    Article  CAS  PubMed  Google Scholar 

  • Komaba H, Goto S, Fujii H, et al. Depressed expression of Klotho and FGF receptor 1 in hyperplastic parathyroid glands from uremic patients. Kidney Int. 2010;77(3):232–8.

    Article  CAS  PubMed  Google Scholar 

  • Kuro-o M. Klotho, phosphate and FGF-23 in ageing and disturbed mineral metabolism. Nat Rev Nephrol. 2013;9(11):650–60.

    Article  CAS  PubMed  Google Scholar 

  • Kuro-o M, Matsumura Y, Aizawa H, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997;390(6655):45–51.

    Article  CAS  PubMed  Google Scholar 

  • Kurosu H, Yamamoto M, Clark JD, et al. Suppression of aging in mice by the hormone Klotho. Science. 2005;309(5742):1829–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kusaba T, Okigaki M, Matui A, et al. Klotho is associated with VEGF receptor-2 and the transient receptor potential canonical-1 Ca2+ channel to maintain endothelial integrity. Proc Natl Acad Sci U S A. 2010;107(45):19308–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuwahara N, Sasaki S, Kobara M, et al. HMG-CoA reductase inhibition improves anti-aging klotho protein expression and arteriosclerosis in rats with chronic inhibition of nitric oxide synthesis. Int J Cardiol. 2008;123(2):84–90.

    Article  PubMed  Google Scholar 

  • Levin A, Singer J, Thompson CR, Ross H, Lewis M. Prevalent left ventricular hypertrophy in the predialysis population: identifying opportunities for intervention. Am J Kidney Dis. 1996;27(3):347–54.

    Article  CAS  PubMed  Google Scholar 

  • Lim K, Lu TS, Molostvov G, et al. Vascular Klotho deficiency potentiates the development of human artery calcification and mediates resistance to fibroblast growth factor 23. Circulation. 2012;125(18):2243–55.

    Article  CAS  PubMed  Google Scholar 

  • Lim SC, Liu JJ, Subramaniam T, Sum CF. Elevated circulating alpha-klotho by angiotensin II receptor blocker losartan is associated with reduction of albuminuria in type 2 diabetic patients. J Renin Angiotensin Aldosterone Syst. 2013;15:487–90.

    Article  PubMed  Google Scholar 

  • Lindberg K, Olauson H, Amin R, et al. Arterial klotho expression and FGF23 effects on vascular calcification and function. PLoS One. 2013;8(4):e60658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Fergusson MM, Castilho RM, et al. Augmented Wnt signaling in a mammalian model of accelerated aging. Science. 2007;317(5839):803–6.

    Article  CAS  PubMed  Google Scholar 

  • Liu JJ, Liu S, Morgenthaler NG, et al. Association of plasma soluble alpha-klotho with pro-endothelin-1 in patients with type 2 diabetes. Atherosclerosis. 2014;233(2):415–8.

    Article  CAS  PubMed  Google Scholar 

  • Maekawa Y, Ishikawa K, Yasuda O, et al. Klotho suppresses TNF-alpha-induced expression of adhesion molecules in the endothelium and attenuates NF-kappaB activation. Endocrine. 2009;35(3):341–6.

    Article  CAS  PubMed  Google Scholar 

  • Mirza MA, Larsson A, Melhus H, Lind L, Larsson TE. Serum intact FGF23 associate with left ventricular mass, hypertrophy and geometry in an elderly population. Atherosclerosis. 2009a;207(2):546–51.

    Article  CAS  PubMed  Google Scholar 

  • Mirza MA, Hansen T, Johansson L, et al. Relationship between circulating FGF23 and total body atherosclerosis in the community. Nephrol Dial Transplant. 2009b;24(10):3125–31.

    Article  CAS  PubMed  Google Scholar 

  • Mitani H, Ishizaka N, Aizawa T, et al. In vivo klotho gene transfer ameliorates angiotensin II-induced renal damage. Hypertension. 2002;39(4):838–43.

    Article  CAS  PubMed  Google Scholar 

  • Moe SM, Drueke T. Improving global outcomes in mineral and bone disorders. Clin J Am Soc Nephrol. 2008;3 Suppl 3:127–30.

    Article  Google Scholar 

  • Moe S, Drüeke T, Cunningham J, et al. Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2006;69(11):1945–53.

    Article  CAS  PubMed  Google Scholar 

  • Moreno JA, Izquierdo MC, Sanchez-Nino MD, et al. The inflammatory cytokines TWEAK and TNFalpha reduce renal klotho expression through NFkappaB. J Am Soc Nephrol. 2011;22(7):1315–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morishita K, Shirai A, Kubota M, et al. The progression of aging in klotho mutant mice can be modified by dietary phosphorus and zinc. J Nutr. 2001;131(12):3182–8.

    CAS  PubMed  Google Scholar 

  • Nagai R, Saito Y, Ohyama Y, et al. Endothelial dysfunction in the klotho mouse and downregulation of klotho gene expression in various animal models of vascular and metabolic diseases. Cell Mol Life Sci. 2000;57(5):738–46.

    Article  CAS  PubMed  Google Scholar 

  • Namikoshi T, Tomita N, Satoh M, et al. Oral adsorbent AST-120 ameliorates endothelial dysfunction independent of renal function in rats with subtotal nephrectomy. Hypertens Res. 2009;32(3):194–200.

    Article  CAS  PubMed  Google Scholar 

  • Ohyama Y, Kurabayashi M, Masuda H, et al. Molecular cloning of rat klotho cDNA: markedly decreased expression of klotho by acute inflammatory stress. Biochem Biophys Res Commun. 1998;251(3):920–5.

    Article  CAS  PubMed  Google Scholar 

  • Pavik I, Jaeger P, Ebner L, et al. Soluble klotho and autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2012;7(2):248–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavik I, Jaeger P, Ebner L, et al. Secreted Klotho and FGF23 in chronic kidney disease Stage 1 to 5: a sequence suggested from a cross-sectional study. Nephrol Dial Transplant. 2013;28(2):352–9.

    Article  CAS  PubMed  Google Scholar 

  • Ravani P, Tripepi G, Malberti F, Testa S, Mallamaci F, Zoccali C. Asymmetrical dimethylarginine predicts progression to dialysis and death in patients with chronic kidney disease: a competing risks modeling approach. J Am Soc Nephrol. 2005;16(8):2449–55.

    Article  CAS  PubMed  Google Scholar 

  • Saito Y, Yamagishi T, Nakamura T, et al. Klotho protein protects against endothelial dysfunction. Biochem Biophys Res Commun. 1998;248(2):324–9.

    Article  CAS  PubMed  Google Scholar 

  • Saito Y, Nakamura T, Ohyama Y, et al. In vivo klotho gene delivery protects against endothelial dysfunction in multiple risk factor syndrome. Biochem Biophys Res Commun. 2000;276(2):767–72.

    Article  CAS  PubMed  Google Scholar 

  • Saito K, Ishizaka N, Mitani H, Ohno M, Nagai R. Iron chelation and a free radical scavenger suppress angiotensin II-induced downregulation of klotho, an anti-aging gene, in rat. FEBS Lett. 2003;551(1–3):58–62.

    Article  CAS  PubMed  Google Scholar 

  • Sarnak MJ, Levey AS, Schoolwerth AC, et al. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation. 2003;108(17):2154–69.

    Article  PubMed  Google Scholar 

  • Scialla JJ, Lau WL, Reilly MP, et al. Fibroblast growth factor 23 is not associated with and does not induce arterial calcification. Kidney Int. 2013;83(6):1159–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seiler S, Reichart B, Roth D, Seibert E, Fliser D, Heine GH. FGF-23 and future cardiovascular events in patients with chronic kidney disease before initiation of dialysis treatment. Nephrol Dial Transplant. 2010;25(12):3983–9.

    Article  CAS  PubMed  Google Scholar 

  • Seiler S, Wen M, Roth HJ, et al. Plasma Klotho is not related to kidney function and does not predict adverse outcome in patients with chronic kidney disease. Kidney Int. 2013;83(1):121–8.

    Article  CAS  PubMed  Google Scholar 

  • Semba RD, Cappola AR, Sun K, et al. Plasma klotho and cardiovascular disease in adults. J Am Geriatr Soc. 2011a;59(9):1596–601.

    Article  PubMed  PubMed Central  Google Scholar 

  • Semba RD, Cappola AR, Sun K, et al. Plasma klotho and mortality risk in older community-dwelling adults. J Gerontol A Biol Sci Med Sci. 2011b;66(7):794–800.

    Article  PubMed  Google Scholar 

  • Shibata K, Fujita S, Morita H, et al. Association between circulating fibroblast growth factor 23, alpha-Klotho, and the left ventricular ejection fraction and left ventricular mass in cardiology inpatients. PLoS One. 2013;8(9):e73184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimamura Y, Hamada K, Inoue K, et al. Serum levels of soluble secreted alpha-Klotho are decreased in the early stages of chronic kidney disease, making it a probable novel biomarker for early diagnosis. Clin Exp Nephrol. 2012;16(5):722–9.

    Article  CAS  PubMed  Google Scholar 

  • Stack AG, Saran R. Clinical correlates and mortality impact of left ventricular hypertrophy among new ESRD patients in the United States. Am J Kidney Dis. 2002;40(6):1202–10.

    Article  PubMed  Google Scholar 

  • Stam F, van Guldener C, Becker A, et al. Endothelial dysfunction contributes to renal function-associated cardiovascular mortality in a population with mild renal insufficiency: the Hoorn study. J Am Soc Nephrol. 2006;17(2):537–45.

    Article  CAS  PubMed  Google Scholar 

  • Sugiura H, Tsuchiya K, Nitta K. Circulating levels of soluble alpha-Klotho in patients with chronic kidney disease. Clin Exp Nephrol. 2011;15(5):795–6.

    Article  PubMed  Google Scholar 

  • Sugiura H, Yoshida T, Shiohira S, et al. Reduced Klotho expression level in kidney aggravates renal interstitial fibrosis. Am J Physiol Renal Physiol. 2012;302(10):F1252–64.

    Article  CAS  PubMed  Google Scholar 

  • Tang C, Pathare G, Michael D, Fajol A, Eichenmuller M, Lang F. Downregulation of Klotho expression by dehydration. Am J Physiol Renal Physiol. 2011;301(4):F745–50.

    Article  CAS  PubMed  Google Scholar 

  • Tsujikawa H, Kurotaki Y, Fujimori T, Fukuda K, Nabeshima Y. Klotho, a gene related to a syndrome resembling human premature aging, functions in a negative regulatory circuit of vitamin D endocrine system. Mol Endocrinol. 2003;17(12):2393–403.

    Article  CAS  PubMed  Google Scholar 

  • Urakawa I, Yamazaki Y, Shimada T, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006;444(7120):770–4.

    Article  CAS  PubMed  Google Scholar 

  • Waikar SS, Curhan GC, Ayanian JZ, Chertow GM. Race and mortality after acute renal failure. J Am Soc Nephrol. 2007;18(10):2740–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wald R, Quinn RR, Luo J, et al. Chronic dialysis and death among survivors of acute kidney injury requiring dialysis. JAMA. 2009;302(11):1179–85.

    Article  CAS  PubMed  Google Scholar 

  • Wang HL, Xu Q, Wang Z, et al. A potential regulatory single nucleotide polymorphism in the promoter of the Klotho gene may be associated with essential hypertension in the Chinese Han population. Clin Chim Acta. 2010;411(5–6):386–90.

    Article  CAS  PubMed  Google Scholar 

  • Xie J, Cha SK, An SW, Kuro OM, Birnbaumer L, Huang CL. Cardioprotection by Klotho through downregulation of TRPC6 channels in the mouse heart. Nat Commun. 2012;3:1238.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamazaki Y, Imura A, Urakawa I, et al. Establishment of sandwich ELISA for soluble alpha-Klotho measurement: age-dependent change of soluble alpha-Klotho levels in healthy subjects. Biochem Biophys Res Commun. 2010;398(3):513–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang K, Nie L, Huang Y, et al. Amelioration of uremic toxin indoxyl sulfate-induced endothelial cell dysfunction by Klotho protein. Toxicol Lett. 2012;215(2):77–83.

    Article  CAS  PubMed  Google Scholar 

  • Yeboah J, Crouse JR, Hsu FC, Burke GL, Herrington DM. Brachial flow-mediated dilation predicts incident cardiovascular events in older adults: the cardiovascular health study. Circulation. 2007;115(18):2390–7.

    Article  PubMed  Google Scholar 

  • Yilmaz MI, Sonmez A, Saglam M, et al. FGF-23 and vascular dysfunction in patients with stage 3 and 4 chronic kidney disease. Kidney Int. 2010;78(7):679–85.

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama K, Imura A, Ohkido I, et al. Serum soluble alpha-klotho in hemodialysis patients. Clin Nephrol. 2012;77(5):347–51.

    Article  CAS  PubMed  Google Scholar 

  • Yoon HE, Ghee JY, Piao S, et al. Angiotensin II blockade upregulates the expression of Klotho, the anti-ageing gene, in an experimental model of chronic cyclosporine nephropathy. Nephrol Dial Transplant. 2011;26(3):800–13.

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Li Y, Fan Y, et al. Klotho is a target gene of PPAR-gamma. Kidney Int. 2008;74(6):732–9.

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Lin S, Tang R, Veeraragoo P, Peng W, Wu R. Role of Fosinopril and Valsartan on Klotho gene expression induced by angiotensin II in rat renal tubular epithelial cells. Kidney Blood Press Res. 2010;33(3):186–92.

    Article  CAS  PubMed  Google Scholar 

  • Zoccali C, Benedetto FA, Mallamaci F, et al. Prognostic value of echocardiographic indicators of left ventricular systolic function in asymptomatic dialysis patients. J Am Soc Nephrol. 2004;15(4):1029–37.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Sugiyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Kitagawa, M., Sugiyama, H., Nakamura, K., Ito, H., Makino, H. (2015). Soluble Klotho as Biomarker of Vascular Dysfunction in Chronic Kidney Disease. In: Preedy, V., Patel, V. (eds) General Methods in Biomarker Research and their Applications. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7696-8_44

Download citation

Publish with us

Policies and ethics