Skip to main content

Three Approaches for Modelling Situations with Randomness

  • Chapter
Probabilistic Thinking

Part of the book series: Advances in Mathematics Education ((AME))

Abstract

Three different approaches to the concept of probability dominate the teaching of stochastics: the classical, the frequentistic and the subjectivistic approach. Compared with each other they provide considerably different possibilities to interpret situations with randomness. With regard to teaching probability, it is useful to clarify interrelations and differences between these three approaches. Thus, students’ probabilistic reasoning in specific random situations could be characterized, classified and finally, understood in more detail. In this chapter, we propose examples that potentially illustrate both, interrelations and differences of the three approaches to probability mentioned above. Thereby, we strictly focus on an educational perspective.

At first, we briefly outline a proposal for relevant teachers’ content knowledge concerning the construct of probability. In this short overview, we focus on three approaches to probability, namely the classical, the frequentistic and the subjectivistic approach. Afterwards, we briefly discuss existing research concerning teachers’ knowledge and beliefs about probability approaches. Further, we outline our normative focus on teachers’ potential pedagogical content knowledge concerning the construct of probability. For this, we discuss the construct of probability within a modelling perspective, with regard to a theoretical perspective on the one side and with regard to classroom activities on the other side. We further emphasize considerations about situations which are potentially meaningful with regard to different approaches to probability. Finally, we focus on technological pedagogical content knowledge. Within the perspective of teaching probability, this kind of knowledge is about the question of how technology and, especially simulation, supports students understanding of probabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching. Journal of Teacher Education, 59(5), 389–407.

    Article  Google Scholar 

  • Batanero, C., & Sanchez, E. (2005). What is the nature of high school students’ conceptions and misconceptions about probability. In G. A. Jones (Ed.), Exploring probability in school: challenges for teaching and learning (pp. 241–266). New York: Springer.

    Chapter  Google Scholar 

  • Batanero, C., Henry, M., & Parzysz, B. (2005a). The nature of chance and probability. In G. A. Jones (Ed.), Exploring probability in school: challenges for teaching and learning (pp. 15–37). New York: Springer.

    Chapter  Google Scholar 

  • Batanero, C., Biehler, R., Maxara, C., Engel, J., & Vogel, M. (2005b). Using simulation to bridge teachers content and pedagogical knowledge in probability. Paper presented at the 15th ICMI study conference: the professional education and development of teachers of mathematics. Aguas de Lindoia, Brazil.

    Google Scholar 

  • Begg, A., & Edwards, R. (1999). Teachers’ ideas about teaching statistics. In Proceedings of the 1999 combined conference of the Australian association for research in education and the New Zealand association for research in education. Melbourne: AARE & NZARE. Online: www.aare.edu.au/99pap/.

    Google Scholar 

  • Biehler, R. (1991). Computers in probability education. In R. Kapadia & M. Borovcnik (Eds.), Chance encounters. Probability in education (pp. 169–211). Amsterdam: Kluwer Academic.

    Chapter  Google Scholar 

  • Biehler, R. (2003). Simulation als systematischer Strang im Stochastikcurriculum [Simulation as systematic strand in stochastics teaching]. In Beiträge zum Mathematikunterricht (pp. 109–112).

    Google Scholar 

  • Biehler, R., & Prömmel, A. (2011). Mit Simulationen zum Wahrscheinlichkeitsbegriff [With simulations towards the concept of probability]. PM. Praxis der Mathematik in der Schule, 53(39), 14–18.

    Google Scholar 

  • Blum, W. (2002). ICMI-study 14: applications and modelling in mathematics education—discussion document. Educational Studies in Mathematics, 51, 149–171.

    Article  Google Scholar 

  • Borovcnik, M. (1992). Stochastik im Wechselspiel von Intuitionen und Mathematik [Stochastics in the interplay between intuitions and mathematics]. Mannheim: BI-Wissenschaftsverlag.

    Google Scholar 

  • Borovcnik, M. (2005). Probabilistic and statistical thinking. In Proceedings of the fourth congress of the European society for research in mathematics education, Sant Feliu de Guíxols, Spain (pp. 485–506).

    Google Scholar 

  • Box, G., & Draper, N. (1987). Empirical model-building and response surfaces. New York: Wiley.

    Google Scholar 

  • Brown, J. S., Collins, A., & Duguid, P. (1981). Situated cognition and the culture of learning. Educational Researcher, 18(1), 32–42.

    Article  Google Scholar 

  • Burill, G., & Biehler, R. (2011). Fundamental statistical ideas in the school curriculum and in teacher training. In C. Batanero, G. Burrill, & C. Reading (Eds.), Teaching statistics in school mathematics—challenges for teaching and teacher education (pp. 57–70). New York: Springer.

    Chapter  Google Scholar 

  • Broers, N. J. (2006). Learning goals: the primacy of statistical knowledge. In A. Rossman & B. Chance (Eds.), Proceedings of the seventh international conference on teaching statistics, Salvador: International Statistical Institute and International Association for Statistical Education. Online: www.stat.auckland.ac.nz/~iase/publications.

    Google Scholar 

  • Carnell, L. J. (1997). Characteristics of reasoning about conditional probability (preservice teachers). Unpublished doctoral dissertation, University of North Carolina-Greensboro.

    Google Scholar 

  • Chaput, B., Girard, J.-C., & Henry, M. (2011). Frequentistic approach: modelling and simulation in statistics and probability teaching. In C. Batanero, G. Burrill, & C. Reading (Eds.), Teaching statistics in school mathematics—challenges for teaching and teacher education (pp. 85–96). New York: Springer.

    Chapter  Google Scholar 

  • Chernoff, E. J. (2008). The state of probability measurement in mathematics education: a first approximation. Philosophy of Mathematics Education Journal, 23.

    Google Scholar 

  • Cognition Technology Group at Vanderbilt (1990). Anchored instruction and its relationship to situated cognition. Educational Researcher, 19(6), 2–10.

    Article  Google Scholar 

  • Countinho, C. (2001). Introduction aux situations aléatoires dés le Collége: de la modélisation à la simulation d’experiences de Bernoulli dans l’environment informatique Cabri-géomètre-II [Introduction to random situations in high school: from modelling to simulation of Bernoulli experiences with Cabri-géomètre-II]. Unpublished doctoral dissertation, University of Grénoble, France.

    Google Scholar 

  • De Fineti, B. (1974). Theory of probability. London: Wiley.

    Google Scholar 

  • Dugdale, S. (2001). Pre-service teachers’ use of computer simulation to explore probability. Computers in the Schools, 17(1/2), 173–182.

    Article  Google Scholar 

  • Eichler, A. (2008a). Teachers’ classroom practice and students’ learning. In C. Batanero, G. Burrill, C. Reading, & A. Rossman (Eds.), Joint ICMI/IASE study: teaching statistics in school mathematics. Challenges for teaching and teacher education. Proceedings of the ICMI study 18 and 2008 IASE round table conference. Monterrey: ICMI and IASE. Online: www.stat.auckland.ac.nz/~iase/publications.

    Google Scholar 

  • Eichler, A. (2008b). Statistics teaching in German secondary high schools. In C. Batanero, G. Burrill, C. Reading, & A. Rossman (Eds.), Joint ICMI/IASE study: teaching statistics in school mathematics. Challenges for teaching and teacher education. Proceedings of the ICMI study 18 and 2008 IASE round table conference. Monterrey: ICMI and IASE. Online: www.stat.auckland.ac.nz/~iase/publications.

    Google Scholar 

  • Eichler, A. (2011). Statistics teachers and classroom practices. In C. Batanero, G. Burrill, & C. Reading (Eds.), Teaching statistics in school mathematics—challenges for teaching and teacher education (pp. 175–186). New York: Springer.

    Chapter  Google Scholar 

  • Eichler, A., & Vogel, M. (2009). Leitidee Daten und Zufall [Key idea of data and chance]. Wiesbaden: Vieweg + Teubner.

    Google Scholar 

  • Eichler, A., & Vogel, M. (2011). Leitifaden Daten und Zufall [Compendium of data and chance]. Wiesbaden: Vieweg + Teubner.

    Google Scholar 

  • Engel, J. (2002). Activity-based statistics, computer simulation and formal mathematics. In B. Phillips (Ed.), Developing a statistically literate society. Proceedings of the sixth international conference on teaching statistics (ICOTS6, July, 2002), Cape Town, South Africa.

    Google Scholar 

  • Engel, J., & Vogel, M. (2004). Mathematical problem solving as modeling process. In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), ICMI-study 14: application and modeling in mathematics education (pp. 83–88). New York: Springer.

    Google Scholar 

  • Girard, J. C. (1997). Modélisation, simulation et experience aléatoire [Modeling, simulation and random experience]. In Enseigner les probabilités au lycée (pp. 73–76). Reims: Commission Inter-IREM Statistique et Probabilités.

    Google Scholar 

  • Greer, B., & Mukhopadhyay, S. (2005). Teaching and learning the mathematization of uncertainty: historical, cultural, social and political contexts. In G. A. Jones (Ed.), Exploring probability in school: challenges for teaching and learning (pp. 297–324). New York: Springer.

    Chapter  Google Scholar 

  • Heitele, D. (1975). An epistemological view on fundamental stochastic ideas. Educational Studies in Mathematics, 2, 187–205.

    Article  Google Scholar 

  • Henry, M. (1997). Notion de modéle et modélization en l’enseignement [Notion of model and modelling in teaching]. In Enseigner les probabilités au lycée (pp. 77–84). Reims: Commission Inter-IREM.

    Google Scholar 

  • Hoffrage, U. (2003). Risikokommunikation bei Brustkrebsfrüherkennung und Hormonersatztherapie [Risk communication in breast cancer screening and hormone replacement therapy]. Zeitschrift für Gesundheitspsychologie, 11(3), 76–86.

    Article  Google Scholar 

  • Jones, G. A., Langrall, C. W., & Mooney, E. S. (2007). Research in probability. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 909–956). Charlotte: Information Age Publishing.

    Google Scholar 

  • Kolmogoroff, A. (1933). Grundbegriffe der Wahrscheinlichkeitsrechnung [Fundamental terms of probability]. Berlin: Springer. (Reprint 1973).

    Book  Google Scholar 

  • Mandl, H., Gruber, H., & Renkl, A. (1997). Situiertes Lernen in multimedialen Lernumgebungen [Situated learning in multimedia learning environments]. In L. J. Issing & P. Klimsa (Eds.), Information und Lernen mit Multimedia (pp. 166–178). Weinheim: Psychologie Verlags Union.

    Google Scholar 

  • Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: a framework for teacher knowledge. Teachers College Record, 108(6), 1017–1054.

    Article  Google Scholar 

  • Pfannkuch, M. (2005). Probability and statistical inference: how can teachers enable students to make the connection? In G. A. Jones (Ed.), Exploring probability in school: challenges for teaching and learning (pp. 267–294). New York: Springer.

    Chapter  Google Scholar 

  • Renyi, A. (1992). Calcul des probabilités [Probability calculus]. Paris: Jacques Gabay. (Trans: L. Félix. Original work published 1966).

    Google Scholar 

  • Riemer, W. (1991). Stochastische Probleme aus elementarer Sicht [Stochastic problems from an elementary perspective]. Mannheim: BI-Wissenschaftsverlag.

    Google Scholar 

  • Rossman, A. (1997). Workshop statistics. New York: Springer.

    Google Scholar 

  • Salomon, G. (1993). Distributed cognitions: psychological and educational considerations. New York: Cambridge University Press.

    Google Scholar 

  • Scheaffer, R., Gnanadesikan, M., Watkins, A., & Witmer, J. (1997). Activity-based statistics. New York: Springer.

    Google Scholar 

  • Schneider, I. (1988). Die Entwicklung der Wahrscheinlichkeitstheorie von den Anfängen bis 1933 [Development of probability from beginnings to 1933]. Darmstadt: Wissenschaftliche Buchgesellschaft.

    Google Scholar 

  • Schnotz, W. (2002). Enabling, facilitating, and inhibiting effects in learning from animated pictures. In R. Ploetzner (Ed.), Online-proceedings of the international workshop on dynamic visualizations and learning (pp. 1–9). Tübingen: Knowledge Media Research Center.

    Google Scholar 

  • Schupp, H. (1982). Zum Verhältnis statistischer und wahrscheinlichkeitstheoretischer Komponenten im Stochastik-Unterricht der Sekundarstufe I [Concerning the relation between statistical and probabilistic components of middle school stochastics education]. Journal für Mathematik-Didaktik, 3(3/4), 207–226.

    Google Scholar 

  • Schupp, H. (1988). Anwendungsorientierter Mathematikunterricht in der Sekundarstufe I zwischen Tradition und neuen Impulsen [Application-oriented mathematics lessons in the lower secondary between tradition and new impulses]. Der Mathematikunterricht, 34(6), 5–16.

    Google Scholar 

  • Shaughnessy, M. (1992). Research in probability and statistics. In D. A. Grouws (Ed.), Handbook of research in mathematics teaching and learning (pp. 465–494). New York: Macmillan.

    Google Scholar 

  • Sill, H.-D. (1993). Zum Zufallsbegriff in der stochastischen Allgemeinbildung [About the concepts of chance and randomness in statistics education]. ZDM. Zentralblatt für Didaktik der Mathematik, 2, 84–88.

    Google Scholar 

  • Stachowiak, H. (1973). Allgemeine Modelltheorie [General model theory]. Berlin: Springer.

    Book  Google Scholar 

  • Steinbring, H. (1991). The theoretical nature of probability in the classroom. In R. Kapadia & M. Borovcnik (Eds.), Chance encounters. Probability in education (pp. 135–168). Amsterdam: Kluwer Academic.

    Chapter  Google Scholar 

  • Steinbring, H. & Strässer, R. (Hrsg.) (1981). Rezensionen von Stochastik-Lehrbüchern [Reviews of stochastic textbooks]. ZDM. Zentralblatt für Didaktik der Mathematik, 13, 236–286.

    Google Scholar 

  • Stohl, H. (2005). Probability in teacher education and development. In G. A. Jones (Ed.), Exploring probability in school: challenges for teaching and learning (pp. 345–366). New York: Springer.

    Chapter  Google Scholar 

  • Stohl, H., & Tarr, J. E. (2002). Developing notions of inference using probability simulation tools. The Journal of Mathematical Behavior, 21, 319–337.

    Article  Google Scholar 

  • Vogel, M. (2006). Mathematisieren funktionaler Zusammenhänge mit multimediabasierter Supplantation [Mathematization of functional relations using multimedia supplantation]. Hildesheim: Franzbecker.

    Google Scholar 

  • Vogel, M., & Eichler, A. (2011). Das kann doch kein Zufall sein! Wahrscheinlichkeitsmuster in Daten finden [It cannot be chance! Finding patterns of probability in data]. PM. Praxis der Mathematik in der Schule, 53(39), 2–8.

    Google Scholar 

  • von Mises, R. (1952). Wahrscheinlichkeit, Statistik und Wahrheit [Probability, statistics and truth]. Wien: Springer.

    Google Scholar 

  • Vosniadou, S. (1994). From cognitive theory to educational technology. In S. Vosniadou, E. D. Corte, & H. Mandl (Eds.), Technology-based learning environments (pp. 11–18). Berlin: Springer.

    Chapter  Google Scholar 

  • Wassner, C., & Martignon, L. (2002). Teaching decision making and statistical thinking with natural frequencies. In B. Phillips (Ed.), Developing a statistically literate society. Proceedings of the sixth international conference on teaching statistics (ICOTS6, July, 2002). Cape Town, South Africa.

    Google Scholar 

  • Wickmann, D. (1990). Bayes-Statistik [Bayesian statistics]. Mannheim: BI-Wissenschaftsverlag.

    Google Scholar 

  • Wild, C., & Pfannkuch, M. (1999). Statistical thinking in empirical enquiry. International Statistical Review, 67(3), 223–248.

    Google Scholar 

  • Zhang, J. (1997). The nature of external representations in problem solving. Cognitive Science, 21(2), 179–217.

    Article  Google Scholar 

  • Zimmermann, G. M. (2002). Students reasoning about probability simulation during instruction. Unpublished doctoral dissertation, Illinois State University, Normal.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Eichler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Eichler, A., Vogel, M. (2014). Three Approaches for Modelling Situations with Randomness. In: Chernoff, E., Sriraman, B. (eds) Probabilistic Thinking. Advances in Mathematics Education. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7155-0_4

Download citation

Publish with us

Policies and ethics