Skip to main content

Extraction Procedures for Organic Pollutants Determination in Water

  • Chapter
  • First Online:
Environmental Chemistry for a Sustainable World

Abstract

The European Water Framework Directive 2000/60 is one of the key legislations introduced for many years in water management and protection fields. The model of water management established by this directive is the river basin. There are a variety of indicators to define the good ecological and chemical status, including a list of priority and emerging pollutants to monitor. Compounds in the directive list are organic pollutants, e.g. hydrocarbons, organochlorine compounds, organic solvents, pesticides and chlorophenol, toxic metals (Hg, Ni, Cd and Pb) and one organometallic compound (tributyltin). Other chemical compounds such as pharmaceuticals, hormones and endocrine disruptor have also become important emerging contaminants due to their presence in environmental waters, the threat for drinking water sources and the concern about their possible estrogenic and other effects. For these reasons, some of them have been included as emerging pollutants in the directive. Although this directive does not specify the analytical methods and procedures to be used, the results should come to an agreement no matter which method is used and regardless in which lab the analysis is carried out. Therefore, a large effort to validate and harmonize analytical methods is very required to assure the quality of the results. Consequently, the implementation of robust analytical methods is still a challenging requirement. Among the different steps of the analytical procedure sample preparation is not only the a major source of uncertainties but also where the risk of artifacts and contamination is the highest. Different extraction techniques for the analysis of organic pollutants in water samples are being developed and optimized in order to automate and miniaturize the extraction step, using low volumes of solvents or even solventless procedures in order to pre-concentrate the analytes in the final acceptor phase. We review recent strategies for the analysis of organic pollutants in environmental water samples as alternative choices against the most classical liquid-liquid extraction or solid-phase extraction. Revised extraction techniques are classified in two main groups: (i) sorptive extractions and (ii) liquid-liquid microextraction. Among sorptive extractions, solid-phase microextraction, stir-bar sorptive extraction and microextraction by packed sorbent are described. Cloud point extraction, single drop microextraction, membrane liquid-phase microextraction and dispersive liquid-liquid microextraction are included in the group of liquid-liquid microextraction techniques. Among membrane liquid-phase microextraction the use of both porous and non-porous membranes is described. During the description of liquid-liquid microextraction techniques the use of ionic liquids is also mentioned due to the high number of applications found for both single drop microextraction and dispersive liquid-liquid microextraction. We discuss the basics, advantages, drawbacks and applications of the techniques for the analysis of organic pollutants in environmental water samples, including river, estuarine water, seawater or wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Chemicals and Compounds:

C

Acronym:

Chemical

Meaning:

m

[BMPL][PF3]:

1-methylpyrrolidinium tris(pentafl uoroethyl)trifl uorophosphate

[C4MIM][PF3]:

1-hexyl-3-methylimidazolium tris(pentafl uoroethyl) trifl uorophosphate

[C6MIM][PF6]:

1-hexyl-3-methylimidazolium hexafl uorophosphate

[C8MIM][PF6]:

1-octyl-3-methylimidazolium hexafl uorophosphate

[MC8IM][PF6]:

1-methyl-3-octylimidazolium hexafl uorophosphate

[PH3T][PF3]:

trihexyl(tetradecyl)phosphonium tris(pentafl uoroethyl)trifl uorsphosphate

4nP:

4-nonylphenol

APs:

alkylphenols

BPA:

bisphenol-A

BTEX:

benzene, toluene, ethylbenzene and xylenes

CAR:

carboxen

ClP:

chlorophenols

CW:

carbowax

DBT:

dibutyltin

DiEtHg:

diethylmercury

DVB:

divinylbenzene

ECDs:

endrocrine disrupting chemicals

EME:

electromembrane extraction

EtHg:

ethylmercury

MBT:

monobutyltin

MeHg:

methylmercury

NPEs:

nonylphenol ethoxylates

NPs:

nonylphenols

OCP:

organochlorine pesticide

OPP:

organophosphorus pesticide

PA:

polyacrilate

PAH:

polycyclic aromatic hydrocarbon

PBBs:

polybrominated biphenyls

PBDE:

polybrominated byphenylether

PBDE:

polybrominated diphenyl ethers

PC:

polycarbonate

PCB:

polychlorinated byphenyl

PCDD:

polychlorinated dibenzodioxins

PDMS:

polidimethylsiloxane

PEEK:

polyetheretherketone

PEs:

phtalate esters

POP:

persistent organic pollutants

PP:

polypropylene

PS:

polystyrene

PTFE:

polytetrafl uoroethylene

PVDF:

polyvinylidene difl uoride

SVOC:

semi-volatile organic compounds

TBAB:

tetrabutylammonium bromide

TBT:

tributyltin

TD:

thermal desorption

TMAH:

tetrabutylammonium hydroxide

TMSPA:

3-(trimethoxysilylpropyl) amine

TPhT:

triphenyltin

TPR:

template resin

VD-EPMS:

vinylpyridine-ethylene dimethacrylate

VOC:

volatile organic compounds

Techniques:

t

CE-UV:

capillary electrophoresis-ultraviolet detector

CF:

continuous fl ow

CP:

cloud-point

CPE:

cloud point extraction

CRC:

critical micellar concentration

CSM:

cone shape

DAD:

diode array detector

DD:

drop-to-drop

DI-SBSE:

direct immersion – SBSE

DI-SDME:

direct immersion-single drop microextraction

dSPME:

dual phase SPME

DI-SPME:

direct immersion – SPME

DSD:

directly suspended droplet

FTD:

fl ame thermionic detection

GC:

gas chromatography

GC/TOF-MS:

gas chromatography/high-resolution time-of-fl ight mass spectrometry

GC-AED:

gas chromatography with atomic emission detection

GC-ECD:

gas chromatography-electron capture detector

GC-FID:

gas chromatography-fl ame ionization detector

GC-FPD:

gas chromatography fl ame photometric detection

GC-ICP-MS:

gas chromatography inductively coupled plasma mass spectrometry

GC-MS:

gas chromatography-mass spectrometry

GC-MS/MS:

gas chromatography tandem mass spectrometry

HF:

hollow fi ber

HPLC-DAD:

high-pressure liquid chromatography with diode array detector

HPLC-PAD:

high performance liquid chromatography-photodiode array detector

HPLC-UV:

high performance liquid chromatography-ultraviolet detector

HPLC-UV-ED:

high performance liquid chromatography-ultraviolet detectorelectrochemical detector

HS:

headspace

HS-LPME:

headspace-liquid phase microextraction

HS-SDME:

headspace-single drop microextraction

HSSE:

headspace sorptive extraction

IL:

ionic liquids

IL-DI-SDME:

ionic liquid-direct immersion-single drop microextraction

IL-HS-SDME:

ionic liquid-headspace-single drop microextraction

IPPC:

integrated Pollution Prevention and Control

IT-SPME:

in tube solid phase microextraction

LC-FLD:

liquid chromatography lateral fl ow devices

LC-MS/MS:

liquid chromatography-tandem mass spectrometry

LD:

liquid desorption

LDPE:

low-density polyethylene

LLE:

liquid-liquid extraction

LLL:

liquid-liquid-liquid

LPME:

liquid phase microextraction

LVI:

large volume injector

LVI-GC-MS:

large volume injection gas chromatography mass spectrometry

MASE:

membrane-assisted solvent extraction

MEKC-UV:

micellar electrokinetic chromatography-ultraviolet detector

MEPS:

microextraction in packed sorbents

MEPS-BIN:

microextraction by packed sorbent-barrel insert and needle (BIN) device

MESI:

membrane extraction with sorbent interface

MIP:

molecular imprinted polymers

MMLLE:

microporous membrane liquid–liquid extraction

MW-HS-SPME:

microwave assisted headspace- solid phase microextraction

PTV:

programmable temperature vaporisers

REACH:

registration, evaluation, restriction and authorisation of chemicals

RP-LC:

reverse phase liquid chromatography

SBSE:

stir bar sorptive extraction

SCX:

strong cation exchanger

SDME:

single-drop microextraction

SLM:

supported liquid membrane

SPME:

solid phase micro-extraction

SPME-MC:

solid phase microextraction-micellar desorption

TD-GC-MS:

thermal desorption-gas chromatography-mass spectrometry

TDU:

thermal desorption unit

WFD:

water framework irective

References

  • Abdel-Rehim M (2003) In: Gazette CP (ed) AstraZeneca application, World Intelectual Property Organisation, London, UK, p 77

    Google Scholar 

  • Abdel-Rehim M (2004) New trend in sample preparation: on-line microextraction in packed syringe for liquid and gas chromatography applications I. Determination of local anaesthetics in human plasma samples using gas chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 801(2):317–321

    Article  CAS  Google Scholar 

  • Abdel-Rehim M, Altun Z, Blomberg L (2004) Microextraction in packed syringe (MEPS) for liquid and gas chromatographic applications. Part II – determination of ropivacaine and its metabolites in human plasma samples using MEPS with liquid chromatography/tandem mass spectrometry. J Mass Spectrom 39(12):1488–1493

    Article  CAS  Google Scholar 

  • Abdel-Rehim M, Skansen P, Vita M, Hassan Z, Blomberg L, Hassan M (2005) Microextraction in packed syringe/liquid chromatography/electrospray tandem mass spectrometry for quantification of olomoucine in human plasma samples. Anal Chim Acta 539(1–2):35–39

    Article  CAS  Google Scholar 

  • Abdel-Rehim M, Askemark Y, Norsten-Hoeoeg C, Pettersson K, Halldin M (2006a) Quantification of 4-OH-2,6-xylidine and its conjugates in human urine samples utilising microextraction in packed syringe on-line with liquid chromatography and electrospray tandem mass spectrometry (MEPS-LC-MS/MS). J Liquid Chromatogr Relat Technol 29(16):2413–2424

    Article  CAS  Google Scholar 

  • Abdel-Rehim M, Dahlgren M, Blomberg L (2006b) Quantification of ropivacaine and its major metabolites in human urine samples utilizing microextraction in a packed syringe automated with liquid chromatography-tandem mass spectrometry (MEPS-LC-MS/MS). J Sep Sci 29(11):1658–1661

    Article  CAS  Google Scholar 

  • Abdel-Rehim M, Dahlgren M, Blomberg L, Claude S, Tabacchi R (2006c) Microextraction in packed syringe (MEPS) utilizing methylcyanopropyl-silarylene as coating polymer for extraction of drugs in biological samples. J Liquid Chromatogr RelatTechnol 29(17): 537–2544

    Article  CAS  Google Scholar 

  • Abdel-Rehim M, Hassan Z, Skansem P, Hassan M (2007) Simultaneous determination of busulphan in plasma samples by liquid chromatography-electrospray ionization mass spectrometry utilizing microextraction in packed syringe (MEPS) as on-line sample preparation method. J Liquid Chromatogr Relat Technol 30(20):3029–3041

    Article  CAS  Google Scholar 

  • Abdel-Rehim M, Andersson A, Breitholtz-Emanuelsson A, Sandberg-Staell M, Brunfelter K, Pettersson K, Norsten-Hoeoeg C (2008) MEPS as a rapid sample preparation method to handle unstable compounds in a complex matrix: determination of AZD3409 in plasma samples utilizing MEPS-LC-MS-MS. J Chromatogr Sci 46(6):518–523

    Article  CAS  Google Scholar 

  • Aguilera-Herrador E, Lucena R, Cardenas S, Valcarcel M (2008a) Determination of trihalomethanes in waters by ionic liquid-based single drop microextraction/gas chromatographic/mass spectrometry. J Chromatogr A 1209(1–2):76–82

    Article  CAS  Google Scholar 

  • Aguilera-Herrador E, Lucena R, Cardenas S, Valcarcel M (2008b) Direct coupling of ionic liquid based single-drop microextraction and GC/MS. Anal Chem 80(3):793–800

    Article  CAS  Google Scholar 

  • Aguilera-Herrador E, Lucena R, Cardenas S, Valcarcel M (2008c) Ionic liquid-based single-drop microextraction/gas chromatographic/mass spectrometric determination of benzene, toluene, ethylbenzene and xylene isomers in waters. J Chromatogr A 1201(1):106–111

    Article  CAS  Google Scholar 

  • Ahmadi F, Assadi Y, Hosseini SMRM, Rezaee M (2006) Determination of organophosphorus pesticides in water samples by single drop microextraction and gas chromatography-flame photometric detector. J Chromatogr A 1101(1–2):307–312

    Article  CAS  Google Scholar 

  • Almeda S, Nozal L, Arce L, Valcárcel M (2007) Direct determination of chlorophenols present in liquid samples by using a supported liquid membrane coupled in-line with capillary electrophoresis equipment. Anal Chim Acta 587(1):97–103

    Article  CAS  Google Scholar 

  • Alzaga R, Bayona JM (2004) Determination of perfluorocarboxylic acids in aqueous matrices by ion-pair solid-phase microextraction-in-port derivatization-gas chromatography-negative ion chemical ionization mass spectrometry. J Chromatogr A 1042(1–2):155–162

    Article  CAS  Google Scholar 

  • Alzaga R, Pena A, Bayona JM (2003a) Determination of phthalic monoesters in aqueous and urine samples by solid-phase microextraction-diazomethane on-fibre derivatization-gas chromatography-mass spectrometry. J Sep Sci 26(1/2):87–96

    Article  CAS  Google Scholar 

  • Alzaga R, Pena A, Ortiz L, Bayona JM (2003b) Determination of linear alkylbenzensulfonates in aqueous matrices by ion-pair solid-phase microextraction-in-port derivatization-gas chromatography-mass spectrometry. J Chromatogr A 999(1–2):51–60

    Article  CAS  Google Scholar 

  • Arce L, Nozal L, Simonet BM, Valcárcel M, Ríos A (2009) Liquid-phase microextraction techniques for simplifying sample treatment in capillary electrophoresis. TrAC Trends Anal Chem 28(7):842–853

    Article  CAS  Google Scholar 

  • Bagheri H, Saber A, Mousavi SR (2004) Immersed solvent microextraction of phenol and chlorophenols from water samples followed by gas chromatography–mass spectrometry. J Chromatogr A 1046(1–2):27–33

    Article  CAS  Google Scholar 

  • Bagheri H, Babanezhad E, Khalilian F (2008) A novel sol-gel-based amino-functionalized fiber for headspace solid-phase microextraction of phenol and chlorophenols from environmental samples. Anal Chim Acta 616(1):49–55

    Article  CAS  Google Scholar 

  • Bagheri H, Ayazi Z, Babanezhad E (2010) A sol-gel-based amino functionalized fiber for immersed solid-phase microextraction of organophosphorus pesticides from environmental samples. Microchem J 94(1):1–6

    Article  CAS  Google Scholar 

  • Bai D, Li J, Chen SB, Chen BH (2001) A novel cloud-point extraction process for preconcentrating selected polycyclic aromatic hydrocarbons in aqueous solution. Environ Sci Technol 35(19):3936–3940

    Article  CAS  Google Scholar 

  • Baltussen E, Cramers CA, Sandra PJF (2002) Sorptive sample preparation – a review. Anal Bioanal Chem 373(1–2):3–22

    Article  CAS  Google Scholar 

  • Barri T, Jönsson J (2008) Advances and developments in membrane extraction for gas chromatography: techniques and applications. J Chromatogr A 1186(1–2):16–38

    Article  CAS  Google Scholar 

  • Basheer C, Lee HK (2004) Analysis of endocrine disrupting alkylphenols, chlorophenols and bisphenol-A using hollow fiber-protected liquid-phase microextraction coupled with injection port-derivatization gas chromatography–mass spectrometry. J Chromatogr A 1057(1–2):163–169

    Article  CAS  Google Scholar 

  • Basheer C, Lee HK, Obbard JP (2002) Determination of organochlorine pesticides in seawater using liquid-phase hollow fiber membrane microextraction and gas chromatography-mass spectrometry. J Chromatogr A 968(1–2):191–199

    Article  CAS  Google Scholar 

  • Basheer C, Balasubramanian R, Lee HK (2003) Determination of organic micropollutants in rainwater using hollow fiber membrane/liquid-phase microextraction combined with gas chromatography–mass spectrometry. J Chromatogr A 1016(1):11–20

    Article  CAS  Google Scholar 

  • Basheer C, Suresh V, Renu R, Lee HK (2004) Development and application of polymer-coated hollow fiber membrane microextraction to the determination of organochlorine pesticides in water. J Chromatogr A 1033(2):213–220

    Article  CAS  Google Scholar 

  • Basheer C, Lee J, Pedersen-Bjergaard S, Rasmussen KE, Lee HK (2010) Simultaneous extraction of acidic and basic drugs at neutral sample pH: a novel electro-mediated microextraction approach. J Chromatogr A 1217(43):6661–6667

    Article  CAS  Google Scholar 

  • Beceiro-Gonzalez E, Guimaraes A, Alpendurada MF (2009) Optimization of a headspace-solid-phase micro-extraction method for simultaneous determination of organometallic compounds of mercury, lead and tin in water by gas chromatography-tandem mass spectrometry. J Chromatogr A 1216(29):5563–5569

    Article  CAS  Google Scholar 

  • Berhanu T, Liu J, Romero R, Megersa N, Joensson JA (2006a) Determination of trace levels of dinitrophenolic compounds in environmental water samples using hollow fiber supported liquid membrane extraction and high performance liquid chromatography. J Chromatogr A 1103(1):1–8

    Article  CAS  Google Scholar 

  • Berhanu T, Liu J, Romero R, Megersa N, Jönsson JÅ (2006b) Determination of trace levels of dinitrophenolic compounds in environmental water samples using hollow fiber supported liquid membrane extraction and high performance liquid chromatography. J Chromatogr A 1103(1):1–8

    Article  CAS  Google Scholar 

  • Berijani S, Assadi Y, Anbia M, Milani Hosseini M, Aghaee E (2006) Dispersive liquid-liquid microextraction combined with gas chromatography-flame photometric detection. J Chromatogr A 1123(1):1–9

    Article  CAS  Google Scholar 

  • Bianchi F, Careri M, Maffini M, Mangia A, Mucchino C (2010) A fast and effective routine method based on SPME and GC/ICP-MS for the monitoring of organotin compounds in surface and sea water. Curr Anal Chem 6(3):223–227

    Article  CAS  Google Scholar 

  • Bourdat-Deschamps M, Daudin J, Barriuso E (2007) An experimental design approach to optimise the determination of polycyclic aromatic hydrocarbons from rainfall water using stir bar sorptive extraction and high performance liquid chromatography-fluorescence detection. J Chromatogr A 1167(2):143–153

    Article  CAS  Google Scholar 

  • Caldas SS, Costa FP, Primel EG (2010) Validation of method for determination of different classes of pesticides in aqueous samples by dispersive liquid-liquid microextraction with liquid chromatography-tandem mass spectrometric detection. Anal Chim Acta 665(1):55–62

    Article  CAS  Google Scholar 

  • Carabias-Martinez R, Rodriguez-Gonzalo E, Moreno-Cordero B, Perez-Pavon JL, Garcia-Pinto C, Fernandez Laespada E (2000) Surfactant cloud point extraction and preconcentration of organic compounds prior to chromatography and capillary electrophoresis. J Chromatogr A 902(1):251–265

    Article  CAS  Google Scholar 

  • Carabias-Martinez R, Rodriguez-Gonzalo E, Dominguez-Alvarez J, Garcia Pinto C, Hernandez-Mendez J (2003) Prediction of the behaviour of organic pollutants using cloudpoint extraction. J Chromatogr A 1005(1–2):23–34

    Article  CAS  Google Scholar 

  • Carpinteiro J, Quintana JB, Rodriguez I, Carro AM, Lorenzo RA, Cela R (2004) Applicability of solid-phase microextraction followed by on-fiber silylation for the determination of estrogens in water samples by gas chromatography-tandem mass spectrometry. J Chromatogr A 1056(1–2):179–185

    Article  CAS  Google Scholar 

  • Carro AM, Neira I, Rodil R, Lorenzo RA (2002) Speciation of mercury compounds by gas chromatography with atomic emission detection. Simultaneous optimization of a headspace solid-phase microextraction and derivatization procedure by use of chemometric techniques. Chromatographia 56(11/12):733–738

    Article  CAS  Google Scholar 

  • Centineo G, Blanco Gonzalez E, Sanz-Medel A (2004) Multielemental speciation analysis of organometallic compounds of mercury, lead and tin in natural water samples by headspace-solid phase microextraction followed by gas chromatography-mass spectrometry. J Chromatogr A 1034(1–2):191–197

    Article  CAS  Google Scholar 

  • Chen P, Huang S (2006) Determination of ethoprop, diazinon, disulfoton and fenthion using dynamic hollow fiber-protected liquid-phase microextraction coupled with gas chromatography-mass spectrometry. Talanta 69(3):669–675

    Article  CAS  Google Scholar 

  • Chen H, Chen R, Feng R, Li S (2009) Simultaneous analysis of carbamate and organophosphorus pesticides in water by single-drop microextraction coupled with GC-MS. Chromatographia 70(1/2):165–172

    Article  CAS  Google Scholar 

  • Chen H, Chen R, Li S (2010) Low-density extraction solvent-based solvent terminated dispersive liquid-liquid microextraction combined with gas chromatography-tandem mass spectrometry for the determination of carbamate pesticides in water samples. J Chromatogr A 1217(8):1244–1248

    Article  CAS  Google Scholar 

  • Chiang J, Huang S (2008) Simultaneous derivatization and extraction of anilines in waste water with dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometric detection. Talanta 75(1):70–75

    Article  CAS  Google Scholar 

  • Chimuka L, Msagati TAM, Cukrowska E, Tutu H (2010) Critical parameters in a supported liquid membrane extraction technique for ionizable organic compounds with a stagnant acceptor phase. J Chromatogr A 1217(16):2318–2325

    Article  CAS  Google Scholar 

  • Chisvert A, Roman IP, Vidal L, Canals A (2009) Simple and commercial readily-available approach for the direct use of ionic liquid-based single-drop microextraction prior to gas chromatography. Determination of chlorobenzens in real water samples as model analytical application. J Chromatogr A 1216(9):1290–1295

    Article  CAS  Google Scholar 

  • Chou C, Lee M (2005) Determination of organotin compounds in water by headspace solid phase microextraction with gas chromatography-mass spectrometry. J Chromatogr A 1064(1):1–8

    Article  CAS  Google Scholar 

  • Coquery M, Morin A, Bécue A, Lepot B (2005) Priority substances of the european water framework directive: analytical challenges in monitoring water quality. TrAC Trends Anal Chem 24(2):117–127

    Article  CAS  Google Scholar 

  • Cortada C, Vidal L, Pastor R, Santiago N, Canals A (2009a) Determination of organochlorine pesticides in water samples by dispersive liquid-liquid microextraction coupled to gas chromatography-mass spectrometry. Anal Chim Acta 649(2):218–221

    Article  CAS  Google Scholar 

  • Cortada C, Vidal L, Tejada S, Romo A, Canals A (2009b) Determination of organochlorine pesticides in complex matrices by single-drop microextraction coupled to gas chromatography-mass spectrometry. Anal Chim Acta 638(1):29–35

    Article  CAS  Google Scholar 

  • Cukrowska E, Chimuka L, Nsengimana H, Kwaramba V (2004) Application of supported liquid membrane probe for extraction and preconcentration of organotin compounds from environmental water samples. Anal Chim Acta 523(1):141–147

    Article  CAS  Google Scholar 

  • David F, Sandra P (2007) Stir bar sorptive extraction for trace analysis. J Chromatogr A 1152(1–2):54–69

    Article  CAS  Google Scholar 

  • Dean JR (1998) Extraction methods for environmental analysis. Wiley, Chinchester

    Google Scholar 

  • Delgado B, Pino V, Ayala JH, González V, Afonso AM (2004) Nonionic surfactant mixtures: a new cloud-point extraction approach for the determination of PAHs in seawater using HPLC with fluorimetric detection. Anal Chim Acta 518(1–2):165–172

    Article  CAS  Google Scholar 

  • Diaz A, Ventura F, Galceran MT (2002) Simultaneous determination of estrogenic short ethoxy chain nonylphenols and their acidic metabolites in water by an in-sample derivatization/solid-phase microextraction method. Anal Chem 74(15):3869–3876

    Article  CAS  Google Scholar 

  • Einsle T, Paschke H, Bruns K, Schrader S, Popp P, Moeder M (2006) Membrane-assisted liquid–liquid extraction coupled with gas chromatography–mass spectrometry for determination of selected polycyclic musk compounds and drugs in water samples. J Chromatogr A 1124(1–2):196–204

    Article  CAS  Google Scholar 

  • El-Beqqali A, Abdel-Rehim M (2007) Quantitative analysis of methadone in human urine samples by microextraction in packed syringe-gas chromatography-mass spectrometry (MEPS-GC-MS). J Sep Sci 30(15):2501–2505

    Article  CAS  Google Scholar 

  • El-Beqqali A, Kussak A, Abdel-Rehim M (2006) Fast and sensitive environmental analysis utilizing microextraction in packed syringe online with gas chromatography-mass spectrometry. J Chromatogr A 1114(2):234–238

    Article  CAS  Google Scholar 

  • El-Beqqali A, Kussak A, Abdel-Rehim M (2007a) Determination of dopamine and serotonin in human urine samples utilizing microextraction online with liquid chromatography/electrospray tandem mass spectrometry. J Sep Sci 30(3):421–424

    Article  CAS  Google Scholar 

  • El-Beqqali A, Kussak A, Blomberg L, Abdel-Rehim M (2007b) Microextraction in packed syringe/liquid chromatography/electrospray tandem mass spectrometry for quantification of acebutolol and metoprolol in human plasma and urine samples. J Liquid Chromatogr Relat Technol 30(4):575–586

    Article  CAS  Google Scholar 

  • Erickson BE (2002) Analyzing the ignored environmental contaminants. Environ Sci Technol 36(7):140A–145A

    Article  CAS  Google Scholar 

  • Fan YC, Hu ZL, Chen ML, Tu CS, Zhu Y (2008) Ionic liquid based dispersive liquid-liquid microextraction of aromatic amines in water samples. Chin Chem Lett 19(8):985–987

    Article  CAS  Google Scholar 

  • Farajzadeh M, Hatami M (2002) Analysis of n-alkanes at sub microgram per liter level after direct solid phase microextraction from aqueous samples. Anal Sci 18(11):1221–1225

    Article  CAS  Google Scholar 

  • Farajzadeh MA, Seyedi SE, Shalamzari MS, Bamorowat M (2009) Dispersive liquid-liquid microextraction using extraction solvent lighter than water. J Sep Sci 32(18):3191–3200

    Article  CAS  Google Scholar 

  • Farajzadeh MA, Djozan D, Bakhtiyari RF (2010a) Use of a capillary tube for collecting an extraction solvent lighter than water after dispersive liquid-liquid microextraction and its application in the determination of parabens in different samples by gas chromatography-flame ionization detection. Talanta 81(4–5):1360–1367

    Article  CAS  Google Scholar 

  • Farajzadeh MA, Djozan D, Nouri N, Bamorowat M, Shalamzari MS (2010b) Coupling stir bar sorptive extraction-dispersive liquid-liquid microextraction for preconcentration of triazole pesticides from aqueous samples followed by GC-FID and GC-MS determinations. J Sep Sci 33(12):1816–1828

    Article  CAS  Google Scholar 

  • Farhadi K, Farajzadeh MA, Matin AA (2009) Liquid chromatographic determination of benomyl in water samples after dispersive liquid-liquid microextraction. J Sep Sci 32(14):2442–2447

    Article  CAS  Google Scholar 

  • Farré Ml, Pérez S, Kantiani L, Barceló D (2008) Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. TrAC Trends Anal Chem 27(11):991–1007

    Article  CAS  Google Scholar 

  • Fattahi N, Samadi S, Assadi Y, Hosseini MRM (2007) Solid-phase extraction combined with dispersive liquid-liquid microextraction-ultra preconcentration of chlorophenols in aqueous samples. J Chromatogr A 1169(1–2):63–69

    Article  CAS  Google Scholar 

  • Fernandez Laespada ME, Calvo Seronero L, Perez Pavon JL, Garcia Pinto C, Moreno Cordero B (2001) Comparative study of silicone and microporous membranes for the separation of some phenols prior to high performance liquid chromatography analysis. J Sep Sci 24(7):526–532

    Article  Google Scholar 

  • Fiamegos YC, Kefala A, Stalikas CD (2008) Ion-pair single-drop microextraction versus phase-transfer catalytic extraction for the gas chromatographic determination of phenols as tosylated derivatives. J Chromatogr A 1190(1–2):44–51

    Article  CAS  Google Scholar 

  • Fontana AR, Silva MF, Martínez LD, Wuilloud RG, Altamirano JC (2009) Determination of polybrominated diphenyl ethers in water and soil samples by cloud point extraction-ultrasound-assisted back-extraction-gas chromatography–mass spectrometry. J Chromatogr A 1216(20):4339–4346

    Article  CAS  Google Scholar 

  • Fontanals N, Barri T, Bergström S, Jönsson J (2006) Determination of polybrominated diphenyl ethers at trace levels in environmental waters using hollow-fiber microporous membrane liquid–liquid extraction and gas chromatography–mass spectrometry. J Chromatogr A 1133(1–2):41–48

    Article  CAS  Google Scholar 

  • Fu L, Liu X, Hu J, Zhao X, Wang H, Huang C, Wang X (2009) Determination of two pesticides in soils by dispersive liquid-liquid microextraction combined with LC-fluorescence detection. Chromatographia 70(11/12):1697–1701

    Article  CAS  Google Scholar 

  • Garcia-Falcon MS, Cancho-Grande B, Simal-Gandara J (2004) Stirring bar sorptive extraction in the determination of PAHs in drinking waters. Water Res 38(7):1679–1684

    Article  CAS  Google Scholar 

  • Gjelstad A, Andersen TM, Rasmussen KE, Pedersen-Bjergaard S (2007) Microextraction across supported liquid membranes forced by pH gradients and electrical fields. J Chromatogr A 1157(1–2):38–45

    Article  CAS  Google Scholar 

  • Goncalves CM, Silva Joaquim CGEd, Alpendurada MF (2007) Evaluation of the pesticide contamination of groundwater sampled over two years from a vulnerable zone in Portugal. J Agric Food Chem 55(15):6227–6235

    Article  CAS  Google Scholar 

  • Guan W, Xu F, Liu W, Zhao J, Guan Y (2007) A new poly(phthalazine ether sulfone ketone)-coated fiber for solid-phase microextraction to determine nitroaromatic explosives in aqueous samples. J Chromatogr A 1147(1):59–65

    Article  CAS  Google Scholar 

  • Guan W, Wang Y, Xu F, Guan Y (2008) Poly(phthalazine ether sulfone ketone) as novel stationary phase for stir bar sorptive extraction of organochlorine compounds and organophosphorus pesticides. J Chromatogr A 1177(1):28–35

    Article  CAS  Google Scholar 

  • Guillot S, Kelly MT, Fenet H, Larroque M (2006) Evaluation of solid-phase microextraction as an alternative to the official method for the analysis of organic micro-pollutants in drinking water. J Chromatogr A 1101(1–2):46–52

    Article  CAS  Google Scholar 

  • Guo X, Mitra S (2000) On-line membrane extraction liquid chromatography for monitoring semi-volatile organics in aqueous matrices. J Chromatogr A 904(2):189–196

    Article  CAS  Google Scholar 

  • Guo J, Li X, Cao X, Li Y, Wang X, Xu X (2009) Determination of triclosan, triclocarban and methyl-triclosan in aqueous samples by dispersive liquid-liquid microextraction combined with rapid liquid chromatography. J Chromatogr A 1216(15):3038–3043

    Article  CAS  Google Scholar 

  • Gupta M, Pillai AKKV, Jain A, Verma KK (2008) Coupled in-tube and on-fibre solid-phase microextractions for cleanup and preconcentration of organic micropollutants from aqueous samples and analysis by gas chromatography-mass spectrometry. Anal Chim Acta 618(1):61–69

    Article  CAS  Google Scholar 

  • Hansen P (2007) Risk assessment of emerging contaminants in aquatic systems. TrAC Trends Anal Chem 26(11):1095–1099

    Article  CAS  Google Scholar 

  • Hauser B, Popp P (2001a) Combining membrane extraction with mobile gas chromatography for the field analysis of volatile organic compounds in contaminated waters. J Chromatogr A 909(1):3–12

    Article  CAS  Google Scholar 

  • Hauser B, Popp P (2001b) Membrane-assisted solvent extraction of organochlorine compounds in combination with large-volume injection/gas chromatography-electron capture detection. J Sep Sci 24(7):551–560

    Article  CAS  Google Scholar 

  • Hauser B, Schellin M, Popp P (2004) Membrane-assisted solvent extraction of triazines, organochlorine, and organophosphorus compounds in complex samples combined with large-volume injection-gas chromatography/mass spectrometric detection. Anal Chem 76:6029–6038

    Article  CAS  Google Scholar 

  • He Y, Lee HK (1997) Liquid-phase microextraction in a single drop of organic solvent by using a conventional microsyringe. Anal Chem 69(22):4634–4640

    Article  CAS  Google Scholar 

  • He T, Versteeg LAM, Mulder MHV, Wessling M (2004) Composite hollow fiber membranes for organic solvent-based liquid–liquid extraction. J Membr Sci 234(1–2):1–10

    Article  CAS  Google Scholar 

  • He L, Luo X, Xie H, Wang C, Jiang X, Lu K (2009a) Ionic liquid-based dispersive liquid-liquid microextraction followed high-performance liquid chromatography for the determination of organophosphorus pesticides in water sample. Anal Chim Acta 655(1–2):52–59

    Article  CAS  Google Scholar 

  • He L, Wang C, Sun Y, Luo X, Zhang J, Lu K (2009b) Dispersive liquid-liquid microextraction followed by high-performance liquid chromatography for the determination of three carbamate pesticides in water samples. Int J Environ Anal Chem 89(6):439–448

    Article  CAS  Google Scholar 

  • Hernandez F, Portoles T, Pitarch E, Lopez FJ (2007) Target and nontarget screening of organic micropollutants in water by solid-phase microextraction combined with gas chromatography/high-resolution time-of-flight mass spectrometry. Anal Chem 79(24):9494–9504

    Article  CAS  Google Scholar 

  • Herrera-Herrera AV, Asensio-Ramos M, Hernández-Borges J, Rodríguez-Delgado MÁ (2010) Dispersive liquid-liquid microextraction for determination of organic analytes. TrAC Trends Anal Chem 29(7):728–751

    Article  CAS  Google Scholar 

  • Ho H, Lee R, Lee M (2008) Purge-assisted headspace solid-phase microextraction combined with gas chromatography-mass spectrometry for determination of chlorophenols in aqueous samples. J Chromatogr A 1213(2):245–248

    Article  CAS  Google Scholar 

  • Hongxia Yu, Guanyong Su, Yijun Yu, Hongling Liu, Hanhua Lin, Qunsheng Lin (2008) Solid phase micro-extraction analytical method suitable for detection of organic pollutants in water. Patent Application Country: Application: CN; Patent Country: CN Patent 101,303,278, filed 2008, and issued 1112; Patent Application Date: 16 May 2008

    Google Scholar 

  • Huang Y, Yang Y, Shu YY (2007) Analysis of semi-volatile organic compounds in aqueous samples by microwave-assisted headspace solid-phase microextraction coupled with gas chromatography-electron capture detection. J Chromatogr A 1140(1–2):35–43

    Article  CAS  Google Scholar 

  • Huang X, Qiu N, Yuan D (2008) Direct enrichment of phenols in lake and sea water by stir bar sorptive extraction based on poly(vinylpyridine-ethylene dimethacrylate) monolithic material and liquid chromatographic analysis. J Chromatogr A 1194(1):134–138

    Article  CAS  Google Scholar 

  • Huang X, Lin J, Yuan D, Hu R (2009) Determination of steroid sex hormones in wastewater by stir bar sorptive extraction based on poly(vinylpyridine-ethylene dimethacrylate) monolithic material and liquid chromatographic analysis. J Chromatogr A 1216(16):3508–3511

    Article  CAS  Google Scholar 

  • Huang X, Qiu N, Yuan D, Lin Q (2010) Preparation of a mixed stir bar for sorptive extraction based on monolithic material for the extraction of quinolones from wastewater. J Chromatogr A 1217(16):2667–2673

    Article  CAS  Google Scholar 

  • Huertas C, Morillo J, Usero J, Gracia-Manarillo I (2007) Validation of stir bar sorptive extraction for the determination of 24 priority substances from the European water framework directive in estuarine and sea water. Talanta 72(3):1149–1156

    Article  CAS  Google Scholar 

  • Hung K, Chen B (2007) Application of L3 sponge phase in extraction of polycyclic aromatic hydrocarbons. AICHE J 53(6):1450–1459

    Article  CAS  Google Scholar 

  • Hung K, Chen B, Yu LE (2007) Cloud-point extraction of selected polycyclic aromatic hydrocarbons by nonionic surfactants. Sep Purif Technol 57(1):1–10

    Article  CAS  Google Scholar 

  • Ito R, Kawaguchi M, Sakui N, Honda H, Okanouchi N, Saito K, Nakazawa H (2008) Mercury speciation and analysis in drinking water by stir bar sorptive extraction with in situ propyl derivatization and thermal desorption-gas chromatography-mass spectrometry. J Chromatogr A 1209(1–2):267–270

    Article  CAS  Google Scholar 

  • Ito R, Kawaguchi M, Sakui N, Okanouchi N, Saito K, Seto Y, Nakazawa H (2009) Stir bar sorptive extraction with in situ derivatization and thermal desorption-gas chromatography-mass spectrometry for trace analysis of methylmercury and mercury(II) in water sample. Talanta 77(4):1295–1298

    Article  CAS  Google Scholar 

  • Jagerdeo E, Abdel-Rehim M (2009) Screening of cocaine and its metabolites in human urine samples by direct analysis in real-time source coupled to time-of-flight mass spectrometry after online preconcentration utilizing microextraction by packed sorbent. J Am Soc Mass Spectrom 20(5):891–899

    Article  CAS  Google Scholar 

  • Jeannot MA, Cantwell FF (1996) Solvent microextraction into a single drop. Anal Chem 68(13):2236–2240

    Article  CAS  Google Scholar 

  • Jeannot MA, Cantwell FF (1997) Mass transfer characteristics of solvent extraction into a single drop at the tip of a syringe needle. Anal Chem 69(2):235–239

    Article  CAS  Google Scholar 

  • Jeannot MA, Przyjazny A, Kokosa JM (2010) Single drop microextraction—development, applications and future trends. J Chromatogr A 1217(16):2326–2336

    Article  CAS  Google Scholar 

  • Jönsson JÅ, Mathiasson L (1999) Liquid membrane extraction in analytical sample preparation: I. Principles. TrAC Trends Anal Chem 18(5):318–325

    Article  Google Scholar 

  • Jönsson JÅ, Mathiasson L (2000) Membrane-based techniques for sample enrichment. J Chromatogr A 902(1):205–225

    Article  Google Scholar 

  • Jönsson JÅ, Mathiasson L (2001) Membrane extraction in analytical chemistry. J Sep Sci 24(7):495–507

    Article  Google Scholar 

  • Kawaguchi M, Sakui N, Okanouchi N, Ito R, Saito K, Nakazawa H (2005) Stir bar sorptive extraction and trace analysis of alkylphenols in water samples by thermal desorption with in tube silylation and gas chromatography-mass spectrometry. J Chromatogr A 1062(1):23–29

    Article  CAS  Google Scholar 

  • Kawaguchi M, Ito R, Endo N, Okanouchi N, Sakui N, Saito K, Nakazawa H (2006a) Liquid phase microextraction with in situ derivatization for measurement of bisphenol A in river water sample by gas chromatography–mass spectrometry. J Chromatogr A 1110(1–2):1–5

    Article  CAS  Google Scholar 

  • Kawaguchi M, Ito R, Saito K, Nakazawa H (2006b) Novel stir bar sorptive extraction methods for environmental and biomedical analysis. J Pharm Biomed Anal 40(3):500–508

    Article  CAS  Google Scholar 

  • Kawaguchi M, Ito R, Sakui N, Okanouchi N, Saito K, Nakazawa H (2006c) Dual derivatization-stir bar sorptive extraction-thermal desorption-gas chromatography-mass spectrometry for determination of 17beta -estradiol in water sample. J Chromatogr A 1105(1–2):140–147

    Article  CAS  Google Scholar 

  • Khajeh M, Yamini Y, Hassan J (2006) Trace analysis of chlorobenzenes in water samples using headspace solvent microextraction and gas chromatography/electron capture detection. Talanta 69(5):1088–1094

    Article  CAS  Google Scholar 

  • Khammas ZA (2009) Recent trends for separation and preconcentration in metal ions and organic compounds analysis after cloud-point methodology: developments and analytical applications – a review. Eurasian J Anal Chem 4(1):1–35

    CAS  Google Scholar 

  • Kjelsen IJØ, Gjelstad A, Rasmussen KE, Pedersen-Bjergaard S (2008) Low-voltage electromembrane extraction of basic drugs from biological samples. J Chromatogr A 1180(1–2):1–9

    Article  CAS  Google Scholar 

  • Kolahgar B, Hoffmann A, Heiden AC (2002) Application of stir bar sorptive extraction to the determination of polycyclic aromatic hydrocarbons in aqueous samples. J Chromatogr A 963(1–2):225–230

    Article  CAS  Google Scholar 

  • Kou D, Wang X, Mitra S (2004) Supported liquid membrane microextraction with high-performance liquid chromatography–UV detection for monitoring trace haloacetic acids in water. J Chromatogr A 1055(1–2):63–69

    Article  CAS  Google Scholar 

  • Kozani RR, Assadi Y, Shemirani F, Hosseini MM, Jamali MR (2007) Part-per-trillion determination of chlorobenzenes in water using dispersive liquid-liquid microextraction combined gas chromatography-electron capture detection. Talanta 72(2):387–393

    Article  CAS  Google Scholar 

  • Lambropoulou DA, Albanis TA (2005) Application of hollow fiber liquid phase microextraction for the determination of insecticides in water. J Chromatogr A 1072(1):55–61

    Article  CAS  Google Scholar 

  • Lambropoulou DA, Albanis TA (2007) Liquid-phase micro-extraction techniques in pesticide residue analysis. J Biochem Biophys Methods 70(2):195–228

    Article  CAS  Google Scholar 

  • Lambropoulou DA, Psillakis E, Albanis TA, Kalogerakis N (2004) Single-drop microextraction for the analysis of organophosphorus insecticides in water. Anal Chim Acta 516(1–2):205–211

    Article  CAS  Google Scholar 

  • Lambropoulou DA, Konstantinou IK, Albanis TA (2007) Recent developments in headspace microextraction techniques for the analysis of environmental contaminants in different matrices. J Chromatogr A 1152(1–2):70–96

    Article  CAS  Google Scholar 

  • Lee M, Chiu T, Dou J (2007) Determination of 1,3-dichloro-2-propanol and 3-chloro-1,2-propandiol in soy sauce by headspace derivatization solid-phase microextraction combined with gas chromatography-mass spectrometry. Anal Chim Acta 591(2):167–172

    Article  CAS  Google Scholar 

  • Lee J, Khalilian F, Bagheri H, Lee HK (2009) Optimization of some experimental parameters in the electro membrane extraction of chlorophenols from seawater. J Chromatogr A 1216(45):7687–7693

    Article  CAS  Google Scholar 

  • Leon VM, Llorca-Porcel J, Alvarez B, Cobollo MA, Munoz S, Valor I (2006) Analysis of 35 priority semivolatile compounds in water by stir bar sorptive extraction-thermal desorption-gas chromatography-mass spectrometry. Anal Chim Acta 558(1–2):261–266

    Article  CAS  Google Scholar 

  • Leong M, Huang S (2008) Dispersive liquid-liquid microextraction method based on solidification of floating organic drop combined with gas chromatography with electron-capture or mass spectrometry detection. J Chromatogr A 1211(1–2):8–12

    Article  CAS  Google Scholar 

  • Lepom P, Brown B, Hanke G, Loos R, Quevauviller P, Wollgast J (2009) Needs for reliable analytical methods for monitoring chemical pollutants in surface water under the European water framework directive. J Chromatogr A 1216(3):302–315

    Article  CAS  Google Scholar 

  • Lezamiz J, Jönsson JÅ (2007) Development of a simple hollow fibre supported liquid membrane extraction method to extract and preconcentrate dinitrophenols in environmental samples at ng L−1 level by liquid chromatography. J Chromatogr A 1152(1–2):226–233

    Article  CAS  Google Scholar 

  • Li J, Bai R, Chen B (2004) Preconcentration of phenanthrene from aqueous solution by a slightly hydrophobic nonionic surfactant. Langmuir 20(14):6068–6070

    Article  CAS  Google Scholar 

  • Li Y, Wei G, Wang X (2007) Determination of decabromodiphenyl ether in water samples by single-drop microextraction and RP-HPLC. J Sep Sci 30(16):2698–2702

    Article  CAS  Google Scholar 

  • Li Y, Hu J, Liu X, Fu L, Zhang X, Wang X (2008) Dispersive liquid-liquid microextraction followed by reversed phase HPLC for the determination of decabrominated diphenyl ether in natural water. J Sep Sci 31(13):2371–2376

    Article  CAS  Google Scholar 

  • Li Q, Liu Y, Wang Z, Chen W, Zhang Q (2010) Application of microwave-assisted extraction and its combination with other technologies on the determination of organic pollutants. Huaxue Tongbao 73(2):134–140

    CAS  Google Scholar 

  • Lin H, Sung Y, Huang S (2003) Solid-phase microextraction coupled with high-performance liquid chromatography for the determination of phenylurea herbicides in aqueous samples. J Chromatogr A 1012(1):57–66

    Article  CAS  Google Scholar 

  • Liu H, Dasgupta PK (1996) Analytical chemistry in a drop. Solvent extraction in a microdrop. Anal Chem 68(11):1817–1821

    Article  CAS  Google Scholar 

  • Liu W, Wang H, Guan Y (2004a) Preparation of stir bars for sorptive extraction using sol–gel technology. J Chromatogr A 1045(1–2):15–22

    Article  CAS  Google Scholar 

  • Liu J, Chi Y, Jiang G, Tai C, Peng J, Hu J (2004b) Ionic liquid-based liquid-phase microextraction, a new sample enrichment procedure for liquid chromatography. J Chromatogr A 1026(1–2):143–147

    Article  CAS  Google Scholar 

  • Liu J, Jönsson JA, Mayer P (2005a) Equilibrium sampling through membranes of freely dissolved chlorophenols in water samples with hollow fiber supported liquid membrane. Anal Chem 77(15):4800–4809

    Article  CAS  Google Scholar 

  • Liu W, Hu Y, Zhao J, Xu Y, Guan Y (2005b) Determination of organophosphorus pesticides in cucumber and potato by stir bar sorptive extraction. J Chromatogr A 1095(1–2):1–7

    Article  CAS  Google Scholar 

  • Liu X, Ji Y, Zhang Y, Zhang H, Liu M (2007) Oxidized multiwalled carbon nanotubes as a novel solid-phase microextraction fiber for determination of phenols in aqueous samples. J Chromatogr A 1165(1–2):10–17

    Article  CAS  Google Scholar 

  • Liu X, Li J, Zhao Z, Zhang W, Lin K, Huang C, Wang X (2009a) Solid-phase extraction combined with dispersive liquid-liquid microextraction for the determination for polybrominated diphenyl ethers in different environmental matrices. J Chromatogr A 1216(12):2220–2226

    Article  CAS  Google Scholar 

  • Liu Y, Zhao E, Zhu W, Gao H, Zhou Z (2009b) Determination of four heterocyclic insecticides by ionic liquid dispersive liquid-liquid microextraction in water samples. J Chromatogr A 1216(6):885–891

    Article  CAS  Google Scholar 

  • Liu ZM, Zang XH, Liu WH, Wang C, Wang Z (2009c) Novel method for the determination of five carbamate pesticides in water samples by dispersive liquid-liquid microextraction combined with high performance liquid chromatography. Chin Chem Lett 20(2):213–216

    Article  CAS  Google Scholar 

  • Llorca-Porcel J, Martinez-Sanchez G, Alvarez B, Cobollo MA, Valor I (2006) Analysis of nine polybrominated diphenyl ethers in water samples by means of stir bar sorptive extraction-thermal desorption-gas chromatography-mass spectrometry. Anal Chim Acta 569(1–2):113–118

    Article  CAS  Google Scholar 

  • Lopez-Blanco MC, Blanco-Cid S, Cancho-Grande B, Simal-Gandara J (2003) Application of single-drop microextraction and comparison with solid-phase microextraction and solid-phase extraction for the determination of alpha – and beta -endosulfan in water samples by gas chromatography-electron-capture detection. J Chromatogr A 984(2):245–252

    Article  CAS  Google Scholar 

  • Lopez-Darias J, German-Hernandez M, Pino V, Afonso AM (2010) Dispersive liquid-liquid microextraction versus single-drop microextraction for the determination of several endocrine-disrupting phenols from seawaters. Talanta 80(5):1611–1618

    Article  CAS  Google Scholar 

  • Lopez-Jimenez FJ, Rubio S, Perez-Bendito D (2008) Single-drop coacervative microextraction of organic compounds prior to liquid chromatography. Theoretical and practical considerations. J Chromatogr A 1195(1–2):25–33

    Article  CAS  Google Scholar 

  • Lord H, Pawliszyn J (2000) Evolution of solid-phase microextraction technology. J Chromatogr A 885:153–193

    Article  CAS  Google Scholar 

  • Luo YZ, Pawliszyn J (2000) Membrane extraction with a sorbent interface for headspace monitoring of aqueous samples using a cap sampling device. Anal Chem 72(5):1058–1063

    Article  CAS  Google Scholar 

  • MacNamara K, Leardi R, McGuigan F (2009) Comprehensive investigation and optimization of the main experimental variables in stir-bar sorptive extraction (SBSE)-thermal desorption-capillary gas chromatography (TD-CGC). Anal Chim Acta 636(2):190–197

    Article  CAS  Google Scholar 

  • Magi E, Di Marina C, Liscio C (2010) Passive sampling and stir bar sorptive extraction for the determination of endocrine-disrupting compounds in water by GC-MS. Anal Bioanal Chem 397(3):1335–1345

    Article  CAS  Google Scholar 

  • Marsin Sanagi M, See HH, Ibrahim WAW, Abu Naim A (2007) Determination of pesticides in water by cone-shaped membrane protected liquid phase microextraction prior to micro-liquid chromatography. J Chromatogr A 1152(1–2):215–219

    Article  CAS  Google Scholar 

  • Marsin Sanagi M, Abidin NAZ, Ibrahim WAW, Aboul-Enein HY (2010) Application of double-phase liquid phase microextraction in the determination of partition coefficients and analysis of pesticides in water samples. Chromatographia 71(5/6):461–467

    Article  CAS  Google Scholar 

  • Matysik S, Matysik F (2009) Microextraction by packed sorbent coupled with gas chromatography – mass spectrometry: application to the determination of metabolites of monoterpenes in small volumes of human urine. Microchim Acta 166(1):109–114

    Article  CAS  Google Scholar 

  • Matz G, Kibelka G, Dahl J, Lennemann F (1999) Experimental study on solvent-less sample preparation methods: membrane extraction with a sorbent interface, thermal membrane desorption application and purge-and-trap. J Chromatogr A 830(2):365–376

    Article  CAS  Google Scholar 

  • Mayer P, Vaes WHJ, Wijnker F, Legierse KCHM, Kraaij R, Tolls J, Hermens JLM (2000) Sensing dissolved sediment pore water concentrations of persistent and bioaccumulative pollutants using disposable solid-phase microextraction fibers. Environ Sci Technol 34(24):5177–5183

    Article  CAS  Google Scholar 

  • Melwanki MB, Fuh M (2008) Dispersive liquid-liquid microextraction combined with semi-automated in-syringe back extraction as a new approach for the sample preparation of ionizable organic compounds prior to liquid chromatography. J Chromatogr A 1198–1199:1–6

    Article  CAS  Google Scholar 

  • Meyers JE, Almirall JR (2005) Analysis of gamma-hydroxybutyric acid (GHB) in spiked water and beverage samples using solid phase microextraction (SPME) on fiber derivatization/gas chromatography-mass spectrometry (GC/MS). J Forensic Sci 50(1):31–36

    Article  CAS  Google Scholar 

  • Mitani K, Fujioka M, Kataoka H (2005) Fully automated analysis of estrogens in environmental waters by in-tube solid-phase microextraction coupled with liquid chromatography-tandem mass spectrometry. J Chromatogr A 1081(2):218–224

    Article  CAS  Google Scholar 

  • Mitra S (ed) (2003) Sample preparation techniques in analytical chemistry. Wiley, Hoboken

    Google Scholar 

  • Moeder M, Schrader S, Winkler U, Rodil R (2010) At-line microextraction by packed sorbent-gas chromatography–mass spectrometry for the determination of UV filter and polycyclic musk compounds in water samples. J Chromatogr A 1217(17):2925–2932

    Article  CAS  Google Scholar 

  • Montero L, Popp P, Paschke A, Pawliszyn J (2004) Polydimethylsiloxane rod extraction, a novel technique for the determination of organic micropollutants in water samples by thermal desorption-capillary gas chromatography-mass spectrometry. J Chromatogr A 1025(1):17–26

    Article  CAS  Google Scholar 

  • Montero L, Conradi S, Weiss H, Popp P (2005) Determination of phenols in lake and ground water samples by stir bar sorptive extraction-thermal desorption-gas chromatography-mass spectrometry. J Chromatogr A 1071(1–2):163–169

    Article  CAS  Google Scholar 

  • Montes R, Rodriguez I, Ramil M, Rubi E, Cela R (2009a) Solid-phase extraction followed by dispersive liquid-liquid microextraction for the sensitive determination of selected fungicides in wine. J Chromatogr A 1216(29):5459–5466

    Article  CAS  Google Scholar 

  • Montes R, Rodriguez I, Rubi E, Cela R (2009b) Dispersive liquid-liquid microextraction applied to the simultaneous derivatization and concentration of triclosan and methyltriclosan in water samples. J Chromatogr A 1216(2):205–210

    Article  CAS  Google Scholar 

  • Morales-Cid G, Gebefugi I, Kanawati B, Harir M, Hertkorn N, Rosselló-Mora R, Schmitt-Kopplin P (2009) Automated microextraction sample preparation coupled on-line to FT-ICR-MS: application to desalting and concentration of river and marine dissolved organic matter. Anal Bioanal Chem 395(3):797–807

    Article  CAS  Google Scholar 

  • Moreno Cordero B, Pérez Pavón JL, García Pinto C, Fernández Laespada ME, Carabias Martínez R, Rodríguez Gonzalo E (2000) Analytical applications of membrane extraction in chromatography and electrophoresis. J Chromatogr A 902(1):195–204

    Article  Google Scholar 

  • Müller S, Möder M, Schrader S, Popp P (2003) Semi-automated hollow-fibre membrane extraction, a novel enrichment technique for the determination of biologically active compounds in water samples. J Chromatogr A 985(1–2):99–106

    Article  Google Scholar 

  • Nagaraju D, Huang S (2007) Determination of triazine herbicides in aqueous samples by dispersive liquid-liquid microextraction with gas chromatography-ion trap mass spectrometry. J Chromatogr A 1161(1–2):89–97

    Article  CAS  Google Scholar 

  • Nakamura S, Daishima S (2004) Simultaneous determination of alkylphenols and bisphenol A in river water by stir bar sorptive extraction with in situ acetylation and thermal desorption-gas chromatography-mass spectrometry. J Chromatogr A 1038(1–2):291–294

    Article  CAS  Google Scholar 

  • Nakamura S, Daishima S (2005) Simultaneous determination of 64 pesticides in river water by stir bar sorptive extraction and thermal desorption-gas chromatography-mass spectrometry. Anal Bioanal Chem 382(1):99–107

    Article  CAS  Google Scholar 

  • Nerin C, Salafranca J, Aznar M, Batlle R (2009) Critical review on recent developments in solventless techniques for extraction of analytes. Anal Bioanal Chem 393(3):809–833

    Article  CAS  Google Scholar 

  • Nováková L, Vlčková H (2009) A review of current trends and advances in modern bio-analytical methods: chromatography and sample preparation. Anal Chim Acta 656(1–2):8–35

    Article  CAS  Google Scholar 

  • Ochiai N, Sasamoto K, Kanda H, Pfannkoch E (2008) Sequential stir bar sorptive extraction for uniform enrichment of trace amounts of organic pollutants in water samples. J Chromatogr A 1200(1):72–79

    Article  CAS  Google Scholar 

  • Okeyo PD, Snow NH (1998) Analysis of estrogens and anabolic steroids by SPME with on-fiber derivatization and GC/MS. J Microcolumn Sep 10(7):551–556

    Article  CAS  Google Scholar 

  • Olejniczak J, Staniewski J (2007) Enrichment of phenols from water with in-situ derivatization by in-tube solid phase microextraction-solvent desorption prior to off-line gas chromatographic determination with large-volume injection. Anal Chim Acta 588(1):64–72

    Article  CAS  Google Scholar 

  • Padron Sanz C, Sosa Ferrera Z, Santana Rodriguez JJ (2002) Extraction and preconcentration of polychlorinated dibenzo-p-dioxins using the cloud-point methodology. Application to their determination in water samples by high-performance liquid chromatography. Anal Chim Acta 470(2):205–214

    Article  CAS  Google Scholar 

  • Padron Sanz C, Halko R, Sosa Ferrera Z, Santana Rodriguez JJ (2004) Micellar extraction of organophosphorus pesticides and their determination by liquid chromatography. Anal Chim Acta 524(1–2):265–270

    Article  CAS  Google Scholar 

  • Pan L, Chong JM, Pawliszyn J (1997) Determination of amines in air and water using derivatization combined with solid-phase microextraction. J Chromatogr A 773(1 + 2):249–260

    Article  CAS  Google Scholar 

  • Panagiotou AN, Sakkas VA, Albanis TA (2009) Application of chemometric assisted dispersive liquid-liquid microextraction to the determination of personal care products in natural waters. Anal Chim Acta 649(2):135–140

    Article  CAS  Google Scholar 

  • Pedersen-Bjergaard S, Rasmussen KE (2008) Liquid-phase microextraction with porous hollow fibers, a miniaturized and highly flexible format for liquid–liquid extraction. J Chromatogr A 1184(1–2):132–142

    Article  CAS  Google Scholar 

  • Pena MT, Casais MC, Mejuto MC, Cela R (2009) Development of an ionic liquid based dispersive liquid-liquid microextraction method for the analysis of polycyclic aromatic hydrocarbons in water samples. J Chromatogr A 1216(36):6356–6364

    Article  CAS  Google Scholar 

  • Penalver A, Pocurull E, Borrull F, Marce RM (2002) Method based on solid-phase microextraction-high-performance liquid chromatography with UV and electrochemical detection to determine estrogenic compounds in water samples. J Chromatogr A 964(1–2):153–160

    Article  CAS  Google Scholar 

  • Pena-Pereira F, Lavilla I, Bendicho C (2010) Liquid-phase microextraction techniques within the framework of green chemistry. TrAC Trends Anal Chem 29(7):617–628

    Article  CAS  Google Scholar 

  • Peng J, Liu J, Jiang G, Tai C, Huang M (2005) Ionic liquid for high temperature headspace liquid-phase microextraction of chlorinated anilines in environmental water samples. J Chromatogr A 1072(1):3–6

    Article  CAS  Google Scholar 

  • Pinheiro Anselmo dS, de Andrade JB (2009) Development, validation and application of a SDME/GC-FID methodology for the multiresidue determination of organophosphate and pyrethroid pesticides in water. Talanta 79(5):1354–1359

    Article  CAS  Google Scholar 

  • Pino V, Ayala JH, Afonso AM, González V (2002) Determination of polycyclic aromatic hydrocarbons in seawater by high-performance liquid chromatography with fluorescence detection following micelle-mediated preconcentration. J Chromatogr A 949(1–2):291–299

    Article  CAS  Google Scholar 

  • Pongpiachan S (2009) Application of cloud point extraction for the determination of pyrene in natural water. Southeast Asian J Trop Med Public Health 40(2):392–400

    CAS  Google Scholar 

  • Poole CF, Poole SK (2010) Extraction of organic compounds with room temperature ionic liquids. J Chromatogr A 1217(16):2268–2286

    Article  CAS  Google Scholar 

  • Popp P, Keil P, Montero L, Rueckert M (2005) Optimized method for the determination of 25 polychlorinated biphenyls in water samples using stir bar sorptive extraction followed by thermodesorption-gas chromatography/mass spectrometry. J Chromatogr A 1071(1–2):155–162

    Article  CAS  Google Scholar 

  • Prieto A, Zuloaga O, Usobiaga A, Etxebarria N, Fernandez LA (2007) Development of a stir bar sorptive extraction and thermal desorption-gas chromatography-mass spectrometry method for the simultaneous determination of several persistent organic pollutants in water samples. J Chromatogr A 1174(1–2):40–49

    Article  CAS  Google Scholar 

  • Prieto A, Zuloaga O, Usobiaga A, Etxebarria N, Fernandez LA, Marcic C, de Diego A (2008a) Simultaneous speciation of methylmercury and butyltin species in environmental samples by headspace-stir bar sorptive extraction-thermal desorption-gas chromatography-mass spectrometry. J Chromatogr A 1185(1):130–138

    Article  CAS  Google Scholar 

  • Prieto A, Telleria O, Etxebarria N, Fernandez LA, Usobiaga A, Zuloaga O (2008b) Simultaneous preconcentration of a wide variety of organic pollutants in water samples: comparison of stir bar sorptive extraction and membrane-assisted solvent extraction. J Chromatogr A 1214(1–2):1–10

    Article  CAS  Google Scholar 

  • Prieto A, Basauri O, Rodil R, Usobiaga A, Fernández LA, Etxebarria N, Zuloaga O (2010a) Stir-bar sorptive extraction: a view on method optimisation, novel applications, limitations and potential solutions. J Chromatogr A 1217(16):2642–2666

    Article  CAS  Google Scholar 

  • Prieto A, Schrader S, Moeder M (2010b) Determination of organic priority pollutants and emerging compounds in wastewater and snow samples using multiresidue protocols on the basis of microextraction by packed sorbents coupled to large volume injection gas chromatography–mass spectrometry analysis. J Chromatogr A 1217(38):6002–6011

    Article  CAS  Google Scholar 

  • Przyjazny A, Kokosa JM (2002) Analytical characteristics of the determination of benzene, toluene, ethylbenzene and xylenes in water by headspace solvent microextraction. J Chromatogr A 977(2):143–153

    Article  CAS  Google Scholar 

  • Psillakis E, Kalogerakis N (2002) Developments in single-drop microextraction. TrAC Trends Anal Chem 21(1):53–63

    Article  CAS  Google Scholar 

  • Psillakis E, Kalogerakis N (2003a) Developments in liquid-phase microextraction. TrAC Trends Anal Chem 22(9):565–574

    Article  CAS  Google Scholar 

  • Psillakis E, Kalogerakis N (2003b) Hollow-fibre liquid-phase microextraction of phthalate esters from water. J Chromatogr A 999(1–2):145–153

    Article  CAS  Google Scholar 

  • Quintana JB, Reemtsma T (2006) Potential of membrane-assisted solvent extraction for the determination of phosphoric acid triesters in wastewater samples by liquid chromatography–tandem mass spectrometry. J Chromatogr A 1124(1–2):22–28

    Article  CAS  Google Scholar 

  • Quintana JB, Rodil R, Reemtsma T (2004) Suitability of hollow fibre liquid-phase microextraction for the determination of acidic pharmaceuticals in wastewater by liquid chromatography–electrospray tandem mass spectrometry without matrix effects. J Chromatogr A 1061(1):19–26

    Article  CAS  Google Scholar 

  • Rahnama Kozani R, Assadi Y, Shemirani F, Milani Hosseini MR, Jamali MR (2007) Determination of trihalomethanes in drinking water by dispersive liquid-liquid microextraction then gas chromatography with electron-capture detection. Chromatographia 66(1/2):81–86

    Article  CAS  Google Scholar 

  • Rapport DJ, Gaudet CL, Constanza R, Epstein PR, Levins R (eds) (1998) Ecosystem health: principles and practice. Wiley-Blackwell, Chichester

    Google Scholar 

  • Ratola N, Santos L, Herbert P, Alves A (2006) Uncertainty associated to the analysis of organochlorine pesticides in water by solid-phase microextraction/gas chromatography-electron capture detection-evaluation using two different approaches. Anal Chim Acta 573–574:202–208

    Article  CAS  Google Scholar 

  • Regueiro J, Llompart M, Garcia-Jares C, Garcia-Monteagudo JC, Cela R (2008) Ultrasound-assisted emulsification-microextraction of emergent contaminants and pesticides in environmental waters. J Chromatogr A 1190(1–2):27–38

    Article  CAS  Google Scholar 

  • Reid WR, Mooney HA, Cropper A, Capistrano D, Carpenter SR, Chopra K, Dasgupta P et al (2005) Report of the millennium ecosystem assessment. Ecosystems and human well-being: synthesis. Island Press, Washington, DC

    Google Scholar 

  • Rezaee M, Assadi Y, Milani Hosseini M, Aghaee E, Ahmadi F, Berijani S (2006) Determination of organic compounds in water using dispersive liquid-liquid microextraction. J Chromatogr A 1116(1–2):1–9

    Article  CAS  Google Scholar 

  • Rezaei F, Bidari A, Birjandi AP, Milani Hosseini MR, Assadi Y (2008) Development of a dispersive liquid-liquid microextraction method for the determination of polychlorinated biphenyls in water. J Hazard Mater 158(2–3):621–627

    Article  CAS  Google Scholar 

  • Richardson SD (2009) Water analysis: emerging contaminants and current issues. Anal Chem 81(12):4645–4677

    Article  CAS  Google Scholar 

  • Richardson SD (2010) Environmental mass spectrometry: emerging contaminants and current issues. Anal Chem 82(12):4742–4774

    Article  CAS  Google Scholar 

  • Rodil R, Schellin M, Popp P (2007) Analysis of polycyclic aromatic hydrocarbons in water and beverages using membrane-assisted solvent extraction in combination with large volume injection–gas chromatography–mass spectrometric detection. J Chromatogr A 1163(1–2):288–297

    Article  CAS  Google Scholar 

  • Rodriguez I, Carpinteiro J, Quintana JB, Carro AM, Lorenzo RA, Cela R (2004) Solid-phase microextraction with on-fiber derivatization for the analysis of anti-inflammatory drugs in water samples. J Chromatogr A 1024(1–2):1–8

    Article  CAS  Google Scholar 

  • Roose P, Brinkman UAT (2005) Monitoring organic microcontaminants in the marine environment: principles, programmes and progress. TrAC Trends Anal Chem 24(11):897–926

    Article  CAS  Google Scholar 

  • Roy G, Vuillemin R, Guyomarch J (2005) On-site determination of polynuclear aromatic hydrocarbons in seawater by stir bar sorptive extraction (SBSE) and thermal desorption GC-MS. Talanta 66(3):540–546

    Article  CAS  Google Scholar 

  • Ruan S, Yang Y, Huang H (2010) Analysis of dimethachlon by ultrasonic-extraction with dispersive liquid-liquid microextraction coupled with gas chromatography. Fenxi Shiyanshi 29(1):111–114

    CAS  Google Scholar 

  • Rubio S, Perez-Bendito D (2003) Supramolecular assemblies for extracting organic compounds. TrAC Trends Anal Chem 22(7):470–485

    Article  CAS  Google Scholar 

  • Said R, Hassan Z, Hassan M, Abdel-Rehim M (2008) Rapid and sensitive method for determination of cyclophosphamide in patients plasma samples utilizing microextraction by packed sorbent online with liquid chromatography-tandem mass spectrometry (MEPS-LC-MS/MS). J Liquid Chromatogr Relat Technol 31(5):683–694

    Article  CAS  Google Scholar 

  • Sampedro MC, Goicolea MA, Unceta N, Sanchez-Ortega A, Barrio RJ (2009) Sequential stir bar extraction, thermal desorption and retention time locked GC-MS for determination of pesticides in water. J Sep Sci 32(20):3449–3456

    Article  CAS  Google Scholar 

  • Sanchez-Avila J, Quintana J, Ventura F, Tauler R, Duarte CM, Lacorte S (2010) Stir bar sorptive extraction-thermal desorption-gas chromatography-mass spectrometry: an effective tool for determining persistent organic pollutants and nonylphenol in coastal waters in compliance with existing directives. Mar Pollut Bull 60(1):103–112

    Article  CAS  Google Scholar 

  • Sandahl M, Ulfsson E, Mathiasson L (2000) Automated determination of vinclozolin at the ppb level in aqueous samples by a combination of microporous membrane liquid-liquid extraction and adsorption chromatography. Anal Chim Acta 424(1):1–5

    Article  CAS  Google Scholar 

  • Santana CM, Ferrera ZS, Rodriguez JJS (2004) Extraction and determination of phenolic derivatives in water samples by using polyoxyethylene surfactants and liquid chromatography with photodiode array detection. J AOAC Int 87(1):166–171

    CAS  Google Scholar 

  • Sarafraz-Yazdi A, Amiri A (2010) Liquid-phase microextraction. TrAC Trends Anal Chem 29(1):1–14

    Article  CAS  Google Scholar 

  • Saraji M, Bakhshi M (2005) Determination of phenols in water samples by single-drop microextraction followed by in-syringe derivatization and gas chromatography-mass spectrometric detection. J Chromatogr A 1098(1–2):30–36

    Article  CAS  Google Scholar 

  • Saraji M, Mirmahdieh S (2009) Single-drop microextraction followed by in-syringe derivatization and GC-MS detection for the determination of parabens in water and cosmetic products. J Sep Sci 32(7):988–995

    Article  CAS  Google Scholar 

  • Schellin M, Popp P (2003) Membrane-assisted solvent extraction of polychlorinated biphenyls in river water and other matrices combined with large volume injection–gas chromatography–mass spectrometric detection. J Chromatogr A 1020(2):153–160

    Article  CAS  Google Scholar 

  • Schellin M, Popp P (2005) Membrane-assisted solvent extraction of seven phenols combined with large volume injection–gas chromatography–mass spectrometric detection. J Chromatogr A 1072(1):37–43

    Article  CAS  Google Scholar 

  • Schellin M, Popp P (2006) Miniaturized membrane-assisted solvent extraction combined with gas chromatography/electron-capture detection applied to the analysis of volatile organic compounds. J Chromatogr A 1103(2):211–218

    Article  CAS  Google Scholar 

  • Schurek J, Pulkrabova J, Hajslova J, Lahoutifard N (2008) Application potential of microextraction in packed syringe coupled with gas chromatography time-of-flight mass spectrometry in analysis of brominated flame retardants in waste water. Organohalogen Compounds 70:2143–2146

    CAS  Google Scholar 

  • Segal A, Górecki T, Mussche P, Lips J, Pawliszyn J (2000) Development of membrane extraction with a sorbent interface–micro gas chromatography system for field analysis. J Chromatogr A 873(1):13–27

    Article  CAS  Google Scholar 

  • Serodio P, Nogueira JMF (2004) Multi-residue screening of endocrine disrupters chemicals in water samples by stir bar sorptive extraction-liquid desorption-capillary gas chromatography-mass spectrometry detection. Anal Chim Acta 517(1–2):21–32

    Article  CAS  Google Scholar 

  • Serodio P, Nogueira JMF (2006) Considerations on ultra-trace analysis of phthalates in drinking water. Water Res 40(13):2572–2582

    Article  CAS  Google Scholar 

  • Serodio P, Cabral MS, Nogueira JMF (2007) Use of experimental design in the optimization of stir bar sorptive extraction for the determination of polybrominated diphenyl ethers in environmental matrices. J Chromatogr A 1141(2):259–270

    Article  CAS  Google Scholar 

  • Seronero LC, Fernandez Laespada ME, Perez Pavon JL, Moreno Cordero B (2000) Cloud point preconcentration of rather polar compounds: application to the high-performance liquid chromatographic determination of priority pollutant chlorophenols. J Chromatogr A 897(1+2):171–176

    Article  CAS  Google Scholar 

  • Shariati-Feizabadi S, Yamini Y, Bahramifar N (2003) Headspace solvent microextraction and gas chromatographic determination of some polycyclic aromatic hydrocarbons in water samples. Anal Chim Acta 489(1):21–31

    Article  CAS  Google Scholar 

  • Sheikhloie H, Saber-Tehrani M, Abrumand-Azar P, Waqif-Husain S (2009) Analysis of tributyltin and triphenyltin in water by ionic liquid-headspace single-drop microextraction then HPLC with fluorimetric detection. Acta Chromatogr 21(4):577–589

    Article  CAS  Google Scholar 

  • Shen G, Lee HK (2002) Hollow fiber-protected liquid-phase microextraction of triazine herbicides. Anal Chem 74(3):648–654

    Article  CAS  Google Scholar 

  • Shen Y, Pawliszyn J (2001) Catalytic reductions in membrane extraction as sample preparation for gas chromatographic analysis. J Sep Sci 24(7):623–626

    Article  CAS  Google Scholar 

  • Shen Y, Sun F, Dong J (2010) Determination of profenofos in water using dispersive liquid-liquid microextraction-high performance liquid chromatography. Fenxi Huaxue 38(4):551–554

    CAS  Google Scholar 

  • Shu YY, Wang SS, Tardif M, Huang Y (2003) Analysis of polychlorinated biphenyls in aqueous samples by microwave-assisted headspace solid-phase microextraction. J Chromatogr A 1008(1):1–12

    Article  CAS  Google Scholar 

  • Sikalos TI, Paleologos EK (2005) Cloud point extraction coupled with microwave or ultrasonic assisted back extraction as a preconcentration step prior to gas chromatography. Anal Chem 77(8):2544–2549

    Article  CAS  Google Scholar 

  • Singh V, Jain A, Verma KK (2003) Solid phase microextraction of residues of organophosphorus pesticides from aqueous samples for their determination by gas chromatography-mass spectrometry. Indian J Chem Sect A Inorg Bio-Inorg Phys Theor Anal Chem 42A(12):2993–2999

    CAS  Google Scholar 

  • Sobhi HR, Yamini Y, Esrafili A, Abadi RHHB (2008) Suitable conditions for liquid-phase microextraction using solidification of a floating drop for extraction of fat-soluble vitamins established using an orthogonal array experimental design. J Chromatogr A 1196–1197:28–32

    Article  CAS  Google Scholar 

  • Sosa Ferrera Z, Padron Sanz C, Mahugo Santana C, Santana Rodriguez JJ (2004) The use of micellar systems in the extraction and pre-concentration of organic pollutants in environmental samples. TrAC Trends Anal Chem 23(7):469–479

    Article  CAS  Google Scholar 

  • Stege PW, Sombra LL, Messina GA, Martinez LD, Silva MF (2009) Environmental monitoring of phenolic pollutants in water by cloud point extraction prior to micellar electrokinetic chromatography. Anal Bioanal Chem 394(2):567–573

    Article  CAS  Google Scholar 

  • Supelco (2004) Manufacturer data sheet. Supelco, Bellefonte, USA

    Google Scholar 

  • Taechangam P, Scamehorn JF, Osuwan S, Rirksomboon T (2009) Effect of nonionic surfactant molecular structure on cloud point extraction of phenol from wastewater. Colloids Surf A Physicochem Eng Aspects 347(1–3):200–209

    Article  CAS  Google Scholar 

  • Tani H, Kamidate T, Watanabe H (1997) Micelle-mediated extraction. J Chromatogr A 780(1–2):229–241

    Article  CAS  Google Scholar 

  • Tarazona I, Chisvert A, Leon Z, Salvador A (2010) Determination of hydroxylated benzophenone UV filters in sea water samples by dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry. J Chromatogr A 1217(29):4771–4778

    Article  CAS  Google Scholar 

  • Torres Padron ME, Sosa Ferrera Z, Santana Rodriguez JJ (2009) Coupling of solid-phase microextraction with micellar desorption and high performance liquid chromatography for the determination of pharmaceutical residues in environmental liquid samples. Biomed Chromatogr 23(11):1175–1185

    Article  CAS  Google Scholar 

  • Trtic-Petrovic T, Dordevic J, Dujakovic N, Kumric K, Vasiljevic T, Lausevic M (2010) Determination of selected pesticides in environmental water by employing liquid-phase microextraction and liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 397(6):2233–2243

    Article  CAS  Google Scholar 

  • Tsai W, Chuang H, Chen H, Huang J, Chen H, Cheng S, Huang T (2009) Application of dispersive liquid-liquid microextraction and dispersive micro-solid-phase extraction for the determination of quinolones in swine muscle by high-performance liquid chromatography with diode-array detection. Anal Chim Acta 656(1–2):56–62

    Article  CAS  Google Scholar 

  • Unceta N, Sampedro MC, Bakar NKA, Gomez-Caballero A, Goicolea MA, Barrio RJ (2010) Multi-residue analysis of pharmaceutical compounds in wastewaters by dual solid-phase microextraction coupled to liquid chromatography electrospray ionization ion trap mass spectrometry. J Chromatogr A 1217(20):3392–3399

    Article  CAS  Google Scholar 

  • Vazquez PP, Mughari AR, Galera MM (2008) Application of solid-phase microextraction for determination of pyrethroids in groundwater using liquid chromatography with post-column photochemically induced fluorimetry derivatization and fluorescence detection. J Chromatogr A 1188(2):61–68

    Article  CAS  Google Scholar 

  • Vercauteren J, Peres C, Devos C, Sandra P, Vanhaecke F, Moens L (2001) Stir bar sorptive extraction for the determination of ppq-level traces of organotin compounds in environmental samples with thermal desorption-capillary gas chromatography-ICP mass spectrometry. Anal Chem 73(7):1509–1514

    Article  CAS  Google Scholar 

  • Vidal L, Psillakis E, Domini CE, Grane N, Marken F, Canals A (2007) An ionic liquid as a solvent for headspace single drop microextraction of chlorobenzenes from water samples. Anal Chim Acta 584(1):189–195

    Article  CAS  Google Scholar 

  • Vidal L, Chisvert A, Canals A, Salvador A (2010) Ionic liquid-based single-drop microextraction followed by liquid chromatography-ultraviolet spectrophotometry detection to determine typical UV filters in surface water samples. Talanta 81(1–2):549–555

    Article  CAS  Google Scholar 

  • Vignati DAL, Valsecchi S, Polesello S, Patrolecco L, Dominik J (2009) Pollutant partitioning for monitoring surface waters. TrAC Trends Anal Chem 28(2):159–169

    Article  CAS  Google Scholar 

  • Wang L, Cai Y, He B, Yuan C, Shen D, Shao J, Jiang G (2006) Determination of estrogens in water by HPLC–UV using cloud point extraction. Talanta 70(1):47–51

    Article  CAS  Google Scholar 

  • Wang L, Jiang G, Cai Y, He B, Wang Y, Shen D (2007) Cloud point extraction coupled with HPLC-UV for the determination of phthalate esters in environmental water samples. J Environ Sci Beijing China 19(7):874–878

    Article  CAS  Google Scholar 

  • Wang Y, Li Y, Feng J, Sun C (2008) Polyaniline-based fiber for headspace solid-phase microextraction of substituted benzenes determination in aqueous samples. Anal Chim Acta 619(2):202–208

    Article  CAS  Google Scholar 

  • Wei M, Jen J (2002) Determination of aqueous chlorophenols by microwave-assisted headspace solid-phase microextraction and gas chromatography. Chromatographia 55(11/12):701–706

    Article  CAS  Google Scholar 

  • Wei M, Jen J (2007) Determination of polycyclic aromatic hydrocarbons in aqueous samples by microwave assisted headspace solid-phase microextraction and gas chromatography/flame ionization detection. Talanta 72(4):1269–1274

    Article  CAS  Google Scholar 

  • Wei G, Li Y, Wang X (2007) Application of dispersive liquid-liquid microextraction combined with high-performance liquid chromatography for the determination of methomyl in natural waters. J Sep Sci 30(18):3262–3267

    Article  CAS  Google Scholar 

  • Wells M (2003) In: Mitra S (ed) Sample preparation techniques in analytical chemistry. Wiley, Hoboken, New Jersey, USA

    Google Scholar 

  • Wu J, Ee KH, Lee HK (2005) Automated dynamic liquid-liquid-liquid microextraction followed by high-performance liquid chromatography-ultraviolet detection for the determination of phenoxy acid herbicides in environmental waters. J Chromatogr A 1082(2):121–127

    Article  CAS  Google Scholar 

  • Wu Y, Xia L, Chen R, Hu B (2008) Headspace single drop microextraction combined with HPLC for the determination of trace polycyclic aromatic hydrocarbons in environmental samples. Talanta 74(4):470–477

    Article  CAS  Google Scholar 

  • Wu Q, Li Y, Wang C, Liu Z, Zang X, Zhou X, Wang Z (2009) Dispersive liquid-liquid microextraction combined with high performance liquid chromatography-fluorescence detection for the determination of carbendazim and thiabendazole in environmental samples. Anal Chim Acta 638(2):139–145

    Article  CAS  Google Scholar 

  • Xia J, Xiang B, Zhang W (2008) Determination of metacrate in water samples using dispersive liquid-liquid microextraction and HPLC with the aid of response surface methodology and experimental design. Anal Chim Acta 625(1):28–34

    Article  CAS  Google Scholar 

  • Xiao Q, Hu B, Yu C, Xia L, Jiang Z (2006) Optimization of a single-drop microextraction procedure for the determination of organophosphorus pesticides in water and fruit juice with gas chromatography-flame photometric detection. Talanta 69(4):848–855

    Article  CAS  Google Scholar 

  • Xie H, He L, Wu X, Fan L, Lu K, Wang M, Meng D (2008) Determination of phorate in water using dispersive liquid-liquid microextraction coupled with gas chromatography. Fenxi Huaxue 36(11):1543–1546

    CAS  Google Scholar 

  • Xie S, Paau MC, Li CF, Xiao D, Choi MMF (2010) Separation and preconcentration of persistent organic pollutants by cloud point extraction. J Chromatogr A 1217(16):2306–2317

    Article  CAS  Google Scholar 

  • Xiong J, Hu B (2008) Comparison of hollow fiber liquid phase microextraction and dispersive liquid-liquid microextraction for the determination of organosulfur pesticides in environmental and beverage samples by gas chromatography with flame photometric detection. J Chromatogr A 1193(1–2):7–18

    Article  CAS  Google Scholar 

  • Xu L, Basheer C, Lee HK (2007) Developments in single-drop microextraction. J Chromatogr A 1152(1–2):184–192

    Article  CAS  Google Scholar 

  • Yamini Y, Hojjati M, Haji-Hosseini M, Shamsipur M (2004) Headspace solvent microextraction: a new method applied to the preconcentration of 2-butoxyethanol from aqueous solutions into a single microdrop. Talanta 62(2):265–270

    Article  CAS  Google Scholar 

  • Yamini Y, Reimann CT, Vatanara A, Jönsson JÅ (2006) Extraction and preconcentration of salbutamol and terbutaline from aqueous samples using hollow fiber supported liquid membrane containing anionic carrier. J Chromatogr A 1124(1–2):57–67

    Article  CAS  Google Scholar 

  • Yang Z, Maruya KA, Greenstein D, Tsukada D, Zeng EY (2008) Experimental verification of a model describing solid phase microextraction (SPME) of freely dissolved organic pollutants in sediment porewater. Chemosphere 72(10):1435–1440

    Article  CAS  Google Scholar 

  • Yao B, Yang L (2007) Ultrasonic assisted cloud point extraction of polyaromatic hydrocarbons. Sep Sci Technol 42(8):1843–1858

    Article  CAS  Google Scholar 

  • Yao B, Yang L (2008a) Pilot-scale ultrasonic assisted cloud point extraction of polycyclic aromatic hydrocarbons from polluted water. Sep Sci Technol 43(6):1564–1580

    Article  CAS  Google Scholar 

  • Yao B, Yang L (2008b) Stirring-assisted cloud-point extraction of polycyclic aromatic hydrocarbons. Ind Eng Chem Res 47(11):3949–3956

    Article  CAS  Google Scholar 

  • Yao B, Yang L, Hu Q, Akita S (2007) Cloud point extraction of polycyclic aromatic hydrocarbons in aqueous solution with silicone surfactants. Chin J Chem Eng 15(4):468–473

    Article  CAS  Google Scholar 

  • Yao G, Guan W, Xu F, Wang H, Guan Y (2008) Analysis of phenolic compounds in aqueous samples by gas chromatography coupled with headspace solid-phase microextraction using poly(phthalazine ether sulfone ketone) coated fiber. Se Pu 26(5):590–594

    CAS  Google Scholar 

  • Yao C, Pitner WR, Anderson JL (2009) Ionic liquids containing the tris(pentafluoroethyl)trifluorophosphate anion: a new class of highly selective and ultra hydrophobic solvents for the extraction of polycyclic aromatic hydrocarbons using single drop microextraction. Anal Chem 81(12):5054–5063

    Article  CAS  Google Scholar 

  • Yu Y, Pawliszyn J (2004) On-line monitoring of breath by membrane extraction with sorbent interface coupled with CO2 sensor. J Chromatogr A 1056(1–2):35–41

    Article  CAS  Google Scholar 

  • Yu H, Guanyong S, Yijun Y, Hongling L, Hanhua L, Qunsheng L (2008) Solid phase micro-extraction analytical method suitable for detection of organic pollutants in water, Patent 20080516

    Article  CAS  Google Scholar 

  • Zambonin CG, Aresta A, Nilsson T (2002) Analysis of organochlorine pesticides by solid-phase microextraction followed by gas chromatography-mass spectrometry. Int J Environ Anal Chem 82(10):651–657

    Article  CAS  Google Scholar 

  • Zang X, Wang C, Gao S, Zhou X, Wang Z (2008) Analysis of pyrethroid pesticides in water samples by dispersive liquid-liquid microextraction coupled with gas chromatography. Fenxi Huaxue 36(6):765–769

    CAS  Google Scholar 

  • Zarei AR (2007) Cloud point formation based on mixed micelle in the presence of electrolyte for extraction, preconcentration, and spectrophotometric determination of trace amounts of hydrazine in water and biological samples. Anal Biochem 369(2):161–167

    Article  CAS  Google Scholar 

  • Zhang J, Lee HK (2006) Application of liquid-phase microextraction and on-column derivatization combined with gas chromatography-mass spectrometry to the determination of carbamate pesticides. J Chromatogr A 1117(1):31–37

    Article  CAS  Google Scholar 

  • Zhao L, Lee HK (2001) Application of static liquid-phase microextraction to the analysis of organochlorine pesticides in water. J Chromatogr A 919(2):381–388

    Article  CAS  Google Scholar 

  • Zhao R, Lao W, Xu X (2004) Headspace liquid-phase microextraction of trihalomethanes in drinking water and their gas chromatographic determination. Talanta 62(4):751–756

    Article  CAS  Google Scholar 

  • Zhao R, Yuan J, Li H, Wang X, Jiang T, Lin J (2007) Nonequilibrium hollow-fiber liquid-phase microextraction with in situ derivatization for the measurement of triclosan in aqueous samples by gas chromatography-mass spectrometry. Anal Bioanal Chem 387(8):2911–2915

    Article  CAS  Google Scholar 

  • Zhao F, Li J, Zeng B (2008) Coupling of ionic liquid-based headspace single-drop microextraction with GC for sensitive detection of phenols. J Sep Sci 31(16–17):3045–3049

    Article  CAS  Google Scholar 

  • Zhao F, Lu S, Du W, Zeng B (2009a) Ionic liquid-based headspace single-drop microextraction coupled to gas chromatography for the determination of chlorobenzene derivatives. Microchim Acta 165(1–2):29–33

    Article  CAS  Google Scholar 

  • Zhao R, Diao C, Chen Q, Wang X (2009b) Sensitive determination of amide herbicides in environmental water samples by a combination of solid-phase extraction and dispersive liquid-liquid microextraction prior to GC-MS. J Sep Sci 32(7):1069–1074

    Article  CAS  Google Scholar 

  • Zhao R, Wang X, Sun J, Wang S, Yuan J, Wang X (2010) Trace determination of triclosan and triclocarban in environmental water samples with ionic liquid dispersive liquid-phase microextraction prior to HPLC-ESI-MS-MS. Anal Bioanal Chem 397(4):1627–1633

    Article  CAS  Google Scholar 

  • Zhou Q, Ye C (2008) Ionic liquid for improved single-drop microextraction of aromatic amines in water samples. Microchim Acta 162(1–2):153–159

    Article  CAS  Google Scholar 

  • Zhou Q, Pang L, Xiao J (2009a) Trace determination of dichlorodiphenyltrichloroethane and its main metabolites in environmental water samples with dispersive liquid-liquid microextraction in combination with high performance liquid chromatography and ultraviolet detector. J Chromatogr A 1216(39):6680–6684

    Article  CAS  Google Scholar 

  • Zhou Q, Pang L, Xie G, Xiao J, Bai H (2009b) Determination of atrazine and simazine in environmental water samples by dispersive liquid-liquid microextraction with high performance liquid chromatography. Anal Sci 25(1):73–76

    Article  Google Scholar 

  • Zorita S, Barri T, Mathiasson L (2007) A novel hollow-fibre microporous membrane liquid–liquid extraction for determination of free 4-isobutylacetophenone concentration at ultra trace level in environmental aqueous samples. J Chromatogr A 1157(1–2):30–37

    Article  CAS  Google Scholar 

  • Zorita S, Hallgren P, Mathiasson L (2008) Steroid hormone determination in water using an environmentally friendly membrane based extraction technique. J Chromatogr A 1192(1):1–8

    Article  CAS  Google Scholar 

  • Zorita S, Mårtensson L, Mathiasson L (2009) Occurrence and removal of pharmaceuticals in a municipal sewage treatment system in the south of Sweden. Sci Total Environ 407(8):2760–2770

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olatz Zuloaga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Etxebarria, N. et al. (2012). Extraction Procedures for Organic Pollutants Determination in Water. In: Lichtfouse, E., Schwarzbauer, J., Robert, D. (eds) Environmental Chemistry for a Sustainable World. Environmental Chemistry for a Sustainable World. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2439-6_4

Download citation

Publish with us

Policies and ethics