Skip to main content
Log in

Passive sampling and stir bar sorptive extraction for the determination of endocrine-disrupting compounds in water by GC-MS

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A new method using the extraction and preconcentration capabilities of stir bar sorptive extraction, combined with high-resolution gas chromatography and mass spectrometry, was developed for the determination of five selected endocrine-disrupting compounds (4-n-nonylphenol, bisphenol A, estrone, 17β-estradiol, and 17α-ethinylestradiol) in water. In situ derivatization to transform the phenolic compounds into lipophilic and volatile analytes was carried out with acetic anhydride. Two different methods of headspace derivatization to further improve the chromatographic properties of 17β-estradiol and 17α-ethinylestradiol were developed and compared. The optimized method provided good sensitivity (limits of quantitation 1.2–2.6 ng), repeatability (relative standard deviation 2–9%), and reproducibility (relative standard deviation 10–17%). Passive sampling by means of polar organic chemical integrative samplers was applied to monitor river waters used as supply sources for drinking water treatment plants in the Liguria region of Italy. The analytes showed a different distribution at the three sites considered; bisphenol A proved to be the most abundant, ranging from 185 to 459 ng per sampler.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. European Parliament and Council (2000) Off J Eur Communities L 327:1

    Google Scholar 

  2. European Parliament and Council (2006) COM(2006)397 final: proposal for a directive of the European Parliament and of the Council of 17 June 2006 on environmental quality standards in the field of water policy and amending Directive 2000/60/EC

  3. Colborn T, Vom Saal FS, Soto AM (1993) Environ Health Perspect 101:378–384

    Article  CAS  Google Scholar 

  4. European Commission (1996) European workshop on the impact of endocrine disrupters on human health and wildlife, vol 17549. Report of the proceedings, 2–4 December 1996. Weybridge, UK, p 125

    Google Scholar 

  5. European Commission (2001) European Commission report. Identification of priority hazardous substances. Stockholm Convention 2001. Adonis no 901019. European Commission, Brussels

    Google Scholar 

  6. Boyd GR, Reemtsma H, Grimm DA, Mitra S (2003) Sci Total Environ 311:135–149

    Article  CAS  Google Scholar 

  7. Commission of the European Communities (1999) Community strategy for endocrine disrupters. COM 706. Commission of the European Communities, Brussels

    Google Scholar 

  8. Tan BLL, Hawker DW, Müller JF, Leusch FDL, Tremblay LA, Chapman HF (2007) Environ Int 33:654–669

    Article  CAS  Google Scholar 

  9. Desbrow C, Routledge EJ, Brighty GC, Sumpter JP, Waldock M (1998) Environ Sci Technol 32:1549–1558

    Article  CAS  Google Scholar 

  10. Diaz-Cruz MS, de Alda MJ Lopez, Lopez R, Barcelò D (2003) J Mass Spectrom 38:917–923

    Article  CAS  Google Scholar 

  11. Vrana B, Allan IJ, Greenwood R, Mills GA, Dominiak E, Svensson K, Knutsson J, Morrison G (2005) Trends Anal Chem 24:845–868

    Article  CAS  Google Scholar 

  12. Alvarez DA, Petty JD, Huckins JN, Jones-Lepp TL, Getting DT, Manahan SE (2004) Environ Toxicol Chem 23:1640–1648

    Article  CAS  Google Scholar 

  13. Liscio C, Magi E, Di Carro M, Suter MJ-F, Vermeirssen ELM (2009) Environ Pollut 157:2716–2721

    Article  CAS  Google Scholar 

  14. Lepom P, Hanke G, Wollgast J, Quevauviller P (eds) (2007) Guidance on surface water chemical monitoring under the Water Framework Directive. CIRCA Europa. http://circa.europa.eu/Public/irc/env/wfd/library

  15. Baltussen E, Sandra P, David F, Cramers CJ (1999) Microcolumn Sep 11:737–747

    Article  CAS  Google Scholar 

  16. Popp P, Bauer C, Hauser B, Keil P, Wennrich L (2003) J Sep Sci 26:961–967

    Article  CAS  Google Scholar 

  17. Castro R, Natera R, Moreno MVG, Barroso CG (2002) J Chromatogr A 953:7–15

    Article  Google Scholar 

  18. Buchholz KD, Pawliszyn J (1994) Anal Chem 66:160–167

    Article  CAS  Google Scholar 

  19. Serodio P, Nogueira JMF (2005) Anal Bioanal Chem 382:1141–1151

    Article  CAS  Google Scholar 

  20. Benijts T, Vercammen J, Dams R, Tuan HP, Lambert W, Sandra P (2001) J Chromatogr B 755:137–142

    Article  CAS  Google Scholar 

  21. Connors KA, Albert KS (1973) J Pharm Sci 62:845–846

    Article  CAS  Google Scholar 

  22. Rompa M, Kremer E, Zygmunt B (2003) Anal Bioanal Chem 377:590–599

    Article  CAS  Google Scholar 

  23. Tienpont B, David F, Desmet K, Sandra P (2002) Anal Bioanal Chem 373:46–55

    Article  CAS  Google Scholar 

  24. Balıkova M, Kohlıcek J (1989) J Chromatogr 497:159–167

    Article  Google Scholar 

  25. Desmet K, Tienpont B, Sandra P (2003) Chromatographia 57:681–685

    Article  CAS  Google Scholar 

  26. Ballesteros E, Gallego M, Valcarcel M (1990) J Chromatogr A 518:59–67

    Article  CAS  Google Scholar 

  27. Bao ML, Pantani F, Barbieri K, Burrini D, Griffini O (1996) Chromatographia 42:227–233

    Article  CAS  Google Scholar 

  28. Jahr D (1998) Chromatographia 47:49–56

    Article  CAS  Google Scholar 

  29. Kawaguchi M, Ito R, Sakui N, Okanouchi N, Saito K, Nakazawa H (2006) J Chromatogr A 1105:140–147

    Article  CAS  Google Scholar 

  30. Stopforth A, Burger BV, Crouch AM, Sandra P (2006) J Chromatogr B 834:134–140

    CAS  Google Scholar 

  31. Morgan E (1991) Chemometrics: experimental design. Wiley, Chichester, pp 197–256

    Google Scholar 

  32. Magi E, Liscio C, Di Carro M (2008) J Chromatogr A 1210:99–107

    Article  CAS  Google Scholar 

  33. Morris V, Hughes J, Marriott P (2003) J Chromatogr A 1008:43–56

    Article  CAS  Google Scholar 

  34. Derringer G, Suich R (1980) J Qual Technol 12:214–219

    Google Scholar 

  35. Lewis GA, Mathieu D, Phan-Tan-Luu R (1999) Pharmaceutical experimental design in drugs. Pharmaceutical science, vol 92. Dekker, New York, pp 247–248

  36. Alvarez DA, Stackelberg PE, Petty JD, Huckings JN, Furlong ET, Zaugg SD, Meyer MT (2005) Chemosphere 61:610–622

    Article  CAS  Google Scholar 

  37. Arditsoglou A, Voutsa D (2008) Environ Pollut 156:316–324

    Article  CAS  Google Scholar 

  38. Rodriguez-Mozaz S, Lopez de Alda M, Barcelò D (2004) J Chromatogr A 1045:85–92

    Article  CAS  Google Scholar 

  39. Ternes TA, Kreckel P, Mueller J (1999) Sci Total Environ 2225:91–99

    Article  Google Scholar 

  40. Baronti C, Curini R, D’Ascenzo G, Di Corcia A, Gentili A, Saperi R (2000) Environ Sci Technol 34:5059–5066

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a financial contribution from Fondazione AMGA Genova. The authors wish to thank Dr. Carlo Scapolla for his helpful scientific discussion. SRA Instruments srl (Milan, Italy) is acknowledged for providing the Gerstel multipurpose sampler with Twister® option.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuele Magi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magi, E., Di Carro, M. & Liscio, C. Passive sampling and stir bar sorptive extraction for the determination of endocrine-disrupting compounds in water by GC-MS. Anal Bioanal Chem 397, 1335–1345 (2010). https://doi.org/10.1007/s00216-010-3656-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3656-1

Keywords

Navigation