Skip to main content

Abstract

Protein-based biopharmaceuticals have become increasingly important due to a combination of their bioreactivity, specificity, safety and overall success rate. Escherichia coli, yeast and animal cells have traditionally been used as heterologous expression systems for production of pharmaceutical proteins. However, these conventional expression systems are often limited by high production costs, potential risks of product contamination, and the complexity and difficulty of scale-up to industrial production. Plants have emerged as a promising alternative expression system for production of pharmaceutical proteins because they offer several potential advantages, including low production costs, ease of scale-up to commercial quantities of production and reduced risk of product contamination by mammalian viruses or toxins. Plants are already being used to produce antibodies, vaccines, growth factors and many other proteins of pharmaceutical importance. The use of plants as factories for production of recombinant pharmaceutical proteins, including industrial enzymes, is now more commonly referred to as molecular farming. In this chapter, we discuss the technological basis of molecular farming in plants, with a focus on host systems and approaches/strategies developed to maximize protein yields and to ensure efficient recovery and purification of plant-made recombinant products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez ML, Topal E, Martin F, Cardineau GA (2010) Higher accumulation of F1-V fusion recombinant protein in plants after induction of protein body formation. Plant Mol Biol 72:75–89

    Article  CAS  Google Scholar 

  • Aviezer D, Brill-Almon E, Shaaltiel Y, Hashmueli S, Bartfeld D, Mizrachi S, Liberman Y, Freeman A, Zimran A, Galun E (2009) A plant-derived recombinant human glucocerebrosidase enzyme–a preclinical and phase I investigation. PLoS One 4:e4792

    Article  Google Scholar 

  • Bartlett JG, Snape JW, Harwood WA (2009) Intron-mediated enhancement as a method for increasing transgene expression levels in barley. Plant Biotechnol J 7:856–866

    Article  CAS  Google Scholar 

  • Canizares MC, Nicholson L, Lomonossoff GP (2005) Use of viral vectors for vaccine production in plants. Immunol Cell Biol 83:263–270

    Article  CAS  Google Scholar 

  • Chebolu S, Daniell H (2009) Chloroplast-derived vaccine antigens and biopharmaceuticals: expression, folding, assembly and functionality. Curr Top Microbiol Immunol 332:33–54

    Article  CAS  Google Scholar 

  • Cheung SC, Sun SS, Chan JC, Tong PC (2009) Expression and subcellular targeting of human insulin-like growth factor binding protein-3 in transgenic tobacco plants. Transgenic Res 18:943–951

    Article  CAS  Google Scholar 

  • Comai L, Moran P, Maslyar D (1990) Novel and useful properties of a chimeric plant promoter combining CaMV 35S and MAS elements. Plant Mol Biol 15:373–381

    Article  CAS  Google Scholar 

  • Conley AJ, Joensuu JJ, Menassa R, Brandle JE (2009) Induction of protein body formation in plant leaves by elastin-like polypeptide fusions. BMC Biol 7:4

    Article  Google Scholar 

  • Conley AJ, Joensuu JJ, Richman A, Menassa R (2011) Protein body-inducing fusions for high-level production and purification of recombinant proteins in plants. Plant Biotechnol J 9:419–433

    Article  CAS  Google Scholar 

  • Daniell H, Singh ND, Mason H, Streatfield SJ (2009) Plant-made vaccine antigens and biopharmaceuticals. Trends Plant Sci 14:669–679

    Article  CAS  Google Scholar 

  • De Jaeger G, Scheffer S, Jacobs A, Zambre M, Zobell O, Goossens A, Depicker A, Angenon G (2002) Boosting heterologous protein production in transgenic dicotyledonous seeds using Phaseolus vulgaris regulatory sequences. Nat Biotechnol 20:1265–1268

    Article  Google Scholar 

  • De Muynck B, Navarre C, Nizet Y, Stadlmann J, Boutry M (2009) Different subcellular localization and glycosylation for a functional antibody expressed in Nicotiana tabacum plants and suspension cells. Transgenic Res 18:467–482

    Article  CAS  Google Scholar 

  • Desai PN, Shrivastava N, Padh H (2010) Production of heterologous proteins in plants: strategies for optimal expression. Biotechnol Adv 28:427–435

    Article  CAS  Google Scholar 

  • Evangelista RL, Kusnadi AR, Howard JA, Nikolov ZL (1998) Process and economic evaluation of the extraction and purification of recombinant β-glucuronidase from transgenic corn. Biotechnol Prog 14:607–614

    Article  CAS  Google Scholar 

  • Fernández-San Millán A, Ortigosa SM, Hervás-Stubbs S, Corral-Martínez P, Seguí-Simarro JM, Gaétan J, Coursaget P, Veramendi J (2008) Human papillomavirus L1 protein expressed in tobacco chloroplasts self-assembles into virus-like particles that are highly immunogenic. Plant Biotechnol J 6:427–441

    Article  Google Scholar 

  • Ferrer-Miralles N, Domingo-Espín J, Corchero JL, Vázquez E, Villaverde A (2009) Microbial factories for recombinant pharmaceuticals. Microb Cell Fact 8:17

    Article  Google Scholar 

  • Fischer R, Emans N (2000) Molecular farming of pharmaceutical proteins. Transgenic Res 9:279–299

    Article  CAS  Google Scholar 

  • Fischer R, Liao YC, Drossard J (1999) Affinity-purification of a TMVspecific recombinant full-size antibody from a transgenic tobacco suspension culture. J Immunol Methods 226:1–10

    Article  CAS  Google Scholar 

  • Floss DM, Sack M, Stadlmann J, Rademacher T, Scheller J, Stöger E, Fischer R, Conrad U (2008) Biochemical and functional characterization of anti-HIV antibody-ELP fusion proteins from transgenic plants. Plant Biotechnol J 6:379–391

    Article  CAS  Google Scholar 

  • Floss DM, Mockey M, Zanello G, Brosson D, Diogon M, Frutos R, Bruel T, Rodrigues V, Garzon E, Chevaleyre C, Berri M, Salmon H, Conrad U, Dedieu L (2010) Expression and immunogenicity of the mycobacterial Ag85B/ESAT-6 antigens produced in transgenic plants by elastin-like peptide fusion strategy. J Biomed Biotechnol. doi:10.1155/2010/274346

  • Gelvin BS (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67:16–37

    Article  CAS  Google Scholar 

  • Gil F, Brun A, Wigdorovitz A, Catalá R, Martínez-Torrecuadrada JL, Casal I, Salinas J, Borca MV, Escribano JM (2001) High-yield expression of a viral peptide vaccine in transgenic plants. FEBS Lett 488:13–17

    Article  CAS  Google Scholar 

  • Giritch A, Marillonnet S, Engler C, van Eldik G, Botterman J, Klimyuk V, Gleba Y (2006) Rapid high-yield expression of full-size IgG antibodies in plants coinfected with noncompeting viral vectors. Proc Natl Acad Sci USA 103:14701–14706

    Article  CAS  Google Scholar 

  • Gleba Y, Klimyuk V, Marillonnet S (2005) Magnifection–a new platform for expressing recombinant vaccines in plants. Vaccine 23:2042–2048

    Article  CAS  Google Scholar 

  • Hakanpää J, Paananen A, Askolin S, Nakari-Setälä T, Parkkinen T, Penttilä M, Linder MB, Rouvinen J (2004) Atomic resolution structure of the HFBII hydrophobin, a self-assembling amphiphile. J Biol Chem 279:534–539

    Article  Google Scholar 

  • He ZM, Jiang XL, Qi Y, Luo DQ (2008) Assessment of the utility of the tomato fruit-specific E8 promoter for driving vaccine antigen expression. Genetica 133:207–214

    Article  CAS  Google Scholar 

  • Hellwig S, Drossard J, Twyman RM, Fischer R (2004) Plant cell cultures for production of recombinant proteins. Nat Biotechnol 22:1415–1421

    Article  CAS  Google Scholar 

  • Herman EM, Larkins BA (1999) Protein storage bodies and vacuoles. Plant Cell 11:601–614

    Article  CAS  Google Scholar 

  • Hondred D, Walker JM, Mathews DE, Vierstra RD (1999) Use of ubiquitin fusions to augment protein expression in transgenic plants. Plant Physiol 119:713–724

    Article  CAS  Google Scholar 

  • Hong SY, Kwon TH, Jang YS, Kim SH, Yang MS (2006) Production of bioactive human granulocyte-colony stimulating factor in transgenic rice cell suspension cultures. Protein Expr Purif 47:68–73

    Article  CAS  Google Scholar 

  • Hyunjong B, Lee DS, Hwang I (2006) Dual targeting of xylanase to chloroplasts and peroxisomes as a means to increase protein accumulation in plant cells. J Exp Bot 57:161–169

    Article  CAS  Google Scholar 

  • Joensuu JJ, Brown KD, Conley AJ, Clavijo A, Menassa R, Brandle JE (2009) Expression and purification of an anti-Foot-and-mouth disease virus single chain variable antibody fragment in tobacco plants. Transgenic Res 18:685–696

    Article  CAS  Google Scholar 

  • Joensuu JJ, Conley AJ, Lienemann M, Brandle JE, Linder MB, Menassa R (2010) Hydrophobin fusions for high-level transient protein expression and purification in Nicotiana benthamiana. Plant Physiol 152:622–633

    Article  CAS  Google Scholar 

  • Kang TJ, Loc NH, Jang MO, Yang MS (2004) Modification of the cholera toxin B subunit coding sequence to enhance expression in plants. Mol Breed 13:143–153

    Article  CAS  Google Scholar 

  • Kay R, Chan A, Daly M, McPherson J (1987) Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science 236:1299–1302

    Article  CAS  Google Scholar 

  • Kim TG, Langridge WH (2003) Assembly of cholera toxin B subunit full-length rotavirus NSP4 fusion protein oligomers in transgenic potato. Plant Cell Rep 21:884–890

    CAS  Google Scholar 

  • Ko K, Tekoah Y, Rudd PM, Harvey DJ, Dwek RA, Spitsin S, Hanlon CA, Rupprecht C, Dietzschold B, Golovkin M, Koprowski H (2003) Function and glycosylation of plant-derived antiviral monoclonal antibody. Proc Natl Acad Sci USA 100:8013–8018

    Article  CAS  Google Scholar 

  • Koziel MG, Carozzi NB, Desai N (1996) Optimizing expression of transgenes with an emphasis on post-transcriptional events. Plant Mol Biol 32:393–405

    Article  CAS  Google Scholar 

  • Kuroda H, Maliga P (2001) Sequences downstream of the translation initiation codon are important determinants of translation efficiency in chloroplasts. Plant Physiol 125:430–436

    Article  CAS  Google Scholar 

  • Lico C, Chen Q, Santi L (2008) Viral vectors for production of recombinant proteins in plants. J Cell Physiol 216:366–377

    Article  CAS  Google Scholar 

  • Lin M, Rose-John S, Grötzinger J, Conrad U, Scheller J (2006) Functional expression of a biologically active fragment of soluble gp130 as an ELP-fusion protein in transgenic plants: purification via inverse transition cycling. Biochem J 398:577–583

    Article  CAS  Google Scholar 

  • Linder MB, Qiao MQ, Laumen F, Selber K, Hyytia T, Nakari-Setala T, Penttila ME (2004) Efficient purification of recombinant proteins using hydrophobins as tags in surfactant-based two-phase systems. Biochemistry 43:11873–11882

    Article  CAS  Google Scholar 

  • Liu WX, Liu HL, Chai ZJ, Xu XP, Song YR, le Qu Q (2010) Evaluation of seed storage-protein gene 5′untranslated regions in enhancing gene expression in transgenic rice seed. Theor Appl Genet 121:1267–1274

    Article  CAS  Google Scholar 

  • Llompart B, Llop-Tous I, Marzabal P, Torrent M, Pallissé R, Bastida M, Ludevid MD, Walas F (2010) Protein production from recombinant protein bodies. Process Biochem 45:1816–1820

    Article  CAS  Google Scholar 

  • Ma JK, Drake PMW, Christou P (2003) The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet 4:794–805

    Article  CAS  Google Scholar 

  • Ma S, Huang Y, Davis A, Yin Z, Mi Q, Menassa R, Brandle JE, Jevnikar AM (2005) Production of biologically active human interleukin-4 in transgenic tobacco and potato. Plant Biotechnol J 3:309–318

    Article  CAS  Google Scholar 

  • Magnuson NS, Linzmaier PM, Reeves R, An G, HayGlass K, Lee JM (1998) Secretion of biologically active human interleukin-2 and interleukin-4 from genetically modified tobacco cells in suspension culture. Protein Expr Purif 13:45–52

    Article  CAS  Google Scholar 

  • Marillonnet S, Giritch A, Gils M, Kandzia R, Klimyuk V, Gleba Y (2004) In planta engineering of viral RNA replicons: efficient assembly by recombination of DNA modules delivered by Agrobacterium. Proc Natl Acad Sci USA 101:6852–6857

    Article  CAS  Google Scholar 

  • Marillonnet S, Thoeringer C, Kandzia R, Klimyuk V, Gleba Y (2005) Systemic Agrobacterium tumefaciens-mediated transfection of viral replicons for efficient transient expression in plants. Nat Biotechnol 23:718–723

    Article  CAS  Google Scholar 

  • Mishra S, Yadav DK, Tuli R (2006) Ubiquitin fusion enhances cholera toxin B subunit expression in transgenic plants and the plant-expressed protein binds GM1 receptors more efficiently. J Biotechnol 127:95–108

    Article  CAS  Google Scholar 

  • Nagaya S, Kawamura K, Shinmyo A, Kato K (2010) The HSP terminator of Arabidopsis thaliana increases gene expression in plant cells. Plant Cell Physiol 51:328–3251

    Article  CAS  Google Scholar 

  • Nie L, Wu G, Zhang W (2006) Correlation between mRNA and protein abundance in Desulfovibrio vulgaris: a multiple regression to identify sources of variations. Biochem Biophys Res Commun 339:603–610

    Article  CAS  Google Scholar 

  • Obregon P, Chargelegue D, Drake PM, Prada A, Nuttall J, Frigerio L, Ma JK (2006) HIV-1 p24-immunoglobulin fusion molecule: a new strategy for plant-based protein production. Plant Biotechnol J 4:195–207

    Article  CAS  Google Scholar 

  • Parmenter DL, Boothe JG, Rooijen GJH, Yeung EC, Moloney MM (1995) Production of biologically active hirudin in plant seeds using oleosin partitioning. Plant Mol Biol 29:1167–1180

    Article  CAS  Google Scholar 

  • Patel J, Zhu H, Menassa R, Gyenis L, Richman A, Brandle J (2007) Elastin-like polypeptide fusions enhance the accumulation of recombinant proteins in tobacco leaves. Transgenic Res 16:239–249

    Article  CAS  Google Scholar 

  • Percin I, Yavuz H, Aksoz E, Denizli A (2009) N-acetyl-dgalactosamine-specific lectin isolation from soyflour with poly(HPMA-GMA) Beads. J Appl Polym Sci 111:148–154

    Article  CAS  Google Scholar 

  • Pilson D, Prendeville HR (2004) Ecological effects of transgenic crops and the escape of transgenes into wild populations. Annu Rev Ecol Evol Syst 35:149–174

    Article  Google Scholar 

  • Pogue GP, Vojdani F, Palmer KE, Hiatt E, Hume S, Phelps J, Long L, Bohorova N, Kim D, Pauly M, Velasco J, Whaley K, Zeitlin L, Garger SJ, White E, Bai Y, Haydon H, Bratcher B (2010) Production of pharmaceutical-grade recombinant aprotinin and a monoclonal antibody product using plant-based transient expression systems. Plant Biotechnol J 8:638–654

    Article  CAS  Google Scholar 

  • Regnard GL, Halley-Stott RP, Tanzer FL, Hitzeroth II, Rybicki EP (2010) High level protein expression in plants through the use of a novel autonomously replicating geminivirus shuttle vector. Plant Biotechnol J 8:38–46

    Article  CAS  Google Scholar 

  • Rose AB (2002) Requirements for intron-mediated enhancement of gene expression in Arabidopsis. RNA 8:1444–1453

    Article  CAS  Google Scholar 

  • Ruhlman T, Ahangari R, Devine A, Samsam M, Daniell H (2007) Expression of cholera toxin B-proinsulin fusion protein in lettuce and tobacco chloroplasts–oral administration protects against development of insulitis in non-obese diabetic mice. Plant Biotechnol J 5:495–510

    Article  CAS  Google Scholar 

  • Sandhu JS, Krasnyanski SF, Osadian MD, Domier LL, Korban SS, Buetow DE (1999) Enhanced expression of the human respiratory syncytial virus-F gene in apple leaf protoplasts. Plant Cell Rep 18:394–397

    Article  CAS  Google Scholar 

  • Scotti N, Alagna F, Ferraiolo E, Formisano G, Sannino L, Buonaguro L, De Stradis A, Vitale A, Monti L, Grillo S, Buonaguro FM, Cardi T (2009) High-level expression of the HIV-1 Pr55gag polyprotein in transgenic tobacco chloroplasts. Planta 229:1109–1122

    Article  CAS  Google Scholar 

  • Shaaltiel Y, Bartfeld D, Hashmueli S, Baum G, Brill-Almon E, Galili G, Dym O, Boldin-Adamsky SA, Silman I, Sussman JL, Futerman AH, Aviezer D (2007) Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher’s disease using a plant cell system. Plant Biotechnol J 5:579–590

    Article  CAS  Google Scholar 

  • Sharma AK, Sharma MK (2009) Plants as bioreactors: recent developments and emerging opportunities. Biotechnol Adv 27:811–832

    Article  CAS  Google Scholar 

  • Sheludko YV (2008) Agrobacterium-mediated transient expression as an approach to production of recombinant proteins in plants. Recent Patents Biotechnol 2:198–208

    Article  CAS  Google Scholar 

  • Shrawat AK, Lörz H (2006) Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers. Plant Biotechnol J 4:575–603

    Article  CAS  Google Scholar 

  • Streatfield SJ (2007) Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnol J 5:2–15

    Article  CAS  Google Scholar 

  • Svab Z, Hajdukiewicz P, Maliga P (1990) Stable transformation of plastids in higher plants. Proc Natl Acad Sci USA 87:8526–8530

    Article  CAS  Google Scholar 

  • Terpe K (2003) Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 60:523–533

    CAS  Google Scholar 

  • Tian Q, Stepaniants SB, Mao M, Weng L, Feetham MC, Doyle MJ, Yi EC, Dai H, Thorsson V, Eng J, Goodlett D, Berger JP, Gunter B, Linseley PS, Stoughton RB, Aebersold R, Collins SJ, Hanlon WA, Hood LE (2004) Integrated genomic and proteomic analyses of gene expression in Mammalian cells. Mol Cell Proteomic 3:960–969

    Article  CAS  Google Scholar 

  • Torrent M, Llompart B, Lasserre-Ramassamy S, Llop-Tous I, Bastida M, Marzabal P, Westerholm-Parvinen A, Saloheimo M, Heifetz PB, Ludevid M (2009) Eukaryotic protein production in designed storage organelles. BMC Biol 7:5

    Google Scholar 

  • Tremblay R, Wang X, Jevnikar AM, Ma S (2008) Expression of a fusion protein consisting of cholera toxin B subunit and an anti-diabetic peptide (p277) from human heat shock protein in transgenic tobacco plants. Transgenic Plant J 2:186–191

    Google Scholar 

  • Tremblay R, Wang D, Jevnikar AM, Ma S (2010) Tobacco, a highly efficient green bioreactor for production of therapeutic proteins. Biotechnol Adv 28:214–221

    Article  CAS  Google Scholar 

  • Tremblay R, Feng M, Menassa R, Huner NP, Jevnikar AM, Ma S (2011a) High-yield expression of recombinant soybean agglutinin in plants using transient and stable systems. Transgenic Res 20:345–356

    Article  CAS  Google Scholar 

  • Tremblay R, Diao H, Huner NP, Jevnikar AM, Ma S (2011b) The development, characterization, and demonstration of a novel strategy for purification of recombinant proteins expressed in plants. Transgenic Res. doi:10.1007/s11248-011-9498-6 (published online)

  • Twyman RM, Stoger E, Schillberg S, Christou P, Fischer R (2003) Molecular farming in plants: host systems and expression technology. Trends Biotechnol 21:570–578

    Article  CAS  Google Scholar 

  • Urry DW (1992) Free energy transduction in polypeptides and proteins based on inverse temperature transitions. Prog Biophys Mol Biol 57:23–57

    Article  CAS  Google Scholar 

  • Van Molle I, Joensuu JJ, Buts L, Panjikar S, Kotiaho M, Bouckaert J, Wyns L, Niklander-Teeri V, De Greve H (2007) Chloroplasts assemble the major subunit FaeG of Escherichia coli F4 (K88) fimbriae to strand-swapped dimers. J Mol Biol 368:791–799

    Article  Google Scholar 

  • van Rooijen GJ, Moloney MM (1995) Structural requirements of oleosin domains for subcellular targeting to the oil body. Plant Physiol 109:1353–1361

    Article  Google Scholar 

  • Vaquero C, Sack M, Schuster F, Finnern R, Drossard J, Schumann D, Reimann A, Fischer R (2002) A carcinoembryonic antigen-specific diabody produced in tobacco. FASEB J 16:408–410

    CAS  Google Scholar 

  • Verma D, Daniell H (2007) Chloroplast vector systems for biotechnology applications. Plant Physiol 145:1129–1143

    Article  CAS  Google Scholar 

  • Vitale A, Ceriotti A (2004) Protein quality control mechanisms and protein storage in the endoplasmic reticulum. A conflict of interests? Plant Physiol 136:3420–3426

    Article  CAS  Google Scholar 

  • Wirth S, Calamante G, Mentaberry A, Bussmann L, Lattanzi M, Barañao L, Bravo-Almonacid F (2004) Expression of active human epidermal growth factor (hEGF) in tobacco plants by integrative and non-integrative systems. Mol Breed 13:23–35

    Article  CAS  Google Scholar 

  • Witte CP, Noël LD, Gielbert J, Parker JE, Romeis T (2004) Rapid one-step protein purification from plant material using the eight-amino acid StrepII epitope. Plant Mol Biol 55:135–147

    Article  CAS  Google Scholar 

  • Witters LA (2001) The blooming of the French lilac. J Clin Invest 108:1105–1107

    CAS  Google Scholar 

  • Xu J, Ge X, Dolan MC (2011) Towards high-yield production of pharmaceutical proteins with plant cell suspension cultures. Biotechnol Adv 29:2782–2799

    Google Scholar 

  • Yusibov V, Modelska A, Steplewski K, Agadjanyan M, Weiner D, Hooper DC, Koprowski H (1997) Antigens produced in plants by infection with chimeric plant viruses immunize against rabies virus and HIV-1. Proc Natl Acad Sci USA 94:5784–5788

    Article  CAS  Google Scholar 

  • Zhou F, Badillo-Corona JA, Karcher D, Gonzalez-Rabade N, Piepenburg K, Borchers AM, Maloney AP, Kavanagh TA, Gray JC, Bock R (2008) High-level expression of human immunodeficiency virus antigens from the tobacco and tomato plastid genomes. Plant Biotechnol J 6:897–913

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengwu Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ma, S., Wang, A. (2012). Molecular Farming in Plants: An Overview. In: Wang, A., Ma, S. (eds) Molecular Farming in Plants: Recent Advances and Future Prospects. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2217-0_1

Download citation

Publish with us

Policies and ethics