Skip to main content
Log in

A double mutant for theCYP85A1 andCYP85A2 Genes ofArabidopsis exhibits a Brassinosteroid dwarf phenotype

  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Brassinosteroid (BR)-6-oxidases mediate the bridge reactions that connect the late and early C-6 oxidation pathways by converting 6-deoxoBR to 6-oxoBRs. Two similar genes ofArabidopsis, CYP85A1 (At5g38970) andCYP85A2 (At3g30180), are proposed to encode BR-6-oxidases based on findings that heterologously expressed genes mediate BR-6-oxidation reactions in yeast. However, genetic evidence that both genes are critically involved in the BR-6-oxidation step inArabidopsis has been limited. Here, we show that a double mutant for the two genes displays dwarfism similar to that of typical BR biosynthesis-deficient mutants, suggesting that they are the major BR-6-oxidases inArabidopsis. Examination of endogenous BR levels and metabolism monitoring tests using this double mutant revealed a great reduction in the levels of 6-oxoBRs, e.g., TY and CS, due to a lack in the conversion reactions from 6-deoxoCS to CS, and from 6-deoxoTY to TY. Surprisingly, the double mutant accumulated a significant amount of 6-oxocampestanol, suggesting that the upstream C-6 oxidation of campestanol to 6-oxocampestanol is not catalyzed by the two BR-6-oxidases inArabidopsis, rather, by another enzyme yet to be discovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Horn E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Ris-seeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis ofArabidopsis thaliana. Science 301: 653–657

    Article  PubMed  Google Scholar 

  • Asami T, Mizutani M, Fujioka S, Coda H, Min YK, Shimada Y, Nakano T, Takatsuto S, Matsuyama T, Nagata N, Sakata K, Yoshida S (2001) Selective interaction of triaz-ole derivatives with DWF4, a cytochrome P450 monooxygenase of the brassinosteroid biosynthetic pathway, correlates with brassinosteroid deficiency in planta. J Biol Chem 276: 25687–25691

    Article  PubMed  CAS  Google Scholar 

  • Bishop GJ, Harrison K, Jones JD (1996) The tomato Dwarf gene isolated by heterologous transposon tagging encodes the first member of a new cytochrome P450 family. Plant Cell 8: 959–969

    Article  PubMed  CAS  Google Scholar 

  • Bishop GJ, Nomura T, Yokota T, Harrison K, Noguchi T, Fujioka S, Takatsuto S, Jones JD, Kamiya Y (1999) The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis. Proc Natl Acad Sci USA 96: 1761–1766

    Article  PubMed  CAS  Google Scholar 

  • Choe S (2005) Brassinosteroid biosynthesis and metabolism.In Davies PJ, ed, Plant Hormones: Biosynthesis, Signal Transduction, and Action. Springer, Syracus, pp 156–178

    Google Scholar 

  • Choe S, Fujioka S, Noguchi T, Takatsuto S, Yoshida S, Feld-mann KA (2001) Overexpression ofDWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield inArabidopsis. Plant J 26: 573–582

    Article  PubMed  CAS  Google Scholar 

  • Choe S, Noguchi T, Fujioka S, Takatsuto S, Tissier C, Gregory B, Ross A, Tanaka A, Yoshida S, Tax F, Feldmann KA (1999) The Arabidopsisdwf7/ste1 mutant is defective in the delta 7 sterol C-5 desaturation step leading to brassinosteroid biosynthesis. Plant Cell 11: 207–221

    Article  PubMed  CAS  Google Scholar 

  • Fujioka S, Noguchi T, Watanabe T, Takatsuto S, Yoshida S (2000) Biosynthesis of brassinosteroids in cultured cells ofCatharanthus roseus. Phytochem 53: 549–553

    Article  CAS  Google Scholar 

  • Hong Z, Ueguchi-Tanaka M, Shimizu-Sato S, Inukai Y, Fujioka S, Shimada Y, Takatsuto S, Agetsuma M, Yoshida S, Watanabe Y, Uozu S, Kitano H, Ashikari M, Matsuoka M (2002) Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. Plant J 32: 495–508

    Article  PubMed  CAS  Google Scholar 

  • Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M (2003) A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell 15: 2900–2910

    Article  PubMed  CAS  Google Scholar 

  • Kang JG, Yun J, Kim DH, Chung KS, Fujioka S, Kim Jl, Dae HW, Yoshida S, Takatsuto S, Song PS, Park CM (2001) Light and brassinosteroid signals are integrated via a dark-induced small G protein in etiolated seedling growth. Cell 105: 625–636

    Article  PubMed  CAS  Google Scholar 

  • Kwon M, Choe S (2005) Brassinosteroid biosynthesis and dwarf mutant. J Plant Biol 48: 1–15

    Article  CAS  Google Scholar 

  • Kwon M, Lee HK, Choe S (2005) Novel simple sequence length polymorphic (SSLP) markers for positional cloning inArabidopsis thaliana. Kor J Genet 27: 1–8

    CAS  Google Scholar 

  • Noguchi T, Fujioka S, Choe S, Takatsuto S, Tax FE, Yoshida S, Feldmann KA (2000) Biosynthetic pathways of brassi-nolide inArabidopsis. Plant Physiol 124: 201–209

    Article  PubMed  CAS  Google Scholar 

  • Noguchi T, Fujioka S, Choe S, Takatsuto S, Yoshida S, Yuan H, Feldmann KA, Tax FE (1999) Brassinosteroid-insensi-tive dwarf mutantsof Arabidopsis accumulate brassinosteroids. Plant Physiol 121: 743–752

    Article  PubMed  CAS  Google Scholar 

  • Nomura T, Kushiro T, Yokota T, Kamiya Y, Bishop GJ, Yamaguchi S (2005) The last reaction producing brassi-nolide is catalyzed by cytochrome P450s, CYP85A3 in tomato and CYP85A2 inArabidopsis. J Biol Chem 280: 17873–17879

    Article  PubMed  CAS  Google Scholar 

  • Nomura T, Sato T, Bishop GJ, Kamiya Y, Takatsuto S, Yokota T (2001) Accumulation of 6-deoxocathasterone and 6-deoxocastasterone inArabidopsis, pea and tomato is suggestive of common rate-limiting steps in brassinosteroid biosynthesis. Phytochem 57: 171–178

    Article  CAS  Google Scholar 

  • Shimada Y, Fujioka S, Miyauchi N, Kushiro M, Takatsuto S, Nomura T, Yokota T, Kamiya Y, Bishop GJ, Yoshida S (2001) Brassinosteroid-6-oxidases fromArabidopsis and tomato catalyze multiple C-6 oxidations in brassinosteroid biosynthesis. Plant Physiol 126: 770–779

    Article  PubMed  CAS  Google Scholar 

  • Shimada Y, Goda H, Nakamura A, Takatsuto S, Fujioka S, Yoshida S (2003) Organ-specific expression of brassi-nosteroid-biosynthetic genes and distribution of endogenous brassinosteroids inArabidopsis. Plant Physiol 131: 287–297

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghwa Choe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwon, M., Fujioka, S., Jeon, J.H. et al. A double mutant for theCYP85A1 andCYP85A2 Genes ofArabidopsis exhibits a Brassinosteroid dwarf phenotype. J. Plant Biol. 48, 237–244 (2005). https://doi.org/10.1007/BF03030413

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03030413

Keywords

Navigation