Skip to main content

Competition Among Sessile Organisms on Coral Reefs

  • Chapter
  • First Online:
Coral Reefs: An Ecosystem in Transition

Abstract

Competition among sessile organisms is a major process on coral reefs, and is becoming more important as anthropogenic disturbances cause shifts in dominance to non-reef builders such as macroalgae, soft corals, ascidians, and corallimorpharians. Long-term monitoring and field experiments have demonstrated that competition for limited space can exert major impacts on reef biodiversity and community composition across habitats and regions. Recent experiments also reveal increasingly important roles of allelopathic chemicals and the alteration of associated microbes in shaping competitive outcomes among benthic space occupiers. Competition impacts the recruitment, growth, and mortality of sessile reef organisms and alters their population dynamics. Co-settlement and aggregation of conspecific coral colonies may lead to intense intraspecific competition, including chimera formation and potential somatic and germ cell parasitism. The complexity of competitive outcomes and their alteration by a wide variety of factors, including irradiance, water motion, and nutrient levels, results in mostly circular networks of interaction, often enhancing species diversity on coral reefs. Competition is a model process for revealing impacts of human activities on coral reefs, and will become increasingly important as alternate dominants gain space at the expense of reef-building corals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abelson A, Loya Y (1999) Interespecific aggression among stony corals in Eilat, Red Sea: a hierarchy of aggression ability and related parameters. Bull Mar Sci 65:851–860

    Google Scholar 

  • Aceret TL, Sammarco PW, Coll JC (1995) Effects of diterpines derived from the soft coral Sinularia flexibilis on the eggs, sperm and embryos of the scleractinian corals Montipora digitata and Acropora tenuis. Mar Biol 122:317–323

    CAS  Google Scholar 

  • Aerts LAM (1998) Sponge/coral interactions in Caribbean reefs: analysis of overgrowth patterns in relation to species identity and cover. Mar Ecol Prog Ser 175:241–249

    Article  Google Scholar 

  • Aerts LAM, van Soest RWM (1997) Quantification of sponge/coral interactions in a physically stressed reef community, NE Colombia. Mar Ecol Prog Ser 148:125–134

    Article  Google Scholar 

  • Alino PM, Sammarco PW, Coll JC (1992) Competitive strategies in soft corals (Coelenterata, Octocoraliia) IV. Environmentally induced reversals in competitive superiority. Mar Ecol Prog Ser 81:129–145

    Article  Google Scholar 

  • Amar KO, Chadwick NE, Rinkevich B (2008) Coral kin aggregations exhibit mixed allogeneic reactions and enhanced fitness during early ontogeny. BMC Evol Biol 8:126

    Google Scholar 

  • Baird AH, Morse ANC (2004) Unduction of metamorphosis in larvae of the brooding coral Acropora palifera and Stylophora pistillata. Mar Freshwater Res 55:469–472

    Article  Google Scholar 

  • Bak RPM, Borsboom JLA (1984) Allelopathic interaction between a reef coelenterate and benthic algae. Oecologia 63:194–198

    Article  Google Scholar 

  • Bak RPM, Meesters EH (1999) Population structure as a response of coral communities to global change. Am Zool 39:56–65

    Google Scholar 

  • Bak RPM, Sybesma J, Van Duyl FC (1981) The ecology of the tropical compound ascidian Trididemnum solidum. 2. Abundance, growth and survival. Mar Ecol Prog Ser 6:43–52

    Article  Google Scholar 

  • Bak RPM, Lambrechts DYM, Joenje M et al (1996) Long-term changes on coral reefs in booming populations of a competitive colonial ascidian. Mar Ecol Prog Ser 133:303–306

    Article  Google Scholar 

  • Barki Y, Gateno D, Graur D et al (2002) Soft-coral natural chimerism: a window in ontogeny allows the creation of entities comprised of incongruous parts. Mar Ecol Prog Ser 231:91–99

    Article  Google Scholar 

  • Bastidas C, Bone D (1996) Competitive strategies between Palythoa caribaeorum and Zoanthus sociatus (Cnidaria: Anthozoa) at a reef flat environment in Venezuela. Biol Bull 59:543–555

    Google Scholar 

  • Becerra MA, Turon X, Uriz M (1997) Chemically-mediated interactions in benthic organisms: the chemical ecology of Crambe crambe (Porifera: Poecilosclerida). Hydrobiologia 356:77–89

    Article  Google Scholar 

  • Bellwood DR, Hughes TP, Folke C et al (2004) Confronting the coral reef crisis. Nature 429:827–833

    Article  CAS  Google Scholar 

  • Bianchi CN, Morri C, Pichon M et al (2006) Dynamics and Pattern of Coral Recolonization following the 1998 Bleaching Event in the Reefs of the Maldives. Proc 10th Int Coral Reef Symp 1:30–37

    Google Scholar 

  • Birrell CL, McCook LJ, Willis BL (2005) Effects of algal turfs and sediment on coral settlement. Mar Pollut Bull 51:408–414

    Article  CAS  Google Scholar 

  • Birrell CL, McCook LJ, Willis BL et al (2008a) Effects of benthic algae on the replenishment of corals and the implications for the resilience of coral reefs. Oceanogr Mar Biol Ann Rev 46:25–63

    Article  Google Scholar 

  • Birrell CL, McCook LJ, Willis BL et al (2008b) Allelochemical effects of macroalgae on larval settlement of the coral Acropora millepora. Mar Ecol Prog Ser 362:129–137

    Article  Google Scholar 

  • Box SJ, Mumby PJ (2007) Effects of macroalgal competition on growth and survival of juvenile Caribbean corals. Mar Ecol Prog Ser 342:139–149

    Article  Google Scholar 

  • Boyd KG, Adams DR, Burgess JG (1999) Antibacterial and repellent activities of marine bacteria associated with algal surfaces. Biofouling 14:227–236

    Article  Google Scholar 

  • Bruno JF, Selig ER (2007) Regional declines of coral cover in the Indo-Pacific: timing, extent, and subregional comparisons. PLoS ONE 2(8):e711

    Google Scholar 

  • Bruno JF, Witman JD (1996) Defense mechanisms of scleractinian cup corals against overgrowth by colonial invertebrates. J Exp Mar Biol Ecol 207:229–241

    Article  Google Scholar 

  • Bruno JF, Selig ER, Casey KS et al (2007) Thermal stress and coral cover as drivers of coral disease outbreaks. PLoS Biol 5(6):1220–1227

    Article  CAS  Google Scholar 

  • Bruno JF, Sweatman H, Precht WF et al (2009) Assessing evidence of phase shifts from coral to macroalgal dominance on coral reefs. Ecology 90:1478–1484

    Article  Google Scholar 

  • Buss LW (1986) Competition and community organization on hard surfaces in the sea. In: Diamond J, Case TJ (eds) Community ecology. Harper and Row, New York

    Google Scholar 

  • Carpenter RC (1990) Mass mortality of Diadema antillarum I Long-term effects on sea urchin population-dynamics and coral reef algal communities. Mar Biol 104:67–77

    Article  Google Scholar 

  • Cetrulo GL, Hay ME (2000) Activated chemical defenses in tropical versus temperate seaweeds. Mar Ecol Prog Ser 207:243–253

    Article  Google Scholar 

  • Chadwick NE (1987) Interspecific aggressive behavior of the corallimorpharian Corynactis californica (Cnidaria: Anthozoa): effects on sympatric corals and sea anemones. Biol Bull 173:110–125

    Article  Google Scholar 

  • Chadwick NE (1988) Competition and locomotion in a free-living fungiid coral. J Exp Mar Biol Ecol 123:189–200

    Article  Google Scholar 

  • Chadwick NE (1991) Spatial distribution and the effects of competition on some temperate Scleractinia and Corallimorpharia. Mar Ecol Prog Ser 70:39–48

    Article  Google Scholar 

  • Chadwick NE, Adams C (1991) Locomotion, asexual reproduction, and killing of corals by the corallimorpharian Corynactis californica. Hydrobiologia 216(217):263–269

    Article  Google Scholar 

  • Chadwick-Furman N, Loya Y (1992) Migration, habitat use, and competition among mobile corals (Scleractinia: Fungiidae) in the Gulf of Eilat, Red Sea. Mar Biol 114:617–623

    Article  Google Scholar 

  • Chadwick-Furman N, Rinkevich B (1994) A complex allorecognition system in a reef-building coral: delayed responses, reversals and nontransitive hierarchies. Coral Reefs 13:57–63

    Article  Google Scholar 

  • Chadwick-Furman NE, Spiegel M (2000) Abundance and clonal replication in the tropical corallimorpharian Rhodactis rhodostoma. Invertebr Biol 119:351–360

    Article  Google Scholar 

  • Chadwick-Furman NE, Spiegel M, Nir I (2000) Sexual reproduction in the tropical corallimorpharian Rhodactis rhodostoma. Invertebr Biol 119:361–369

    Article  Google Scholar 

  • Chaves-Fonnegra A, Castellanos L, Zea S et al (2008) Clionapyrrolidine A-A metabolite from the encrusting and excavating sponge Cliona tenuis that kills coral tissue upon contact. J Chem Ecol 34:1565–1574

    Article  CAS  Google Scholar 

  • Chen CA, Dai C-F (2004) Local phase shift from Acropora-dominant to Condylactis-dominant community in the Tiao-Shi Reef, Kenting National Park, southern Taiwan. Coral Reefs 23:508

    Google Scholar 

  • Chen CA, Chen C, Chen I (1995a) Spatial variability of size and sex in the tropical corallimorpharian Rhodactis (=Discosoma) indosinensis (Cnidaria: Corallimorpharia) in Taiwan. Zool Stud 34(2):82–87

    Google Scholar 

  • Chen CA, Chen C, Chen I (1995b) Sexual and asexual reproduction of the tropical corallimorpharian Rhodactis (=Discosoma) indosinensis (Cnidaria: Corallimorpharia) in Taiwan. Zool Stud 34(1):29–40

    CAS  Google Scholar 

  • Chornesky EA (1991) The ties that bind: inter-clonal cooperation may help a fragile coral dominate shallow high-energy reefs. Mar Biol 109:41–51

    Article  Google Scholar 

  • Coles SL, Strathmann R (1973) Observations on coral mucus “flocs” and their potential trophic significance. Limnol Oceanogr 18:673–678

    Article  Google Scholar 

  • Coll JC, Sammarco PW (1983) Terpenoid toxins of soft corals (Cnidaria: Octocorallia): their nature, toxicity, and their ecological significance. Toxicon 21:69–72

    Article  Google Scholar 

  • Coll JC, La Barre S, Sammarco PW et al (1982) Chemical defences in soft corals (Coelenterata: Octocorallia) of the Great Barrier Reef: a study of comparative toxicities. Mar Ecol Prog Ser 8:271–278

    Article  Google Scholar 

  • Connell JH, Hughes TP, Wallace CC et al (2004) A long-term study of competition and diversity of corals. Ecol Monogr 74:179–210

    Article  Google Scholar 

  • Connolly SR, Muko S (2003) Space preemption, size-dependent competition, and the coexistence of clonal growth forms. Ecology 84:2979–2988

    Article  Google Scholar 

  • Costa OS Jr, Attrill M, Pedrini AG et al (2002) Spatial and seasonal distribution of seaweeds on coral reefs from Southern Bahia, Brazil. Bot Mar 45:346–355

    Article  Google Scholar 

  • Costa OS Jr, Nimmo M, Attrill MJ (2008) Coastal nutrification in Brazil: a review of the role of nutrient excess on coral reef demise. J South Am Earth Sci 25:257–270

    Article  Google Scholar 

  • Coyer JA, Ambrose RF, Engle JM et al (1993) Interactions between corals and algae on a temperature zone rocky reef: mediation by sea urchins. J Exp Mar Biol Ecol 167:21–37

    Article  Google Scholar 

  • Dai C-F (1990) Interspecific competition in Taiwanese corals with specific reference to interactions between alcyonaceans and scleractinians. Mar Ecol Prog Ser 60:291–297

    Article  Google Scholar 

  • Diaz-Pulido G, McCook LJ (2004) Algal recruitment and interactions. Coral Reefs 23:225–233

    Article  Google Scholar 

  • Dinsdale EA, Rohwer F (2010) Fish or germs? Microbial dynamics associated with changing trophic structures on coral reefs. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition Springer, Doedrecht

    Google Scholar 

  • Dizon RM, Yap HT (2005) Coral responses in single- and mixed-species plots to nutrient disturbance. Mar Ecol Prog Ser 296:165–172

    Article  Google Scholar 

  • Done TJ (1992) Phase-shifts in coral reef communities and their ecological significance. Hydrobiologia 247:121–132

    Article  Google Scholar 

  • Elahi R (2008) Effects of aggregation and species identity on the growth and behavior of mushroom corals. Coral Reefs 27:881–885

    Article  Google Scholar 

  • Engel S, Puglisi MP, Jensen PR et al (2006) Antimicrobial activities of extracts from tropical Atlantic marine plants against marine pathogens and saprophytes. Mar Biol 149:991–1002

    Article  Google Scholar 

  • Fabricius K (2010) Factors determining the resilience of coral reefs to eutrophication: a review and conceptual model. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition Springer, Doedrecht

    Google Scholar 

  • Fearon RJ, Cameron AM (1996) Larvotoxic extracts of the hard coral Goniopora tenuidens: allelochemicals that limit settlement of potential competitors? Toxicon 34:361–367

    Article  CAS  Google Scholar 

  • Ferrier-Pages C, Hoogenboom M, Houlbrèque F (2010) The role of plankton in coral trophodynamics. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition Springer, Doedrecht

    Google Scholar 

  • Fine M, Loya Y (2003) Alternate coral–bryozoan competitive superiority during coral bleaching. Mar Biol 142:989–996

    Google Scholar 

  • Fine M, Oren U, Loya Y (2002) Bleaching effect on regeneration and resource translocation in the coral Oculina patagonica. Mar Ecol Prog Ser 234:119–125

    Article  Google Scholar 

  • Fong P, Paul JV (2010) Coral reef algae: the good, the bad, and the ugly. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition Springer, Doedrecht

    Google Scholar 

  • Fong P, Smith TB, Wartian MJ (2006) Epiphytic cyanobacteria maintain shifts to macroalgal dominance on coral reefs following ENSO disturbance. Ecology 87:1162–1168

    Article  Google Scholar 

  • Foster NL, Box SJ, Mumby PJ (2008) Competitive effects of macroalgae on the fecundity of the reef-building coral Montastraea annularis. Mar Ecol Prog Ser 367:143–152

    Article  Google Scholar 

  • Frank U, Rinkevich B (1994) Nontransitive patterns of historecognition phenomena in the Red Sea hydrocoral Millepora dichotoma. Mar Biol 118:723–729

    Article  Google Scholar 

  • Frank U, Rinkevich B (2001) Alloimmune memory is absent in the Red Sea hydrocoral Millepora dichotoma. J Exp Zool 291:25–29

    Article  CAS  Google Scholar 

  • Frank U, Brickner I, Rinkevich B, Loya Y et al (1995) Allogeneic and xenogeneic interactions in reef-building corals may induce tissue growth without calcification. Mar Ecol Prog Ser 124:181–188

    Article  Google Scholar 

  • Frank U, Bak RPM, Rinkevich B (1996) Allorecognition responses in the soft coral Parerythropodium fulvum fulvum from the R Sea. J Exp Mar Biol Ecol 197:191–201

    Article  Google Scholar 

  • Frank U, Oren U, Loya Y, Rinkevich B (1997) Alloimmune maturation in the coral Stylophora pistillata is achieved through three distinctive stages, 4 months post-metamorphosis. Proc Roy Soc Lond B 264:99–104

    Article  Google Scholar 

  • Fusetani N, Asano M, Matsunaga S et al (1986) Bioactive marine metabolites XV. Isolation of aplysinopsin from the scleractinian coral Tubastrea aurea as an inhibitor of development of fertilized sea urchin eggs. Comp Biochem Physiol 85B:845–846

    CAS  Google Scholar 

  • Genin A, Karp L (1994) Effects of flow on competitive superiority in scleractinian corals. Limnol Oceanogr 39:913–924

    Article  Google Scholar 

  • Glynn PW (1997) Bioerosion and coral-reef growth. In: Birkeland C (ed) Life and death of coral reefs. Chapman & Hall, New York

    Google Scholar 

  • Glynn P, Enochs I (2010) Invertebrates and their roles in coral reef ecosystems. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition Springer, Doedrecht

    Google Scholar 

  • Goffredo S, Chadwick-Furman NE (2003) Comparative demography of mushroom corals (Scleractinia: Fungiidae) at Eilat, northern Red Sea. Mar Biol 142:411–418

    Google Scholar 

  • Griffith JK (1997) Occurrence of aggressive mechanisms during interactions between soft corals (Octocorallia: Alcyoniidae) and other corals on the Great Barrier Reef, Australia. Mar Freshwater Res 48:129–135

    Article  Google Scholar 

  • Gunthorpe L, Cameron AM (1990a) Intracolonial variation in toxicity in scleractinian corals. Toxicon 28:1221–1227

    Article  CAS  Google Scholar 

  • Gunthorpe L, Cameron AM (1990b) Widespread but variable toxicity in scleractinian corals. Toxicon 28:1199–1219

    Article  CAS  Google Scholar 

  • Gunthorpe L, Cameron AM (1990c) Toxic exudate from the hard coral Goniopora tenuidens. Toxicon 28:1347–1350

    Article  CAS  Google Scholar 

  • Guzner B, Novoplansky A, Chadwick NE (2007) Population dynamics of the reef-building coral Acropora hemprichii as an indicator of reef condition. Mar Ecol Prog Ser 333:143–150

    Article  Google Scholar 

  • Harvell CD, Kim K, Burkholder JM et al (1999) Emerging marine diseases – climate links and anthropogenic factors. Science 285:1505–1510

    Article  CAS  Google Scholar 

  • Hildemann WH, Raison RL, Hull CJ et al (1977) Tissue transplantation immunity in corals. Proc 3rd Int Coral Reef Symp Miami 1:537–543

    Google Scholar 

  • Hirose E (2009) Ascidian tunic cells: morphology and functional diversity of free cells outside the epidermis. Invertebr Biol 128:83–96

    Article  Google Scholar 

  • Hoegh-Guldberg O (2004) Coral reefs in a century of rapid environmental change. Symbiosis 37:1–31

    Google Scholar 

  • Holland GJ, Webster PJ (2007) Heightened tropical cyclone activity in the North Atlantic: natural variability or climate trend? Philos Trans R Soc Ser A 365:2695–2716

    Article  Google Scholar 

  • Hughes TP, Tanner JE (2000) Recruitment failure, life histories, and long-term decline of Caribbean corals. Ecology 81:2250–2263

    Article  Google Scholar 

  • Hughes TP, Rodrigues MJ, Bellwood DR et al (2007) Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr Biol 17:360–365

    Article  CAS  Google Scholar 

  • Idjadi JA, Karlson RH (2007) Spatial arrangement of competitors influences coexistence of reef-building corals. Ecology 88:2449–2454

    Article  Google Scholar 

  • Jompa J, McCook LJ (2002a) The effect of herbivory on competition between a macroalga and a hard coral. J Exp Mar Biol Ecol 271:25–39

    Article  Google Scholar 

  • Jompa J, McCook LJ (2002b) The effect of nutrients and herbivory on competition between the hard coral (Porites cylindrica) and a brown alga (Lobophora variegata). Limnol Oceanogr 47:527–534

    Article  CAS  Google Scholar 

  • Jompa J, McCook LJ (2003a) Contrasting effects of turf algae on corals: massive Porites spp. are unaffected by mixed-species turfs, but killed by the red alga Anotrichium tenue. Mar Ecol Prog Ser 258:79–86

    Article  Google Scholar 

  • Jompa J, McCook LJ (2003b) Coral-algal competition: macroalgae with different properties have different effects on corals. Mar Ecol Prog Ser 258:87–95

    Article  Google Scholar 

  • Kim K, Lasker HR (1997) Flow-mediated resource competition in the suspension feeding gorgonian Plexaura homomalla (Esper). J Exp Mar Biol Ecol 215:49–64

    Article  Google Scholar 

  • Knowlton N (1992) Thresholds and multiple stable states in coral reef community dynamics. Am Zool 32:674–682

    Google Scholar 

  • Knowlton N, Jackson JBC (2001) The ecology of coral reefs. In: Bertness MD, Gaines SD, Hay M (eds) Marine community ecology. Sinauer Associates, Sunderland

    Google Scholar 

  • Koh EGL (1997) Do scleractinian corals engage in chemical warfare against marine microbes? J Chem Ecol 23:379–398

    Article  CAS  Google Scholar 

  • Koh EGL, Sweatman H (2000) Chemical warfare among scleractinians: bioactive natural products from Tubastraea faulkneri Wells kill larvae of potential competitors. J Exp Mar Biol Ecol 251:141–160

    Article  CAS  Google Scholar 

  • Kuffner IB, Walters LJ, Becerro MA et al (2006) Inhibition of coral recruitment by macroalgae and cyanobacteria. Mar Ecol Prog Ser 323:107–117

    Article  Google Scholar 

  • Kuguru BL, Mgaya YD, Ohman MC et al (2004) The reef environment and competitive success in the Corallimorpharia. Mar Biol 145:875–884

    Article  Google Scholar 

  • Lambert G (2002) Nonindigenous ascidians in tropical waters. Pac Sci 56:291–298

    Article  Google Scholar 

  • Lane AL, Kubanek J (2008) Secondary metabolite defenses against pathogens and biofoulers. In: Amsler CD (ed) Algal chemical ecology. Springer, Berlin

    Google Scholar 

  • Lang JC, Chornesky EA (1990) Competition between scleractinian reef corals – a review of mechanisms and effects. In: Dubinsky Z (ed) Ecosystems of the world: coral reefs. Elsevier, Amsterdam, pp 209–252

    Google Scholar 

  • Langmead O, Chadwick-Furman NE (1999a) Marginal tentacles of the corallimorpharian Rhodactis rhodostoma. 1. Role in competition for space. Mar Biol 134:479–489

    Article  Google Scholar 

  • Langmead O, Chadwick-Furman NE (1999b) Marginal tentacles of the corallimorpharian Rhodactis rhodostoma. 2. Induced development and long-term effects on coral competitors. Mar Biol 134:491–500

    Article  Google Scholar 

  • Lapid ED, Chadwick NE (2006) Long-term effects of competition on coral growth and sweeper tentacle development. Mar Ecol Prog Ser 313:115–123

    Article  Google Scholar 

  • Lapid ED, Wielgus J, Chadwick-Furman NE (2004) Sweeper tentacles of the brain coral Platygyra daedalea: induced development and effects on competitors. Mar Ecol Prog Ser 282:161–171

    Article  Google Scholar 

  • Lirman D (2001) Competition between macroalgae and corals: effects of herbivore exclusion and increased algal biomass on coral survivorship and growth. Coral Reefs 19:392–399

    Article  Google Scholar 

  • Littler M, Littler DS (1997) Disease induced mass mortality of crustose algae on coral reefs provides rationale for the conservation of herbivorous fish stocks. Proc 8th Int Coral Reef Symp 1:719–724

    Google Scholar 

  • Littler MM, Littler DS (2006) Harmful algae on tropical reefs: bottom-up eutrophication and top-down herbivory. Harmful Algae 5:565–585

    Article  Google Scholar 

  • Littler MM, Littler DS, Brooks BL (2009) Herbivory, nutrients, stochastic events, and relative dominances of benthic indicator groups on coral reefs: a review and recommendations. Smithsonian Contrib Mar Sci 38:401–414

    Google Scholar 

  • López-Victoria M, Zea S (2004) Storm-mediated coral colonization by an excavating Caribbean sponge. Mar Ecol Prog Ser 26:251–256

    Google Scholar 

  • López-Victoria M, Zea S, Weil E (2006) Competition for space between encrusting excavating Caribbean sponges and other coral reef organisms. Mar Ecol Prog Ser 312:113–121

    Article  Google Scholar 

  • Lotka AJ (1925) Elements of physical biology. Williams & Wilkins, Baltimore (Reprinted as Elements of Mathematical Biology, Dover, New York, 1956.)

    Google Scholar 

  • Maida M, Sammarco PW, Coll JC (1995a) Effects of soft corals on scleractinian coral recruitment: I Directional allelopathy and inhibition of settlement. Mar Ecol Prog Ser 121:191–202

    Article  Google Scholar 

  • Maida M, Sammarco PW, Coll JC (1995b) Preliminary evidence for directional allelopathic effects of the soft coral Sinularia flexibilis (Alcyonacea, Octocorallia) on scleractinian coral recruitment. Bull Mar Sci 56:303–311

    Google Scholar 

  • Maliao RJ, Turingan RG, Lin J (2008) Phase-shift in coral reef communities in the Florida Keys National Marine Sanctuary (FKNMS), USA. Mar Biol 154:841–853

    Article  Google Scholar 

  • Maypa AP, Raymundo LJ (2004) Algal-coral interactions, mediation of coral settlement, early survival, and growth by macroalgae. Silliman J 45:76–95

    Google Scholar 

  • McCook LJ, Jompa J, Diaz-Pulido G (2001) Competition between corals and algae on coral reefs: a review of evidence and mechanisms. Coral Reefs 19:400–417

    Article  Google Scholar 

  • Meesters EH, Hilterman M, Kardinaal E et al (2001) Colony size-frequency distributions of scleractinian coral populations: spatial and interespecific variation. Mar Ecol Prog Ser 209:43–54

    Article  Google Scholar 

  • Miles JS (1991) Inducible agonistic structures in the tropical corallimorpharian, Discosoma sanctithomae. Biol Bull 180:406–415

    Article  Google Scholar 

  • Millar RH (1971) The biology of ascidians. Adv Mar Biol 9:1–100

    Article  Google Scholar 

  • Miller MW, Hay ME (1996) Coral-seaweed-grazer nutrient interactions on temperate reefs. Ecol Monogr 66:323–344

    Article  Google Scholar 

  • Monniot C, Monniot F, Laboute P (1991) Coral reef ascidians of New Caledonia. ORSTOM, Paris

    Google Scholar 

  • Moore RE, Scheuer PJ (1971) Palytoxin: a new marine toxin from a coelenterate. Science 172:495–498

    Article  CAS  Google Scholar 

  • Morin PJ (1999) Community ecology. Blackwell, Oxford

    Google Scholar 

  • Morrow KM, Carpenter RC (2008) Macroalgal morphology mediates particle capture by the corallimorpharian Corynactis californica. Mar Ecol Prog Ser 155:273–280

    Google Scholar 

  • Morse ANC, Iwao K, Baba M et al (1996) An ancient chemosensory mechanism brings new life to coral reefs. Biol Bull 191:149–154

    Article  Google Scholar 

  • Muhando CA, Kuguru BL, Wagner GM et al (2002) Environmental effects on the distribution of corallimorpharians in Tanzania. Ambio 31:558–561

    Google Scholar 

  • Muko S, Sakai K, Iwasa Y (2001) Dynamics of marine sessile organisms with space-limited growth and recruitment: application to corals. J Theor Biol 210:67–80

    Article  CAS  Google Scholar 

  • Mumby PJ (2006) The impact of exploiting grazers (Scaridae) on the dynamics of Caribbean coral reefs. Ecol Appl 16:747–769

    Article  Google Scholar 

  • Mumby PJ (2009) Phase shifts and the stability of macroalgal communities on Caribbean coral reefs. Coral Reefs 28:761–773

    Article  Google Scholar 

  • Mumby PJ, Steneck RS (2008) Coral reef management and conservation in light of rapidly-evolving ecological paradigms. Trends Ecol Evol 23:555–563

    Article  Google Scholar 

  • Norström AV, Nyström M, Lokrantz J et al (2009) Alternative states on coral reefs: beyond coral–macroalgal phase shifts. Mar Ecol Prog Ser 376:295–306

    Article  Google Scholar 

  • Nugues MM, Bak RPM (2006) Differential competitive abilities between Caribbean coral species and a brown alga: a year of experiments and a long-term perspective. Mar Ecol Prog Ser 315:75–86

    Article  Google Scholar 

  • Nugues MM, Roberts CM (2003) Coral mortality and interaction with algae in relation to sedimentation. Coral Reefs 22:507–516

    Article  Google Scholar 

  • Nugues MM, Szmant AM (2006) Coral settlement onto Halimeda opuntia: a fatal attraction to an ephemeral substrate? Coral Reefs 25:585–591

    Article  Google Scholar 

  • Nugues MM, Delvoye L, Bak RPM (2004a) Coral defence against macroalgae: differential effects of mesenterial filaments on the green alga Halimeda opuntia. Mar Ecol Prog Ser 278:103–114

    Article  Google Scholar 

  • Nugues MM, Smith GW, Hooidonk RJ et al (2004b) Algal contact as a trigger for coral disease. Ecol Lett 7:919–923

    Article  Google Scholar 

  • Pacala SW, Silander JA (1990) Field tests of neighborhood population dynamic models of two annual weed species. Ecol Monogr 60:113–134

    Article  Google Scholar 

  • Paine RT (1984) Ecological determinism in the competition for space. Ecology 65:1339–1348

    Article  Google Scholar 

  • Pandolfi JM, Bradbury RH, Sala E et al (2003) Global trajectories of the long-term decline of coral reef ecosystems. Science 301:955–958

    Article  CAS  Google Scholar 

  • Paul VJ, Arthur K, Ritson-Williams R (2007) Chemical defenses: from compounds to communities. Biol Bull 213:226–251

    Article  CAS  Google Scholar 

  • Pawlik JR, Steindler L, Henkel TP (2007) Chemical warfare on corals: sponge metabolites differentially affect coral in situ. Limnol Oceanogr 52:907–911

    Article  CAS  Google Scholar 

  • Peach MB, Hoegh-Guldberg O (1999) Sweeper polyps of the coral Goniopora tenuidens (Scleractinia: Poritidae). Invertebr Biol 118:1–7

    Article  Google Scholar 

  • Puglisi MP, Engel S, Jensen PR et al (2007) Antimicrobial activities of extracts from Indo-Pacific marine plants against marine pathogens and saprophytes. Mar Biol 150:531–540

    Article  Google Scholar 

  • Quan-Young, Espinoza-Avalos (2006) Reduction of zooxanthellae density, chlorophyll a concentration, and tissue thickness of the coral Montastraea faveolata (Scleractinia) when competing with mixed turf algae. Limnol Oceanogr 51:1159–1166

    Article  Google Scholar 

  • Rashid MA, Gustafson KR, Cardellina JH II et al (1995) Mycalolides D and E, new cytotoxic macrolides from a collection of the stony coral Tubastrea faulkneri. J Nat Prod 58:1120–1125

    Article  CAS  Google Scholar 

  • Raymundo LJ (2001) Mediation of growth by conspecific neighbors and the effect of site in transplanted fragments of the coral Porites attenuata Nemenzo in the central Philippines. Coral Reefs 20:263–272

    Article  Google Scholar 

  • Richmond RH (1993) Coral reefs – present problems and future concerns resulting from anthropogenic disturbance. Am Zool 33:524–536

    Google Scholar 

  • Rinkevich B, Sakai K (2001) Interspecific interactions among species of the coral genus Porites from Okinawa, Japan. Zoology 104:1–7

    Article  Google Scholar 

  • Rinkevich B, Shashar N, Liberman T (1992) Nontransitive xenogenic interactions between four common red sea sessile invertebrates. Proc 7th Int Coral Reef Symp Guam 2:833–839

    Google Scholar 

  • Rinkevich B, Frank U, Bak RPM et al (1994) Alloimmune responses between Acropora hemprichi conspecifics: nontransitive patterns of overgrowth and delayed cytotoxicity. Mar Biol 118:731–737

    Article  Google Scholar 

  • Ritson-Williams R, Arnold SN, Fogarty ND et al (2009) New perspectives on ecological mechanisms affecting coral recruitment on reefs. Smithsonian Contrib Mar Sci 38:437–458

    Google Scholar 

  • River GF, Edmunds PJ (2001) Mechanisms of interaction between macroalgae and scleractinians on a coral reef in Jamaica. J Exp Mar Biol Ecol 261:159–172

    Article  Google Scholar 

  • Romano SL (1990) Long-term effects of interspecific aggression on growth of the reef-building corals Cyphastrea ocellina (Dana) and Pocillopora damicornis (Linnaeus). J Exp Mar Biol Ecol 140:135–146

    Article  Google Scholar 

  • Rossi S, Snyder MJ (2001) Competition for space among sessile marine invertebrates: changes in HSP70 expression in two pacific cnidarians. Biol Bull 201:308–393

    Article  Google Scholar 

  • Rutzler K (2002) Impact of crustose clionid sponges on Caribbean reef corals. Acta Geol Hisp 37:61–72

    Google Scholar 

  • Sammarco PW, Coll JC, La Barre S et al (1983) Competitive strategies of soft corals (Coelenterata: Octocorallia): allelopathic effects on selected scleractinian corals. Coral Reefs 1:173–178

    Article  Google Scholar 

  • Sammarco PW, Coll JC, La Barre S (1985) Competitive strategies of soft corals (Coelenterata: Octocorallia). 2. Variable defensive responses and susceptibility to scleractinian corals. J Exp Mar Biol Ecol 91:199–215

    Article  Google Scholar 

  • Schönberg CGL, Wilkinson CR (2001) Induced colonization of corals by a clionid bioeroding sponge. Coral Reefs 20:69–76

    Article  Google Scholar 

  • Sebens KP (1976) The ecology of Caribbean sea anemones in Panama: utilization of space on a coral reef. In: Mackie GO (ed) Coelenterate ecology and behavior. Plenum Press, New York

    Google Scholar 

  • Sebens KP, Miles JS (1988) Sweeper tentacles in a gorgonian octocoral: morphological modifications for interference competition. Biol Bull 179:378–387

    Article  Google Scholar 

  • Segel LA, Ducklow HW (1982) A theoretical investigation into the influence of sublethal stresses on coral-bacterial ecosystem dynamics. Bull Mar Sci 32:919–935

    Google Scholar 

  • Shenkar N, Bronstein O, Loya Y (2008) Population dynamics of a coral reef ascidian in a deteriorating environment. Mar Ecol Prog Ser 367:163–171

    Article  Google Scholar 

  • Smith JE, Shaw M, Edwards RA et al (2006) Antifouling activity and microbial diversity of two congeneric sponges Callyspongia spp. from Hong Kong and Bahamas. Mar Ecol Prog Ser 324:151–165

    Article  Google Scholar 

  • Stambler N (2010) Zooxanthellae: the yellow symbionts inside animals. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition Springer, Doedrecht

    Google Scholar 

  • Steneck RS, Dethier MN (1994) A functional group approach to the structure of algal dominated communities. Oikos 69:476–498

    Article  Google Scholar 

  • Sullivan B, Webb L (1983) Siphonodictine, a metabolite of the burrowing sponge Siphonodictyon sp. that inhibits coral growth. Science 221:1175–1176

    Article  CAS  Google Scholar 

  • Tanner JE (1995) Competition between scleractinian corals and macroalgae: an experimental investigation of coral growth, survival and reproduction. J Exp Mar Biol Ecol 190:151–168

    Article  Google Scholar 

  • Tanner JE (1997) Interspecific competition reduces fitness in scleractinian corals. J Exp Mar Biol Ecol 214:19–34

    Article  Google Scholar 

  • Thompson JE, Barrow KD, Faulkner DJ (1983) Localization of two brominated metabolites, aerothionin and homoaerothionin, in spherulus cells of the marine sponge Aplysina fistularis (=Verongia thiona). Acta Zoologica 64:199–210

    Article  Google Scholar 

  • Tilman D (1982) Resource competition and community structure. Princeton University Press, Princeton

    Google Scholar 

  • Titlyanov EA, Titlyanov TV (2008) Coral–algal competition on damaged reefs. Russ J Mar Biol 34:199–219

    Article  Google Scholar 

  • Titlyanov EA, Titlyanov TV, Yakovleva IM et al (2007) Interaction between benthic algae (Lyngbia bouillonii, Dictyota dichotoma) and a scleractinian coral (Porites lutea) in direct contact. J Exp Mar Biol Ecol 342:282–291

    Article  Google Scholar 

  • Titlyanov EA, Titlyanov TV, Arvedlund M (2009) Finding the winners in competition for substratum between coral polyps and epilithic algae on damaged colonies of the coral Porites lutea. Mar Biodiv Rec 2(e85):1–4

    Google Scholar 

  • Van Veghel MLJ, Cleary DFR, Bak RPM (1996) Interspecific interactions and competitive ability of the polymorphic reef-building coral Montastrea annularis. Bull Mar Sci 58:792–803

    Google Scholar 

  • Vermeij MJA, Smith JE, Smith CM (2009) Survival and settlement success of coral planulae: independent and synergistic effects of macroalgae and microbes. Oecologia 159:325–336

    Article  CAS  Google Scholar 

  • Volterra V (1926) Variations and fluctuations in the numbers of individuals in animal species living together. Reprinted in 1931. In: Chapman RN (ed) Animal ecology. McGraw-Hill, New York

    Google Scholar 

  • Wild C, Huettel M, Klueter A (2004) Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Nature 428:66–70

    Article  CAS  Google Scholar 

  • Williams RB (1991) Acrorhagi, catch tentacles and sweeper tentacles: a synopsis of “aggression” of actiniarian and scleractinian Cnidaria. Hydrobiologia 216(217):539–545

    Article  Google Scholar 

  • Witman JD, Dayton PK (2001) Rocky subtidal communities. In: Bertness MD, Gaines SD, Hay M (eds) Marine community ecology. Sinauer Associates, Sunderland

    Google Scholar 

  • Work TM, Aeby GS, Maragos JE (2008) Phase shift from a coral to a corallimorph-dominated reef associated with a shipwreck on Palmyra Atoll. PLoS ONE 3(8):e2989:1–5

    Article  CAS  Google Scholar 

  • Zvuloni A, Armoza-Zvuloni R, Loya Y (2008) Structural deformation of branching corals associated with the vermetid gastropod Dendropoma maxima. Mar Ecol Prog Ser 363:103–108

    Article  Google Scholar 

Download references

Acknowledgments

We thank Zvy Dubinsky for inviting us to write this review. The manuscript was improved by comments from J. Bruno, A. Norstrom, and J. Szczebak. We dedicate this review to J. Lang and E. Chornesky, pioneering researchers on coral competition who inspired NEC to spend a lifetime investigating the complexity of interactions among cnidarians on coral reefs, and to T. Morrow and A. Morrow for their support of K. M. Morrow in her pursuit of a career in coral reef biology. Financial support was provided by grants from the Israel Science Foundation (ISF), National Science Foundation (NSF), and National Oceanic and Atmospheric Administration (NOAA) to NEC for past and current fieldwork on coral reefs, and by a NOAA Nancy Foster Scholarship to KMM. This is contribution #65 of the Auburn University Marine Biology Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nanette E. Chadwick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Chadwick, N.E., Morrow, K.M. (2011). Competition Among Sessile Organisms on Coral Reefs. In: Dubinsky, Z., Stambler, N. (eds) Coral Reefs: An Ecosystem in Transition. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0114-4_20

Download citation

Publish with us

Policies and ethics