Skip to main content
Log in

Clionapyrrolidine A—A Metabolite from the Encrusting and Excavating Sponge Cliona tenuis that Kills Coral Tissue upon Contact

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The Caribbean encrusting and excavating sponge Cliona tenuis successfully competes for space with reef corals by undermining, killing, and displacing live coral tissue at rates of up to 20 cm per year. The crude extract from this sponge, along with the more polar partitions, kills coral tissue and lowers the photosynthetic potential of coral zooxanthellae. We used a bioassay-guided fractionation of the extract to identify the compound(s) responsible. The crude extract, the aqueous partition, and compound 1, herein named clionapyrrolidine A [(−)-(5S)-2-imino-1-methylpyrrolidine-5-carboxylic acid], when incorporated into gels at close to natural volumetric concentrations, killed coral tissue when brought into forced contact with live coral for periods of 1–4 days. This is the first report of a pure chemical produced by a sponge that kills coral tissue upon direct contact. The results are consistent with the localized coral death that occurs when C. tenuis-colonized coral fragments are thrown forcibly against live coral during storms. However, healed C. tenuis fragments placed directly onto live coral were killed readily by coral defenses, and fragments placed in close proximity to coral did not have any effect on the adjacent coral tissue. Solutions of clionapyrrolidine A in sea water were only slightly toxic against live coral. Hence, the coral death naturally brought about by C. tenuis when undermining live coral does not occur through external release of allelochemicals; below-polyp mechanisms must be explored further. N-acetylhomoagmatine (2), originally isolated from Cliona celata from the Northeastern Atlantic, was also assayed for comparison purposes because of its structural similarity to siphonodictidine, a toxic compound produced by a coral excavating sponge of the genus Aka. The lack of activity of N-acetylhomoagmatine at close to natural concentrations seems to indicate that the guanidine moiety, which is also present in siphonodictidine, is not a sufficiently strong structural motif for activity against corals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Becerro, M. A. 2008. Quantitative trends in sponge ecology research. Mar. Ecol. 29:167–177.

    Article  Google Scholar 

  • Becerro, M. A., Turon, X., and Uriz, M. J. 1995. Natural variation of toxicity in encrusting sponge Crambe crambe (Schmidt) in relation to size and environment. J. Chem. Ecol. 21:1931–1946.

    Article  CAS  Google Scholar 

  • Becerro, M. A., Turon, X., and Uriz, M. J. 1997. Chemically-mediated interactions in benthic organisms: the chemical ecology of Crambe crambe (Porifera, Poecilosclerida). Hydrobiologia 356:77–89.

    Article  Google Scholar 

  • Castellanos, L., Duque, C., Zea, S., Espada, A., Rodríguez, J., and Jiménez, C. 2006a. Isolation and synthesis of (−)-(5S)-2-imino-1-methylpyrrolidine-5-carboxylic acid from Cliona tenuis. Revised structure of pyrostatin B. Org. Lett. 8:4967–4970.

    Article  PubMed  CAS  Google Scholar 

  • Castellanos, L., Duque, C., Rodríguez, J., and Jiménez, C. 2006b. Synthesis of acetylhomoagmatine. Mar. Drugs 4:286–289.

    Article  CAS  Google Scholar 

  • Chaves-Fonnegra, A. and Zea, S. 2007. Observations on reef coral undermining by the Caribbean excavating sponge Cliona delitrix (Demospongiae, Hadromerida), pp. 247–254 in M. R. Custódio, E. Hajdu, G. Lôbo-Hajdu, and G. Muricy (eds.). Sponges—biodiversity, innovation, sustainability. Proceedings of the 7th International Sponge Symposium, Río de Janeiro, Brazil.

  • Chaves-Fonnegra, A., López-Victoria, M., Parra-Velandia, F., and Zea, S. 2005. Ecología química de las esponjas excavadoras Cliona aprica, C. caribbaea, C. delitrix y C. tenuis. Bol. Inst. Invest. Mar. Cost. 34:43–67.

    Google Scholar 

  • de Nys, R., Coll, J. C., and Price, I. R. 1991. Chemically mediated interactions between the red alga Plocamium hamatum (Rhodophyta) and the octocoral Sinularia cruciata (Alcyonacea). Mar. Biol. 108:315–320.

    Article  Google Scholar 

  • Engel, S., and Pawlik, J. R. 2000. Allelopathic activities of sponge extracts. Mar. Ecol. Prog. Ser. 207:273–281.

    Article  Google Scholar 

  • Gochfeld, D., Harrison, L., Olson, J. Lesser, M. P., Ankisetty, S., and Slattery, M. 2006. Allelopathic effects of the Caribbean sponge Svenzea zeai on the coral Montastraea annularis. Abstracts, 7th Int. Sponge Symp., Búzios, Río de Janeiro:116.

  • Hadfield, M. G., and Scheuer, D. 1985. Evidence for a soluble metamorphic inducer in Phestilla sibogae: ecological, chemical and biological data. Bull. Mar. Sci. 37:556–566.

    Google Scholar 

  • Hay, M. E., Stachowicz, J. J., Cruz-Rivera, E., Bullard, S., Deal, M. S., and Lindquist, N. 1998. Bioassays with marine and freshwater macroorganisms, pp. 32–122, in K. F. Haynes, and J. G. Millar (eds.). Methods in chemical ecology: bioassay methodsKluwer Academic, London.

    Google Scholar 

  • Henrikson, A. A., and Pawlik, J. R. 1995. A new antifouling assay method: results from field experiments using extracts of four marine organisms. J. Exp. Mar. Biol. Ecol. 194:157–165.

    Article  Google Scholar 

  • Jackson, J. B. C. 1979. Morphological strategies of sessile animals, pp. 499–555, in G. Larwood, and B. R. Rosen (eds.). Biology and systematics of colonial organismsAcademic, London.

    Google Scholar 

  • Jackson, J. B. C., and Buss, L. 1975. Allelopathy and spatial competition among coral reef invertebrates. Proc. Nat. Acad. Sci. U S A 72:5160–5163.

    Article  Google Scholar 

  • Lang, J. C. 1973. Interspecific aggression by scleractinian corals. II. Why the race is not only to the swift. Bull. Mar. Sci. 23:260–279.

    Google Scholar 

  • Lang, J. C., and Chornesky, E. H. 1990. Competition between scleractinian reef corals — a review of mechanisms and effects, pp. 209–252, in Z. Dubinsky (ed.). Ecosystems of the world 25: coral reefsElsevier, Amsterdam.

    Google Scholar 

  • Lenis, L. A., Núñez, L., Jiménez, C., and Riguera, R. 1996. Isonitenin and acetylhomoagmatine, new metabolites from the sponges Spongia officinalis and Cliona celata collected at the Galician coast (N.W. Spain). Nat. Prod. Lett. 8:15–23.

    CAS  Google Scholar 

  • Locke, J. M., Weil, E., and Coates, K. A. 2007. A newly documented species of Madracis (Scleractinia: Pocilloporidae) from the Caribbean. Proc. Biol. Soc. Wash. 120:14–226.

    Article  Google Scholar 

  • López-Victoria, M., and Zea, S. 2004. Storm-mediated coral colonization by an excavating Caribbean sponge. Clim. Res. 26:251–256.

    Article  Google Scholar 

  • López-Victoria, M., and Zea, S. 2005. Current trends of space occupation by encrusting excavating sponges on Colombian coral reefs. Mar. Ecol. 26:33–41.

    Article  Google Scholar 

  • López-Victoria, M., Zea, S., and Weil, E. 2003. New aspects on the biology of the excavating sponge complex Cliona caribbaea–C. langae–C. aprica. Boll. Mus. Ist. Biol. Univ. Genova 68:425–432.

    Google Scholar 

  • López-Victoria, M., Zea, S., and Weil, E. 2006. Competition for space between encrusting excavating Caribbean sponges and other coral reef organisms. Mar. Ecol. Prog. Ser. 312:113–121.

    Article  Google Scholar 

  • Miyamoto, T., Yamada, K., Ikeda, N., Komori, T., and Higuchi, R. 1994. Bioactive terpenoids from Octocorallia, I. Bioactive diterpenoids: litophynols A and B from the mucus of the soft coral Litophyton sp. J. Nat. Prod. 57:1212–1219.

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama, G. K., and Bakus, G. J. 1999. Release of allelochemicals by three tropical sponges (Demospongiae) and their toxic effects on coral substrate competitors. Mem. Qld. Mus. 44:411–417.

    Google Scholar 

  • Nishiyama, G. K., Bakus, G. J., and Kay, C. A. 2004. The effects of sponges and sponge metabolites on the settlement, growth and association of substratum competitors. Boll. Mus. Ist. Biol. Univ. Genova 68:499–508.

    Google Scholar 

  • Pang, R. K. 1973. The systematics of some Jamaican excavating sponges (Porifera). Postilla 161:1–75.

    Google Scholar 

  • Paul, V. J., and Puglisi, M. 2004. Chemical mediation of interactions among marine organisms. Nat. Prod. Rep. 21:189–209.

    Article  PubMed  CAS  Google Scholar 

  • Pawlik, J. R. 1993. Marine invertebrates chemical defenses. Chem. Rev. 93:1911–1922.

    Article  CAS  Google Scholar 

  • Pawlik, J. R. 1997. Fish predation on Caribbean reef sponges: An emerging perspective of chemical defenses. Proc. 8th Int. Coral. Reef. Sym. 2:1255–1258.

  • Pawlik, J. R., Steindler, L., Henkel, T. P., Beer, S., and Ilan, M. 2007. Chemical warfare on coral reefs: Sponge metabolites differentially affect coral symbiosis in situ. Limnol. Oceanogr. 52:907–911.

    CAS  Google Scholar 

  • Porter, J. W., and Targett, N. M. 1988. Allelochemical interactions between sponges and corals. Biol. Bull. 175:230–239.

    Article  Google Scholar 

  • Rützler, K. 2002. Impact of crustose clionid sponges on Caribbean reef corals. Acta Geol. Hisp. 37:61–72.

    Google Scholar 

  • Schmitt, T. M., Hay, M. E., and Lindquist, N. 1995. Constraints on chemically mediated coevolution: multiple functions for seaweed secondary metabolites. Ecology 76:107–123.

    Article  Google Scholar 

  • Schönberg, C. H. L., and Wilkinson, C. R. 2001. Induced colonization of corals by a clionid bioeroding sponge. Coral Reefs 20:69–76.

    Article  Google Scholar 

  • Siegel, S., C, and Jr, N. J. 1988. Non-parametric statistics for the behavioral sciences. 2nd edn.McGraw Hill, New York.

    Google Scholar 

  • Slattery, M., Hamann, M. T., Mcclintock, J. B., Perry, T. L., Puglisi, M. P., and Yoshida, W. Y. 1997. Ecological roles for water-borne metabolites from Antarctic soft corals. Mar. Ecol. Prog. Ser. 161:133–144.

    Article  CAS  Google Scholar 

  • Sokal, R. R., and Rohlf, F. J. 1981. Biometry: the principles and practice of statistics in biological research. 2nd edn.Freeman, San Francisco.

    Google Scholar 

  • Sullivan, B. W., and Faulkner, D. J. 1985. Chemical studies of the burrowing sponge Siphonodictyon coralliphagum, pp. 45–50, in K. Rützler (ed.). New perspectives in sponge biologySmithsonian Institution Press, Washington DC.

    Google Scholar 

  • Sullivan, B., Faulkner, D. J., and Webb, L. 1983. Siphonodictidine, a metabolite of the burrowing sponge Siphonodictyon sp. that inhibits coral growth. Science 221:1175–1176.

    Article  PubMed  CAS  Google Scholar 

  • Targett, N. M., and Schmahl, G. 1984. Chemical ecology and distribution of sponges in the Salt River Canyon, St. Croix, U.S.V.I. USA. NOAA Technical memorandum OAR NURP-1. Rockville, Maryland.

    Google Scholar 

  • Thacker, R. W., Beccerro, M. A., Lumbang, W. A., and Paul, V. J. 1998. Allelopathic interactions between sponges on a tropical reef. Ecology 79:1740–1750.

    Google Scholar 

  • Thompson, J. E., Barrow, K. D., and Faulkner, D. J. 1983. Localization of two brominated metabolites, aerothionin and homoaerothionin, in spherulous cells of the marine sponge Aplysina fistularis (=Verongia thiona). Acta Zool. 64:199–210.

    Article  Google Scholar 

  • Turon, X., Becerro, M. A., Uriz, M. J., and Llopis, J. 1996. Small-scale association measures in epibenthic communities as clues for allelochemical interactions. Oecologia 108:351–360.

    Google Scholar 

  • Turon, X., Becerro, M. A., and Uriz, M. J. 2000. Distribution of brominated compounds within the sponge Aplysina aerophoba: coupling of X-ray microanalysis with cryofixation techniques. Cell Tissue Res. 301:311–322.

    Article  PubMed  CAS  Google Scholar 

  • Uriz, M. J., Becerro, M. A., Tur, J. M., and Turon, X. 1996. Location of toxicity within the Mediterranean sponge Crambe crambe (Demospongiae: Poecilosclerida). Mar. Biol. 124:583–590.

    Article  CAS  Google Scholar 

  • Walker, R. P., Thompson, J. E., and Faulkner, D. J. 1985. Exudation of biologically-active metabolites in the sponge Aplysina fistularis. II. Chemical evidence. Mar. Biol. 88:27–32.

    Article  CAS  Google Scholar 

  • Williams, E. H., Bartels, P. J., and Bunkley-Williams, L. 1999. Predicted disappearance of coral-reef ramparts: a direct result of major ecological disturbances. Global Change Biol. 5:839–845.

    Article  Google Scholar 

  • Woodin, S. A. 1993. Allelochemical inhibition of recruitment in a sedimentary assemblage. J. Chem. Ecol. 19:517–530.

    Article  CAS  Google Scholar 

  • Woodin, S. A., and Jackson, J. B. C. 1979. Interphyletic competition among marine benthos. Amer. Zool. 19:1029–1043.

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Colombian Science Fund—COLCIENCIAS (grant 110109-13544 to C. Duque and S. Zea), Universidad Nacional de Colombia (DIB), the Xunta de Galicia from Spain (PGIDIT05RMA10302PR), and Instituto de Investigaciones Marinas y Costeras—INVEMAR. We are grateful to J. C. Márquez, CEINER, Diving Planet and Dolphin Dive Shop for their logistical support and help during field work. Two anonymous reviewers greatly helped to improve the manuscript. Contribution 1023 of INVEMAR and 321 of CECIMAR and the Graduate Program in Marine Biology of the Universidad Nacional de Colombia, Faculty of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Zea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaves-Fonnegra, A., Castellanos, L., Zea, S. et al. Clionapyrrolidine A—A Metabolite from the Encrusting and Excavating Sponge Cliona tenuis that Kills Coral Tissue upon Contact. J Chem Ecol 34, 1565–1574 (2008). https://doi.org/10.1007/s10886-008-9565-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-008-9565-5

Keywords

Navigation