Skip to main content

Chapter 11 Tocochromanols: Biological Function and Recent Advances to Engineer Plastidial Biochemistry for Enhanced Oil Seed Vitamin E Levels

  • Chapter
The Chloroplast

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 31))

Summary

Tocochromanols (tocopherols and tocotrienols) are important lipophilic antioxidants for animals and humans. Their biological activity is expressed as vitamin E activity. This review describes some recent findings about tocochromanol function and their biosynthesis in plants, summarizes the current state of the art of tocochromanol pathway engineering, and compares different strategies to engineer the vitamin E content in cyanobacteria and plants with a focus on oilseed as target tissues. Limitations in our understanding of the tocochromanol biosynthetic pathway are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ChlP:

chlorophyllase

GGH:

geranylgeranyl-reductase

GGDP:

geranylgeranyl-diphosphate

HGA:

homogentisic acid

HGGT:

homogentisate geranylgeranyltransferase

HPPD:

p-hydroxyphenyl pyruvate dioxygenase

HST:

homogentisate solanelsyltransferase

2M6PBQ:

2-methyl-6-phytylbenzoquinol

2M6SBQ:

2-methyl-6-solanesylbenzoquinol

PDP:

phytoldiphosphate

pHPPA:

p-hydroxyphenylpyruvate

SDP:

solanesyldiphosphate

TyrA:

bifunctional chorismate mutase/prephenate dehydrogenase

VTE1:

tocopherol cyclase

VTE2:

homogentisate phytyltransferase

VTE3:

2-methyl-6-phytylbenzoquinol methyltransferase

VTE4:

γ-tocopherol methyltransferase

WT:

wild type

References

  • IUPAC-IUP Joint Commission on Biochemical Nomenclature (1982) Nomenclature of tocopherols and related compounds. Recommendation 1981. Eur J Biochem 123: 473–475

    Google Scholar 

  • Birringer M, Kuhlow D, Pfluger PT, Landes N, Schulz TJ, Glaubitz M, Florian S, Pfeiffer A, Schuelke M, Brigelius-Flohé R and Ristow M (2007) Improved glucose metabolism in mice lacking a-tocopherol transfer protein. Eur J Nutr 46: 397–405

    Article  PubMed  CAS  Google Scholar 

  • Boronat A (2010) The methylerythritol 4-phosphate pathway: regulatory role in plastid isoprenoid biosynthesis. In: Rebeiz CA, Benning C, Daniel H, Hoober K, Lichtenthaler HK, Portis A, Tripathy B (eds) The Chloroplast: Basics and Applications, Chapter 8. Springer, The Netherlands, pp. 119–126

    Google Scholar 

  • Bramley PM, Elmadfa I, Kafatos A, Kelly FJ, Manios Y, Roxborough HE, Schuch W, Sheehy PJA and Wagner K-H (2000) Vitamin E. J Sci Food Agric 80: 913–938.

    Article  CAS  Google Scholar 

  • Brigelius-Flohé R and Davies KJA (2007) Is vitamin E an antioxidant, a regulator of signal transduction and gene expression, or a ’junk’ food? Comments on the two accompanying papers: “Molecular mechanism of a-tocopherol action” by A. Azzi and “Vitamin E, antioxidant and nothing more” by M. Traber and J. Atkinson. Free Radic Biol Med 43: 2–3

    Google Scholar 

  • Brigelius-Flohé R, Kelly FJ, Salonen JK, Neuzil J, Zingg JM and Azzi A (2002) The European perspective on vitamin E: current knowledge and future research. Am J Clin Nutr 76: 703–716.

    PubMed  Google Scholar 

  • Brown DJ and Goodman J (1998) A review of vitamins A, C, and E and their relationship to cardiovascular disease. Clin Excell Nurse Pract.2: 10–22

    PubMed  Google Scholar 

  • Buring JE and Hennekens CH (1997) Antioxidant vitamins and cardiovascular disease. Nutr Rev 55: S53–S60

    Article  PubMed  CAS  Google Scholar 

  • Burton GW, Traber MG and Acuff RV (1998) Human plasma and tissue α-tocopherol concentrations in response to supplementation with deuterated natural and synthetic vitamin E. Am J Clin Nutr 67: 669–684

    PubMed  CAS  Google Scholar 

  • Cahoon EB, Hall SH, Ripp KG, Ganzke TS, Hitz WD and Coughlan SJ (2003) Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nat Biotech 21: 1082–1087

    Article  CAS  Google Scholar 

  • Cahoon EB, Coughlan SJ, Cahoon RE and Butler KH (2008) Compositions and methods for altering tocotrienol content. US20080005812A1.

    Google Scholar 

  • Cavalier L, Ouahchi K, Kayden H, Donato S, Reutenaucer L, Mandel JL and Koenig M (1998) Ataxia with isolated vitamin E deficiency: heterogeneity of mutations and phenotypic variability in a large number of families. Am J Hum Genet 62: 301–310.

    Article  PubMed  CAS  Google Scholar 

  • Cheng Z, Sattler S, Maeda H, Sakuragi Y, Bryant DA and DellaPenna D (2003) Highly divergent methyltransferases catalyze a conserved reaction in tocopherol and plastoquinone synthesis in cyanobacteria and photosynthetic eukaryotes. Plant Cell 15: 2343–2356

    Article  PubMed  CAS  Google Scholar 

  • Chow CK (2001) Vitamin E. In: Rucker RB, Suttie JW, McCormick DB, Machlin LJ (eds) Handbook of Vitamins, 3rd ed. Marcel Dekker Inc., New York, pp. 165–197

    Google Scholar 

  • Clement M, Bourre JM (1997) Graded dietary levels of RRR-gamma-tocopherol induce a marked increase in the concentrations of alpha-tocopherol and gamma-tocopherol in nervous tissues, heart, liver, and muscle of vitamin-E-deficicient rats. Biochem Biophys Acta 1334: 173–178

    Article  PubMed  CAS  Google Scholar 

  • Collakova E and DellaPenna D (2001) Isolation and functional analysis of homogentisate phytyltransferase from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiol 127: 1113–1124

    Article  PubMed  CAS  Google Scholar 

  • Collakova E and DellaPenna D (2003a) Homogentisate phytyltransferase activity is limiting for tocopherol biosynthesis in Arabidopsis. Plant Phys 131: 632–642

    Article  CAS  Google Scholar 

  • Collakova E and DellaPenna D (2003b) The role of homogentisate phytyltransferase and other tocopherol pathway enzymes in regulation of tocopherol biosynthesis during abiotic stress. Plant Physiol 133: 930–940

    Article  PubMed  CAS  Google Scholar 

  • Cooney RW, France AA, Harwood PJ, Hatch-Pigott V, Custer LJ and Mordan LJ (1993) γ-Tocopherol detoxification of nitrogen dioxide: superiority to α-tocopherol. Proc Natl Acad Sci USA 90: 1771–1775

    Article  PubMed  CAS  Google Scholar 

  • d’Harlingue A and Camara B (1985) Plastid enzymes of terpenoid biosynthesis. J Biol Chem 260: 15200–15203

    PubMed  Google Scholar 

  • Edwards H (2001) Vitamin E: an important anti-oxidant in the skin? In: Edwards H (ed) Retinoids and Lipid-Soluble Vitamins in Clinical Practice, Vol 17. New York, NY, pp. 43–47

    Google Scholar 

  • Evans HM and Bishop KS (1922) On the existence of a hitherto unrecognized dietary factor essential for reproduction. Science 56: 650–651.

    Article  PubMed  CAS  Google Scholar 

  • Farrell P and Roberts R (1994) Vitamin E. In: Shils M, Olson JA, Shike M (eds) Modern Nutrition in Health and Disease, 8th ed. Lea & Febiger, Philadelphia, PA, pp. 326–341

    Google Scholar 

  • García-Moreno MJ, Vera-Ruiz EM, Fernández-Martínez JM, Velasco L and Pérez-Vich B (2006) Genetic and molecular analysis of high gama-tocopherol content in sunflower. Crop Sci 46: 2015–2021

    Article  Google Scholar 

  • Gilliland LU, Magallanes-Lundback M, Hemming C, Supplee A, Koornneef M, nie Bentsink L and DellaPenna D (2006) Genetic basis natural variation in seed vitamin E levels in Arabidopsis thaliana. PNAS 103: 18834–18841

    Article  PubMed  CAS  Google Scholar 

  • Gloor U, Wuersch J, Schwiter U and Wiss O (1966) Resorption, retention, distribution, and metabolism of dl-α-tocopheramine, dl-N-methyl-γ-tocopheramine, and γ-tocopherol in relation to dl-α-tocopherol in rats. Helv Chim Acta 49: 2303–1312

    Article  CAS  Google Scholar 

  • Graham S, Sielezny M, Marshall J, Priore R, Freudenheim J, Brasure J, Haughey B, Nasca P and Zdeb M (1992) Diet in the epidemiology of Postmenopausal Breast Cancer in the New York State Cohort. Am J Epidemiol 136: 3127–3137

    Google Scholar 

  • Graßes T, Grimm B, Koroleva O and Jahns P (2001) Loss of α-tocopherol in tobacco plants with decreased geranylgeranyl reductase activity does not modify photosynthesis in optimal growth conditions but increases sensitivity to high-light stress. Planta 213: 620–628

    Article  PubMed  Google Scholar 

  • Grusak MA and DellaPenna D (1999) Improving the nutrient composition of plants to enhance human nutrition and health. Ann Rev Plant Physiol Plant Mol Biol 50: 133–161

    Article  CAS  Google Scholar 

  • Hofius D and Sonnewald U (2003) Vitamin E biosynthesis: biochemistry meets cell biology. Trends Plant Sci 8: 6–8

    Article  PubMed  CAS  Google Scholar 

  • Hofius E, Hajirezaei MR, Geiger M, Tschiersch H, Melzer M and Sonnewald U (2004) RNAi-mediated tocopherol deficiency imparis photoassimilate export in transgenic potato plants. Plant Physiol 135: 1256–1268.

    Article  PubMed  CAS  Google Scholar 

  • Hosomi A, Arita M, Sato Y, Kiyose C, Ueda T, Igarashi O, Arai H and Inoue K (1997) Affinity for α-tocopherol transfer protein as a determinant of the biological activities of vitamin E analogs. FEBS Lett 409: 105–108

    Article  PubMed  CAS  Google Scholar 

  • Hunter SC and Cahoon EB (2007) Enhancing vitamin E in oliseeds: unraveling tocopherol and tocotrienol biosynthesis. Lipids 42: 97–108.

    Article  PubMed  CAS  Google Scholar 

  • Ischebeck T, Zbierzak AM, Kanwischer M and Doermann P (2006) A salvage pathway for phytol metabolism in Arabidopsis. J Biol Chem 281: 2470–2477.

    Article  PubMed  CAS  Google Scholar 

  • Jotham RA II, Frost E, Vidi PA, Kessler F and Staehelin LA (2007) Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell 18: 1693–1703

    Google Scholar 

  • Kanwischer M, Porfirova S, Bergmueller E and Doermann P (2005) Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. Plant Physiol 137: 713–723

    Article  PubMed  CAS  Google Scholar 

  • Karunanandaa B, Qi Q, Hao M, Baszis S, Jensen P, Wong Y-HH, Jiang J, Venkatramesh M, Gruys KJ, Moshiri F, Post-Beittenmiller D, Weiss JD and Valentin HE (2005) Metabolically engineered oilseed crops with enhanced seed tocopherol. Metab Eng 7: 384–400

    Article  PubMed  CAS  Google Scholar 

  • Keller P, Bouvier F, d’Harlingue A and Camara B (1998) Metabolic compartmentation of plastid prenyllipid biosynthesis. Evidence for the involvement of a multifunctional geranylgeranyl reductase. Eur J Biochem 251: 413–417

    Article  PubMed  CAS  Google Scholar 

  • Kim D, Filtz MR and Proteau PJ (2004) The methylerythritol phosphate pathway contributes to carotenoid but not phytol biosynthesis in Euglena gracilis. J Nat Prod 67: 1067–1069

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Raclaru M, Schuessler T, Gruber J, Sadre R, Luehs W, Zarhloul KM, Friedt W, Enders D, Frentzen M and Weier D (2005) Characterization of plant tocopherol cyclases and their overexpression in transgenic Brassica napus seeds. FEBS Lett 579: 1357–1364

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK (1969a) Localization and functional concentrations of lipoquinones in chloroplasts. In: Metzner H (ed) Progress in Photosynthesis Research, Vol. I. Laupp, Tübingen, Germany, pp. 304–314

    Google Scholar 

  • Lichtenthaler HK (1969b) Zur Synthese der lipophilen Plastidenchinone und Sekundär-carotinoide während der Chromoplastenentwicklung. Ber Dtsch Bot Ges 82: 483–497

    CAS  Google Scholar 

  • Lichtenthaler HK (1977) Regulation of prenylquinone biosynthesis in higher plants. In: Tevini M, Lichtenthaler HK (eds) Lipids and Lipid Polymers in Higher Plants. Springer-Verlag, Berlin, pp. 29–44

    Google Scholar 

  • Lichtenthaler HK (1999) The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50: 47–65

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK (2007) Biosynthesis, accumulation and emission of carotenoids, α-tocopherol, plastoquinone, and isoprene in leaves under high photosynthetic irradiance. Photosynth Res 92: 163–179

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK (2010) The DOXP/MEP pathway of chloroplast isoprenoid and pigment biosynthesis. In: Rebeiz CA, Benning C, Daniel H, Hoober K, Lichtenthaler HK, Portis A, Tripathy B (eds) The Chloroplast: Basics and Applications. Springer, Dordrecht, Netherlands, pp. 89–93

    Google Scholar 

  • Maeda H and DellaPenna D (2007) Tocopherol functions in photosynthetic organisms. Curr Opin Plant Biol 10: 260–265

    Article  PubMed  CAS  Google Scholar 

  • Matile P, Schellenbert M and Vicente F (1997) Localization of chlorophyllase in the chloroplast envelope. Planta 201: 96–99

    Article  CAS  Google Scholar 

  • Millis JR, Saucy GG, Maurina-Brunker J, McMullin TW and Hyatt JA (1999) Method of vitamin production. European patent application EP1095001A4

    Google Scholar 

  • Mino M, Tamai H, Yasuda K, Yamada C, Igarashi O, Hayashi M, Hirahara F, Katsui G and Kijima S (1988) Biopotencies of tocopherol analogs as determined by dialuric acid induced hemolysis in rats. Bitamin 62: 241–246

    CAS  Google Scholar 

  • Motohashi R, Ito T, Kobayashi M, Taji T, Nagata N, Asami T, Yoshida S, Yamaguchi-Shinozaki K and Shinozaki K (2003) Functional analysis of the 37 kDa inner envelope membrane polypeptide in chloroplast biogenesis using a Ds-tagged Arabidopsis pale-green mutant. Plant J. 34: 719–731

    Article  PubMed  CAS  Google Scholar 

  • Munné-Bosch S and Alegre L (2002) The function of tocopherols and tocotrienols in plants. Crit Rev Plant Sci 21: 31–57

    Google Scholar 

  • Nomenclature rules for vitamin E (972.31) (1990) Official methods of analysis. Assoc Off Anal Chem, 15th ed. 109: 8–15

    Google Scholar 

  • Norris S, Lincoln K, Abad M, Scott M, Eilers R, Hartsuyker K, Kindle K, Hirshberg J, Karunanandaa B, Moshiri F, Stein JC, Valentin HE and Venkatesh TV (2004) Tocopherol biosynthesis related genes and uses thereof. International patent application WO 2004013312 A2

    Google Scholar 

  • Porfirova S, Bergmüller E, Tropf S, Lemke R and Dörmann P (2002) Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis. PNAS 99: 12495–12500

    Article  PubMed  CAS  Google Scholar 

  • Provencher LM, Miao L, Sinha N and Lucas WJ (2001) Sucrose Defective Export1 encodes a novel protein implicated in chloroplast-to-nucleus signaling. Plant Cell 13: 1127–1141

    PubMed  CAS  Google Scholar 

  • Qi Q, Hao M, Ng WO, Slater S, Baszis S, Weiss DJ and Valentin HE (2005). Application of the Synechococcus nirA promoter to establish an inducible expression system for engineering the Synechocystis tocopherol pathway. Appl Environ Microbiol 70: 5678–5684

    Article  Google Scholar 

  • Qureshi N and Qureshi AA (1993) Tocotrienols: novel hypocholesterolemic agents with antioxidant properties. In: Packer L, Fuchs J (eds) Vitamin E in Health and Disease. Marcel Dekker, New York, pp. 247–267

    Google Scholar 

  • Qureshi AA, Bradlow BA, Brace L, Manganello J, Peterson DM, Pearce BC, Wright JK, Gapor A and Elson CE (1995) Response of hypercholesterolemic subjects to administration of tocotrienols. Lipids 30: 1171–1177

    Article  PubMed  CAS  Google Scholar 

  • Rimbach G, Minihane AM, Majewicz J, Fischer A, Pallauf J, Virgli F and Weinberg PD (2002) Regulation of cell signaling by vitamin E. Proc Nutr Soc 61: 415–425

    Article  PubMed  CAS  Google Scholar 

  • Rippert P, Scimemi C, Dubald M and Matringe M (2004) Engineering plant shikimate pathway for production of tocotrienol and improving herbicide resistance. Plant Physiol 134: 92–100

    Article  PubMed  CAS  Google Scholar 

  • Rise M, Cojocaru M, Gottlieb, EH and Goldschmidt EF (1989) Accumulation of α-tocopherol in senescing organs as related to chlorophyll degradation. Plant Physiol 89:1028–1030

    Article  PubMed  CAS  Google Scholar 

  • Rocheford TR, Wong JC, Egesel CO and Lambert RJ (2002) Enhancement of vitamin E levels in corn. Am Coll Nutr 21: 191S–198S

    CAS  Google Scholar 

  • Rohmer M (2003) Mevalonate-independent methylerythritol phosphate pathway for isoprenoid biosynthesis. Elucidation and distribution. Pure Appl Chem 75: 375–387

    Article  CAS  Google Scholar 

  • Roshchin V, Fragina A and Solov’ev V (1986) Polyprenols and tocopherols from needles of Picea abies (L.) Karst Rast Resur 22: 530–537

    CAS  Google Scholar 

  • Sadre R, Gruber J and Frentzen M (2006) Characterization of homogentisate prenyltransferases involved in plastoquinone-9 and tocochromanol biosynthesis. FEBS Lett 580: 5357–5362

    Article  PubMed  CAS  Google Scholar 

  • Sanders SK, Morgan JB, Wulf DM, Tatum JD, Williams SN and Smith GC (1997) Vitamin E supplementation of cattle and shelf-life of beef for the Japanese market. J Anim Sci 75: 2634–2640

    PubMed  CAS  Google Scholar 

  • Sattler SE, Cahoon EB, Coughlan SJ and DellaPenna D (2003) Characterization of tocopherol cyclases from higher plants and cyanobacteria. Evolutionary implications for tocopherol synthesis and function. Plant Phys 132: 2184–2195

    Article  CAS  Google Scholar 

  • Savidge B, Weiss JD, Wong Y-HH, Lassner MW, Mitsky TA, Shewmaker CK, Post-Beittenmiller D and Valentin HE (2002) Isolation and characterization of tocopherol prenyltransferase genes from Synechocystis PCC 6803 and Arabidopsis. Plant Physiol 129: 321–33

    Article  PubMed  CAS  Google Scholar 

  • Schledz M, Seidler A, Beyer P and Neuhaus G (2001) A novel phytyltransferase from Synechocystis sp. PCC 6803 involved in tocopherol biosynthesis. FEBS Lett 499: 15–20

    Article  PubMed  CAS  Google Scholar 

  • Schultz G, Soll J, Fiedler E and Schulze-Siebert D (1985) Synthesis of prenylquinones in chloroplasts. Plant Physiol. 64: 123–129

    Article  CAS  Google Scholar 

  • Schultz-Siebert D, Homeyer U, Soll, J and Schultz G (1987) Synthesis of plastoquinone-9, α-tocopherol and phylloquinone (vitamin K1) and its integration in chloroplast carbon metabolism of higher plants. In: Stumpf P, Mudd JB, Nes WD (eds) The Metabolism, Structure and Function of Plant Lipids. Plenum Press, New York, pp. 29–36

    Google Scholar 

  • Sheppard AJ, Pennington JA and Weihrauch JL (1993) Analysis and distribution of vitamin E in vegetable oils and foods. In: Packer L, Fuchs J (eds) Vitamin E in Health and Disease. Marcel Dekker, New York, pp. 9–31

    Google Scholar 

  • Shintani D and DellaPenna D (1998) Elevating the vitamin E content of plants through metabolic engineering. Science 282: 2098–2100

    Article  PubMed  CAS  Google Scholar 

  • Shpilyov AV, Zinchenko VV, Shestakov SV, Grimm B and Lokstein H (2005) Inactivation of the geranylgeranyl reductase (ChlP) gene in the cyanobacterium Synechocystis sp. PCC 6803. Biochim Biophys Acta 1706: 195–203

    Article  PubMed  CAS  Google Scholar 

  • Slover HT (1971) Tocopherols in foods and fats. Lipids 6: 291–296

    Article  CAS  Google Scholar 

  • Soll J and Schultz G (1980) 2-Methyl-6-phytylquinol and 2,3-dimethyl-5-phytylquinol as precursors of tocopherol synthesis in spinach chloroplasts. Phytochemistry 19: 215–218

    Article  CAS  Google Scholar 

  • Soll J, Kemmerling M and Schultz G (1980) Tocopherol and plastoquinone synthesis in spinach chloroplasts subfractions. Arch Biochem Biophys 204: 544–550

    Article  PubMed  CAS  Google Scholar 

  • Soll J, Schultz G, Rüdiger W and Benz J (1983) Hydrogenation of geranylgeraniol. Plant Physiol 71: 849–854

    Article  PubMed  CAS  Google Scholar 

  • Soll J, Schultz G, Joyard J, Douce R and Block MA (1985) Localization and synthesis of prenylquinones in isolated outer and inner envelop membranes from spinach chloroplasts. Arch Biochem Biophys 238: 290–299

    Article  PubMed  CAS  Google Scholar 

  • Stocker A, Ruttimann A and Woggon WD (1993) Identification of the tocopherol cyclase in the blue-green algae Anabaena variabilis Kutzing (cyanobacteria). Helv Chim Acta 76: 1729–1738

    Article  CAS  Google Scholar 

  • Subramaniam S, Slater S, Karberg K, Chen R, Valentin HE and Wong Y-HH (2001) Nucleic acid sequences to proteins involved in tocopherol synthesis. International patent application WO 01/79472

    Google Scholar 

  • Tangney CC (1997) Vitamin E and cardiovascular disease. Nutr Today 32: 13–22

    Article  Google Scholar 

  • Theriault A, Chao JT, Wang Q, Gapor A and Adeli K (1999) Tocotrienol: a review of its therapeutic potential. Clin Biochem 32: 309–319

    Article  PubMed  CAS  Google Scholar 

  • Traber MG and Arai H (1999) Molecular mechanisms of vitamin E transport. Annu Rev Nutr 19: 343–355

    Article  PubMed  CAS  Google Scholar 

  • Traber MG and Sies H (1996) Vitamin E and humans: Demand and delivery. Ann Rev Nutr 16: 321–347

    Article  CAS  Google Scholar 

  • Triantafillidis JK, Kottaras G, Sgourous S, Cheracakis P, Driva G, Konstantellou E, Parasi A, Choremi H and Samouilidou E (1998) A beta-lipoproteinemia: clinical and laboratory features therapeutic manipulations, and follow-up study of three members of a Greek family. J Clin Gagroenterol 26: 207–211

    Article  CAS  Google Scholar 

  • Tsegaye Y, Shintani DK and DellaPenna D (2002) Overexpression of the enzyme p-hydroxyphenylpyruvate dioxygenase in Arabidopsis and its relation to tocopherol biosynthesis. Plant Physiol Biochem 40: 913–920

    Article  CAS  Google Scholar 

  • Ujiie A, Yamada T, Fujimoto K, Endo Y and Kitamura K (2005) Identification of soybean varieties with high α-tocopherol content breeding. Science 55: 123–125

    CAS  Google Scholar 

  • Valentin HE and Qi Q (2005) Biotechnological production and application of vitamin E: current state and prospects. Appl Microbiol Biotechnol 68: 436–444

    Article  PubMed  CAS  Google Scholar 

  • Valentin HE, Lincoln K, Moshiri F, Jensen PK, Qi Q, Venkatesh TV, Karunanandaa B, Baszis SR, Norris SR, Savidge B, Gruys KJ, Last RL (2005). The Arabidopsis vte5-1 mutant reveals a critical role for phytol kinase in seed tocopherol biosynthesis. Plant Cell 18:212–224

    PubMed  Google Scholar 

  • Valentin HE, Lincoln K, Moshiri F, Jensen PK, Qi Q, Venkatesh TV, Karunanandaa B, Baszis S, Norris SR, Savidge B, Gruys KJ and Last RL (2006) The Arabidopsis vitamin E pathway gene 5-1 mutant reveals a critical role for phytol kinase in seed tocopherol biosynthesis. Plant Cell 18: 212–224

    Article  PubMed  CAS  Google Scholar 

  • Van Eenennaam A, Valentin HE, Karunanandaa B, Hao M, Aasen E and Levering C (2003a) Methyltransferase genes and uses of thereof. WO 0/3016482

    Google Scholar 

  • Van Eenennaam AL, Lincoln K, Durrett TP, Valentin HE, Shewmaker CK, Thorne GM, Jiang J, Baszis SR, Levering CK, Aasen ED, Hao M, Stein JC, Norris SR and Last RL (2003b) Engineering vitamin E content: from Arabidopsis mutant to soy oil. Plant Cell 15: 3007–3019

    Article  PubMed  Google Scholar 

  • Van Eenennaam AL, Li G, Venkatramesh M, Levering C, Gong X, Jamieson AC, Brebar EJ, Shewmaker CK and Casey C (2004) Elevation of seed α-tocopherol levels using plant-based transcription factors targeted to an endogenous locus. Metab Eng 6: 101–108

    Article  PubMed  Google Scholar 

  • Venkatesh TV, Karunanandaa B, Free DL, Rottnek JM, Baszis SR and Valentin HE (2006) Identification and characterization of an Arabidopsis homogentisate phytyltransferase paralog. Planta 223: 1134–1144

    Article  PubMed  CAS  Google Scholar 

  • Vidi PA, Kanwischer M, Baginsky S, Austin JR, Csucs G, Dörmann P, Kessler F and Bréhélin C (2006) Tocopherol cyclase (VTE1) localization and vitamin E accumulation in chloroplast plastoglobule lipoprotein particles. J Biol Chem 281: 1125–11234

    Article  Google Scholar 

  • Waters DD, Alderman EL, Hsia J, Howard BV, Cobb FR, Rogers WJ, Ouyang P, Thompson P, Tardif JC, Higginson L, Bittner V, Steffes M, Gordon DJ, Proschan M, Younes N and Verter JI (2002) Effects of hormone replacement therapy and antioxidant vitamin supplements on coronary atherosclerosis in postmenopausal women: a randomized controlled trial. J Am Med Assoc 288: 2432–2440

    Google Scholar 

  • Weiser H, Vecchi M and Schlachter M (1986) Stereoisomers of α-tocopherol equivalents of all-rac-, 2-ambo- and RRR- α-tocopherol evaluated by simultaneous determination of resorption-gestation, myopathy and liver storage capacity in rats. Int J Vit Nutr Res 56: 45–56

    CAS  Google Scholar 

  • Weiser H, Riss G, Kormann AW (1996) Biodiscrimination of the eight alpha-tocopherol stereoisomers results in preferential accumulation of the foru 2R forms in tissues and plasma of rats. J Nutr 126: 2539–2549

    PubMed  CAS  Google Scholar 

  • Wu K, Willett WC, Chan JM, Fuchs CS, Colditz GA, Rimm EB and Giovannucci EL (2002) A prospective study on supplemental vitamin E intake and risk of colon cancer in women and men. Cancer Epidemiol Biomark Prev 11: 1298–1304

    CAS  Google Scholar 

  • Yusuf S, Dagenais G, Pogue J, Bosch J and Sleight P (2000) Vitamin E supplementation and cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 342: 154–160

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry E. Valentin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Valentin, H.E., Qungang, Q. (2010). Chapter 11 Tocochromanols: Biological Function and Recent Advances to Engineer Plastidial Biochemistry for Enhanced Oil Seed Vitamin E Levels. In: Rebeiz, C.A., et al. The Chloroplast. Advances in Photosynthesis and Respiration, vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8531-3_11

Download citation

Publish with us

Policies and ethics