Skip to main content

Multiscale Modeling: A Review

  • Chapter
  • First Online:
Practical Aspects of Computational Chemistry

Abstract

This review of multiscale modeling covers a brief history of various multiscale methodologies related to solid materials and the associated experimental influences, the various influence of multiscale modeling on different disciplines, and some examples of multiscale modeling in the design of structural components. Although computational multiscale modeling methodologies have been developed in the late twentieth century, the fundamental notions of multiscale modeling have been around since da Vinci studied different sizes of ropes. The recent rapid growth in multiscale modeling is the result of the confluence of parallel computing power, experimental capabilities to characterize structure-property relations down to the atomic level, and theories that admit multiple length scales. The ubiquitous research that focus on multiscale modeling has broached different disciplines (solid mechanics, fluid mechanics, materials science, physics, mathematics, biological, and chemistry), different regions of the world (most continents), and different length scales (from atoms to autos).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.E. Panin Foundations of physical mesomechanics. Phys. Mesomech. 1, 5–20 (1998)

    Google Scholar 

  2. S. Yip Handbook of Materials Modeling. Springer-Verlag, The Netherlands (2005)

    Google Scholar 

  3. E.B. Tadmor et al Hierarchial modeling in the mechanics of materials. Int. J. Solids Struct. 37, 379–389 (2000)

    Article  Google Scholar 

  4. H. Helmholtz, On the Conservation of Force (Physical Society of Berlin, Berlin, 1847)

    Google Scholar 

  5. J.C. Maxwell On the dynamical evidence of molecular constitution of matter. J. Chem. Soc. London 28, 493–508 (1875)

    Google Scholar 

  6. L. Onsager Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405–426 (1931)

    Article  CAS  Google Scholar 

  7. L. Onsager Reciprocal relations in irreversible processes. II. Phys. Rev. 38, 2265–2279 (1931)

    Article  CAS  Google Scholar 

  8. C. Eckart The thermodynamics of irreversible processes. I. The simple fluid. Phys. Rev. 58, 267–269 (1940)

    Article  CAS  Google Scholar 

  9. C. Eckart The thermodynamics of irreversible processes. IV. The theory of elasticity and anelasticity. Phys. Rev. 73, 373–382 (1948)

    Article  CAS  Google Scholar 

  10. E. Kroner, How the internal state of a physically deformed body is to be described in a continuum theory, Proceedings of the 4th International Congress on Rheology, (1960).

    Google Scholar 

  11. B.D. Coleman, M.E. Gurtin Thermodynamics with internal state variables. J. Chem. Phys. 47, 597–613

    Article  CAS  Google Scholar 

  12. J.R. Rice Constitutive equations in plasticity. J. Mech. Phys. Solids 9, 433 (1971)

    Article  Google Scholar 

  13. J. Kestin, J. R. Rice Paradoxes in the Application of Thermodynamics to Strained Solids. A Critical Review of Thermodynamics, ed by E.B. Stuart (Mono Book Corp., Baltimore, 1970), p. 275–280

    Google Scholar 

  14. R. Talreja Continuum modeling of damage in ceramic matrix composites. Mech. Matls. 12, 165–180 (1991)

    Article  Google Scholar 

  15. R. Talreja Further developments in continuum damage modeling of composites aided by micromechanics. ASME App. Mech. Div. 150, 103 (1993)

    Google Scholar 

  16. R. Talreja, A damage mechanics based approach to durability assessment of composite materials, Composites and Finely Graded Materials, in ASME, Materials Division, vol. 80 ed. by T. Srinivasan et al. pp. 151–156 (1997)

    Google Scholar 

  17. O.A. Hasan, M.C. Boyce Constitutive model for the nonlinear viscoelastic viscoplastic behavior of glassy polymers. Polymer Eng. Sci. 35, 331–334 (1995)

    Article  CAS  Google Scholar 

  18. H.D. Espinosa et al A 3-D finite deformation anisotropic visco-plasticity model for fiber composites. J. Compos. Mater. 35(5):369–410 (2001)

    Article  CAS  Google Scholar 

  19. B.A. Gailly, H.D. Espinosa Modeling of failure mode transition in ballistic penetration with a continuum model describing microcracking and flow of pulverized media. Int. J. Num. Meth. Eng. 54(3):365–398 (2002)

    Article  Google Scholar 

  20. U.F. Kocks The relation between polycrystal deformation and single crystal deformation. Metal. Trans. 1(5):1121 (1970)

    Google Scholar 

  21. P.S. Follansbee Metallurgical applications of shock-wave and high-strain rate phenomena. DekkerL. E. Murr et al, NY, pp 451–479 (1986)

    Google Scholar 

  22. P.S. Follansbee, U.F. Kocks A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable. Acta Mater. 36(1): 81–93 (1988)

    Article  Google Scholar 

  23. A.D. Freed, Thermoviscoplastic model with application to copper, NASA Technical Paper, NASA Lewis Research Center, 2845, 1–17 (1988)

    Google Scholar 

  24. D.J. Bammann An internal variable model of viscoplasticity. Intl. J. Eng. Sci. 22, 1041–1053 (1984)

    Article  Google Scholar 

  25. D.J. Bammann Modeling the temperature and strain rate dependent large deformation of metals. Appl. Mech. Rev. 43, S312–319 (1990)

    Article  Google Scholar 

  26. J.L. Chaboche Viscoplastic constitutive equations for the description of cyclic and anisotropic behavior of metals. Bull. de l’ AcadSe’rie Sc. et Techn. 25(1):33 (1977)

    Google Scholar 

  27. J.D. Eshelby The determination of the elastic field of an ellipsoidal inclusion. Proc. R. Soc. Lond. A. Mat. Phys. Sci. 241, 376–396 (1957)

    Article  Google Scholar 

  28. J.D. Eshelby The elastic field outside an ellipsoidal inclusion. Proc. Royal Soc. Lond. A Mathl. Phys. Sci. 252(1271):561–569 (1959)

    Article  Google Scholar 

  29. R. Hill Continuum micromechanics of elastoplastic polycrystals. J. Mech. Phys. Solids 13, 89–101 (1965)

    Article  CAS  Google Scholar 

  30. T. Mura, K. Tanaka Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta. Metal. 21, 571–574 (1973)

    Article  Google Scholar 

  31. T. Mura, Micromechanics of Defects in Solids (Martinus Nijhoff Publishers, Dordrecht 1982), ISBN 90-247-3343(HB)

    Google Scholar 

  32. B. Budiansky Micromechanics: Advances and Trends in Structural and Solid Mechanics. Pergamon Press, Oxford, pp 3–12 (1983)

    Google Scholar 

  33. S. Nemat-Nasser, M. Lori Micromechanics: Overall properties of heterogeneous materials. J. App. Mech 63, 561 (1996)

    Article  Google Scholar 

  34. A.M. Gokhale, S. Yang Application of image processing for simulation of mechanical response of multi-length scale microstructures of engineering alloys. Metal. Mat. Trans. A: Phys. Metall. Mat. Sci. 30, 2369–2381 (1999)

    Article  Google Scholar 

  35. S. Hao et al A hierarchical multi-physics model for design of high toughness steels. J. Comput.-Aided Mat. Des. 10, 99–142 (2003)

    Article  CAS  Google Scholar 

  36. Z.P. Bazant, E.P. Chen Scaling of structural failure. ASME Appl. Mech. Rev. 50, 593–627 (1997)

    Article  Google Scholar 

  37. P. W. Bridgman, The compressibility of thirty metals as a function of pressure and temperature, Proceedings of the American Academy of Arts and Science, vol. 58 (1923), pp. 164–242.

    Google Scholar 

  38. R. Phillips Crystals, Defects and Microstruct.: Model. Across Scales. University Cambridge Press, Cambridge (2001)

    Book  Google Scholar 

  39. W.K. Liu et al Introduction to computational nanomechanics and materials. Nano Mechanics and Materials:-Theory, Multiscale Methods and Apllication. John Wiley and Sons, NewYork (2006)

    Chapter  Google Scholar 

  40. J. Fish Bridging the scales in nanoengineering and science. J. Nanopart. Rsrch. 8, 577–594 (2006)

    Article  Google Scholar 

  41. J.J. De Pablo, W.A. Curtin Multiscale modeling in advanced materials research: Challenges, novel methods, and emerging applications. MRS Bulletin 32, 905–909 (2007)

    Google Scholar 

  42. W. Hackbush Multi-Grid Methods and Applications. Springer, Berlin (1985)

    Google Scholar 

  43. S. Kohlhoff, S. Schmauder Atomistic Simulation of Materials: Eds. Vitek V, Srolovitz DJ Plenum Press, New York, pp 411–418 (1989)

    Google Scholar 

  44. S. Kohlhoff et al Crack propagation in bcc crystals studied with a combined finite-element and atomistic model. Phil. Mag. 64, 851–878 (1991)

    Article  Google Scholar 

  45. E.B. Tadmo et al Quasicontinuum analysis of defects in solids. Phil. Mag. A: Phys. Cond. Matt. Defects Mech. Prop. 73, 1529 (1996)

    Google Scholar 

  46. M.S. Daw, M.I. Baskes Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443–6453 (1984)

    Article  CAS  Google Scholar 

  47. M.S. Daw et al Embedded atom method–a review of theory and applications. Matls. Sci. Rep. A Rev. J. 9, 251–310 (1993)

    CAS  Google Scholar 

  48. M. Ortiz et al A finite element method for localized failure analysis. Comp. Methods Appl. Mech. Eng. 61, 189–214 (1987)

    Article  Google Scholar 

  49. V.B. Shenoy et al Quasicontinuum models of interfacial structure and deformation. Phy. Rev. Lett. 80, 742–745 (1998)

    Article  CAS  Google Scholar 

  50. R. Miller et al Quasicontinuum simulation of fracture at the atomic scale. Model. Sim. Mat. Sci. Eng. 6, 607–638 (1998)

    Article  CAS  Google Scholar 

  51. R. Miller et al Quasicontinuum models of fracture and plasticity. Eng. Fract. Mech. 61, 427–444 (1998)

    Article  Google Scholar 

  52. V.B. Shenoy et al An adaptive finite element approach to atomic-scale mechanics–the quasicontinuum method. J. Mech. Phys. Solids 47, 611–642 (1999)

    Article  Google Scholar 

  53. F.F. Abraham et al Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture. Europhys. Lett. 44, 783–787 (1998)

    Article  CAS  Google Scholar 

  54. S.J. Plimpton Lammps code. J. Comp. Phys. 117, 1–19 (1995)

    Article  CAS  Google Scholar 

  55. R.E. Rudd, J.Q. Broughton Coarse-grained molecular dynamics and the atomic limit of finite elements. Phys. Rev. B 58, R5893–R5896 (1998)

    Article  CAS  Google Scholar 

  56. J.Q. Broughton et al Concurrent coupling of length scales: Methodology and application. Phys. Rev. B 60, 2391–2403 (1999)

    Article  CAS  Google Scholar 

  57. E. Lidorikis et al Coupling length scales for multiscale atomistics-continuum simulations: Atomistically induced stress distributions in Si/Si 3 N 4 nanopixels. Phys. Rev. Lett. 87, 086104 (2001)

    Article  CAS  Google Scholar 

  58. Z.P. Bazant Can multiscale-multiphysics methods predict softening damage and structural failure? Mech. Am. Acad. Mech. 36, 5–12 (2007)

    Google Scholar 

  59. L.E. Shilkrot et al Coupled atomistic and discrete dislocation plasticity. J. Mech. Phy. Solids 50, 2085–2106 (2002)

    Article  CAS  Google Scholar 

  60. L.E. Shilkrot et al Multiscale plasticity modeling: Coupled atomistics and discrete dislocation mechanics. J. Mech. Phy. Solids 52, 755–787 (2004)

    Article  Google Scholar 

  61. B. Shiari et al Coupled atomistic/discrete dislocation Simulations of Nanoindentation at Finite Temperature. J. Eng. Mat. Tech. Trans. ASME 127, 358–368 (2005)

    Article  Google Scholar 

  62. M.P. Dewald, W.A. Curtin Multiscale modelling of dislocation/grain boundary interactions. II. Screw dislocations impinging on tilt boundaries in Al. Phil. Mag. 87, 4615–4641 (2007)

    Article  CAS  Google Scholar 

  63. H.M. Zbib, D.D.L. Rubia A multiscale model of plasticity. Int. J. Plast. 18, 1133–1163 (2002)

    Article  Google Scholar 

  64. M.F. Horstemeyer et al Design of experiments for constitutive model selection: Application to polycrystals elastoviscoplasticity. Modelling Simul. Mater. Sci. Eng. 7, 253–273 (1999)

    Article  CAS  Google Scholar 

  65. P.R. Dawson On modeling of mechanical property changes during flat rolling of aluminum. Int. J. Solids Struct. 23, 947–968 (1987)

    Article  Google Scholar 

  66. D. Peirce, R.J. Asaro, Needleman A An analysis of nonuniform and localized deformation in ductile single crystals. Acta Metall. 30, 1087–1119 (1982)

    Article  CAS  Google Scholar 

  67. M.M. Rashid, S. Nemat-Nasser Modeling very large plastic flows at very large strain rates for large-scale computation. Comp. Meth. App. Mech. Eng. 94, 201–228 (1990)

    Article  Google Scholar 

  68. U.F. Kocks et al Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties. Cambridge University Press, NewYork (1998)

    Google Scholar 

  69. M.S. Shephard et al Automatic construction of 3-D models in multiple scale analysis. Comp. Mech. 17, 196–207 (1995)

    Article  Google Scholar 

  70. S.P. Xiao, T.A. Belytschko bridging domain method for coupling continua with molecular dynamics. Comp. Meth. Appl. Mech. Eng. 193, 1645–1669 (2004)

    Article  Google Scholar 

  71. G.J. Wagner, W.K. Liu Coupling of atomistic and continuum simulations using a bridging scale decomposition. J. Comp. Phy. 190, 249–274 (2003)

    Article  Google Scholar 

  72. E.G. Karpov et al A Green’s function approach to deriving non-reflecting boundary conditions in molecular dynamics simulations. Int. J. Num. Meth. Eng 62, 1250–1262 (2005)

    Article  Google Scholar 

  73. S.A. Adelman, J.D. Doll Generalized Langevin equation approach for atom/solid-surface scattering: General formulation for classical scattering off harmonic solids. J. Chem. Phys. 64, 2375–2388 (1976)

    Article  CAS  Google Scholar 

  74. W. Cai et al Minimizing boundary reflections in coupled-domain simulations. Rev. Lett. 85, 3213–3216 (2000)

    Article  CAS  Google Scholar 

  75. W.E. Huang, Z.Y. Huang A dynamic atomistic-continuum method for the simulation of crystalline materials. J. Comp. Phys. 182, 234–261 (2002)

    Article  CAS  Google Scholar 

  76. G. J. Wagner et al., Comp Meth. in Appl. Mech. Eng. 193, 1579-1601 (2005)

    Google Scholar 

  77. H.S. Park et al The bridging scale for two-dimensional atomistic/continuum coupling. Phil. Mag. 85, 79–113 (2005)

    Article  CAS  Google Scholar 

  78. M.F. Horstemeyer et al A multiscale analysis of fixed-end simple shear using molecular dynamics, crystal plasticity, and a macroscopic internal state variable theory. Modell. Sim. Mat. Sci. Eng. 11, 265–286 (2003)

    Article  CAS  Google Scholar 

  79. J. Fish, W. Chen Discrete-to-continuum bridging based on multigrid principles. Comp. Meth. App. Mech. Eng. 193, 1693–1711 (2004)

    Article  Google Scholar 

  80. J. Fish, Z. Multiscale enrichment based on partition of unity. Int. J. Num. Meth. Eng. 62, 1341–1359 (2005)

    Article  Google Scholar 

  81. P.A. Klein, J.A. Zimmerman Coupled atomistic–continuum simulations using arbitrary overlapping domains. J. Comp. Phy. 213, 86–116 (2006)

    Article  Google Scholar 

  82. C. Oskay, J. Fatigue life prediction using 2-scale temporal asymptotic homogenization. Int. J. Num. Meth. Eng. 61, 329–359 (2004)

    Article  Google Scholar 

  83. J. Fish, C. A nonlocal multiscale fatigue model. Mech. Adv. Mat. Struct. 12 6, 485–500 (2005)

    Article  CAS  Google Scholar 

  84. J. Fish, Q. Computational mechanics of fatigue and life predictions for composite materials and structures. Comp. Meth. App. Mech. Eng. 191, 4827–4849 (2002)

    Article  Google Scholar 

  85. E. Gal et al A multiscale design system for fatigue life prediction. Int. J. Multiscale Comp. Eng. 5, 435–446 (2007)

    Article  Google Scholar 

  86. G.B. Olson Systems design of hierarchically structured materials: Advanced steels. J. Comput.-Aided Mat. Des. 4, 143–156 (1998)

    Article  CAS  Google Scholar 

  87. G.B. Olson New age of design. J. Comput.-Aided Mat. Des. 7, 143–144 (2000)

    Article  Google Scholar 

  88. E. Orowan Zur kristallplastizität. I. Z. Phys. 89, 605–659 (1934)

    Article  Google Scholar 

  89. G. I. Taylor, The Mechanism of Plastic Deformation of Crystals. Part I. Theoretical, Proceedings of the Royal Society of London Series A145 vol. 855 (1934), pp. 362–387.

    Google Scholar 

  90. M.Z. Polyani Űber eine Art Gilterstorung die einen Kristall plastisch machen konnte. Z. Phys. 89, 660–664 (1934)

    Article  Google Scholar 

  91. F. Nabarro Mathematical theory of stationary dislocations. Adv. Phy. 1, 269 (1952)

    Article  Google Scholar 

  92. J.M. Burgers Some considerations on the fields of stress connected with dislocations in a regular crystal lattice. IProc. Kon. Ned. Akad. Wetenschap. 42, 293 (1939)

    Google Scholar 

  93. E. O. Hall, The Deformation and Ageing of Mild Steel: III Discussion of Results, Proceedings of the Physical Society B, vol. 64 (1951), pp. 747–753.

    Google Scholar 

  94. N.J. Petch The cleavage strength of polycrystals. J. Iron Steel Ins. 174, 25 (1953)

    CAS  Google Scholar 

  95. M. Ashby, in Strengthening Methods in Crystals, ed by A. Kelly, R.B. Nicholson (Applied Science Publishers, London 1971), p. 137

    Google Scholar 

  96. F.C. Frank The influence of dislocations on crystal growth. Discuss. Faraday Soc. 5, 48 (1949)

    Article  Google Scholar 

  97. F.C. Frank Crystal dislocations. Elementary concepts and definitions. Phil. Mag. 42, 809 (1951)

    CAS  Google Scholar 

  98. W.T. Read Dislocations in Crystals. McGraw-Hill, New York, NY (1953)

    Google Scholar 

  99. D.A. Hughes et al Near surface microstructures developing under large sliding loads. J. Matls. Eng. Perf. 3, 459–475 (1994)

    Article  CAS  Google Scholar 

  100. D.A. Hughes, W.D. Nix The absence of steady-state flow during large strain plastic deformation of some Fcc metals at low and intermediate temperatures. Metall Matl. Trans. A 19, 3013–3024 (1988)

    Article  Google Scholar 

  101. N.A. Fleck et al Strain gradient plasticity: Theory and experiment. Acta Mater. 42, 475–487 (1994)

    Article  CAS  Google Scholar 

  102. J.S. Stolken, A.G. Evans A microbend test method for measuring the plasticity length scale. Acta Mater. 46, 5109 (1998)

    Article  CAS  Google Scholar 

  103. W.D. Nix Mechanical properties of thin films. Metall. Trans. 20A:2217–2245 (1989)

    CAS  Google Scholar 

  104. M.S. De Guzman et al The role of indentation depth on the measured hardness of materials. Matls. Rsrch. Sym. Pro. 308, 613–618 (1993)

    Google Scholar 

  105. N.A. Stelmashenko et al Microindentations on W and Mo oriented single crystals: an STM study. Acta. Metall. Mate. 41, 2855–5865 (1993)

    Article  CAS  Google Scholar 

  106. Q. Ma, D.R. Clarke Size dependent hardness of silver single crystals. J. Mater. Res. 10, 853–863 (1995)

    Article  CAS  Google Scholar 

  107. W.J. Poole et al Micro-Hardness of annealed and work-hardened copper polycrystals. Scripta Metall. Mater 34, 559–564 (1996)

    CAS  Google Scholar 

  108. K.W. McElhaney et al Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. J. Mater. Res. 13, 1300–1306 (1998)

    Article  CAS  Google Scholar 

  109. D.J. Lloyd Particle reinforced aluminium and magnesium matrix composites. Int. Mater. Rev. 39, 1–23 (1994)

    CAS  Google Scholar 

  110. G. Elssner et al The influence of interface impurities on fracture energy of UHV diffusion bonded metal-ceramic bicrystals. Scripta Metall. Mater. 31, 1037–1042 (1994)

    Article  CAS  Google Scholar 

  111. A. Griffith The Phenomena of Rupture and Flow in Solids. Philos. Trans. Roy. Soc. of Lond. A 221, 163-–198 (1921)

    Article  Google Scholar 

  112. W.C. Roberts-Austen On certain mechanical properties of metals considered in relation to the periodic law. Philos. Trans. Roy. Soc. Lond. A 179, 339–349 (1888)

    Article  Google Scholar 

  113. F.A. McClintock A criterion for ductile fracture by the growth of holes. J. App. Mech. 35, 363–371 (1968)

    Google Scholar 

  114. A. Gangalee, J. On the fracture of silicon particles inaluminum–silicon alloys. Trans. Metall. Soc. AIME 239, 269–272 (1967)

    Google Scholar 

  115. M.F. Horstemeyer, S. Ramaswamy On factors affecting localization and void growth in ductile metals: a parametric study. Int. J. Damage Mech. 9, 6–28 (2000)

    Google Scholar 

  116. M.F. Horstemeyer et al Micromechanical finite element calculations of temperature and void configuration effects on void growth and coalescence. Int J. Plasticity 16, 979–1015 (2000)

    Article  CAS  Google Scholar 

  117. G.P. Potirniche et al A molecular dynamics study of void growth and coalescence in single crystal nickel. Int. J. Plasticity 22, 257–278 (2006)

    Article  CAS  Google Scholar 

  118. G.P. Potirniche et al Lattice orientation effects on void growth and coalescence in fcc single crystals. Int. J. Plasticity 22, 921–942 (2006)

    Article  CAS  Google Scholar 

  119. G.P. Potirniche, M.F. Horstemeyer Lattice orientation effects on void growth and coalescence in fcc single crystals. Phil. Mag. Lett. 86, 185–193 (2006)

    Article  CAS  Google Scholar 

  120. G.P. Potirniche et al Atomistic modelling of fatigue crack growth and dislocation structuring in FCC crystals. Proc. Roy. Soc. London 462, 3707–3731 (2006)

    Article  CAS  Google Scholar 

  121. M.K. Jones et al A multiscale analysis of void coalescence in nickel. J. Eng. Matls. Tech. 129, 94–104 (2007)

    Article  CAS  Google Scholar 

  122. H. Neuber Theory of notch stresses. Berlin, Springer (1958)

    Google Scholar 

  123. R.E. Peterson In: Sines G, Waisman JL (eds) Metal Fatigue. McGraw-Hill, New York, NY, pp 293–306 (1959)

    Google Scholar 

  124. G. Harkegard Application of the finite element method to cyclic loading of elastic-plastic structures containing effects. Int. J. Fract. 9, 322 (1973)

    Article  Google Scholar 

  125. R.A. Smith, K.J. Miller Fatigue cracks at notches. Int. J. Mech. Sci. 19, 11–22 (1977)

    Article  Google Scholar 

  126. R.A. Smith et al Experimental and theoretical fatigue-crack propagation lives of variously notched plates. J. Strain Ana. Eng. Dsgn. 9, 61–66 (1974)

    Article  Google Scholar 

  127. J. Lankford, F.N. Kusenberger Initiation of fatigue cracks in 4,340 steel. Met. Trans. 4, 553–559 (1973)

    Article  CAS  Google Scholar 

  128. J. Lankford Inclusion-matrix debonding and fatigue crack intiation in low alloy steel. Met. Trans. 4, 155–157 (1976)

    Google Scholar 

  129. J. Lankford et al The influence of crack tip plasticity in the growth of small fatigue cracks. Metall. Trans. A 4, 1459–1588 (1984)

    Google Scholar 

  130. M.J. Couper et al Casting defects and the fatigue behaviour of an aluminium casting alloy. Fatigue Fract. Eng. Mat. Struct. 13, 213–227 (1990)

    Article  Google Scholar 

  131. J.F. Major Porosity control and the fatigue behavior in A356–T61 aluminum alloy. AFS Trans. 102, 901–906 (1994)

    Google Scholar 

  132. D.L. Davidson et al The effects on fracture toughness of ductile-phase composition and morphology in Nb-Cr-Ti and Nb-Siin situ composites. Metall. Matls. Trans. A: Physl. Metall. Matls. Sci. 27, 2540–2556 (1996)

    Article  Google Scholar 

  133. P.J. Laz, B.M. Hillberry Fatigue life prediction from inclusion initiated cracks. Int. J. Fatigue 20, 263–270 (1998)

    Article  CAS  Google Scholar 

  134. K.A. Gall et al The debonding and fracture of Si particles during the fatigue of a cast Al-Si alloy. Met. Trans A 30, 3079–3088 (1999)

    Article  Google Scholar 

  135. K.A. Gall et al High cycle fatigue mechanisms in a cast AM60B magnesium alloy. Fatigue Frac. Eng. Mat. Struct. 23, 159–172 (2000)

    Article  CAS  Google Scholar 

  136. K.A. Gall et al Finite element analysis of the stress distributions near damaged Si particle clusters in cast Al–Si alloys. Mech. Mater. 32, 277–301 (2000)

    Article  Google Scholar 

  137. X.S. Wang et al Low-cycle fatigue small crack initiation and propagation behaviour of cast magnesium alloys based on in-situ SEM observations. Phil. Mag. 86, 1581–1596 (2006)

    Article  CAS  Google Scholar 

  138. S. Kumar, W.A. Curtin Crack interaction with microstructure. Mater. Today 10, 34 (2007)

    Article  Google Scholar 

  139. M.M. Shenoy et al Modeling effects of nonmetallic inclusions on LCF in DS nickel-base superalloys. Int. J. Fatigue 27, 113–127 (2005)

    Article  CAS  Google Scholar 

  140. M.M. Shenoy et al Estimating fatigue sensitivity to polycrystalline Ni-base superalloy microstructures using a computational approach. Fatigue Fract. Eng. Mat. Struct 30, 889–904 (2007)

    Article  CAS  Google Scholar 

  141. D.L. McDowell Simulation-assisted materials design for the concurrent design of materials and products. J. Mins. Metls. Matls. Soc. 59, 21–25 (2007)

    Google Scholar 

  142. J. Fan et al Cyclic plasticity across micro/meso/macroscopic scales. Proc. R. Soc. London A 460, 1477–1503 (2004)

    Article  CAS  Google Scholar 

  143. M.F. Horstemeyer Damage influence on Bauschinger effect of a cast A 356 aluminum alloy. Scripta Mater. 39, 1491–1495 (1998)

    Article  CAS  Google Scholar 

  144. M.F. Horstemeyer, M.I. Baskes Atomistic finite deformation simulations: a discussion on length scale effects in relation to mechanical stresses. J. Eng. Matls. Techn. Trans. ASME 121, 114–119 (1999)

    Article  Google Scholar 

  145. M.F. Horstemeyer et al Length scale and time scale effects on the plastic flow of fcc metals. Acta Mateialia 49, 4363–4374 (2001)

    Article  CAS  Google Scholar 

  146. M. F. Horstemeyer, Mapping failure by microstructure-property modeling, in Journal of Minerals, Metals and Materials Society, ed. by J.J. Hoyt 53, 9, 24–27 (2001b).

    Google Scholar 

  147. M. F. Horstemeyer et al., From Atoms to Autos: Part 2 Fatigue Modeling, Sandia National Laboratories Report, SAND2001-8,661 (2001).

    Google Scholar 

  148. M. F. Horstemeyer et al., J Prospects in Mesomechanics, edited by G. Sih, Theor. Appl. Fract. Mech. 37, 49–98 (2001).

    Google Scholar 

  149. M.F. Horstemeyer et al A large deformation atomistic study examining crystal orientation effects on the stress–strain relationship. Int. J. Plasticity 18, 203–209 (2002)

    Article  CAS  Google Scholar 

  150. M.F. Horstemeyer et al Torsion/simple shear of single crystal copper. J. Eng. Matls. Tech. 124, 322–328 (2002)

    Article  CAS  Google Scholar 

  151. M. F. Horstemeyer, Physically Motivated Modeling of Deformation-Induced Anisotropy, PhD thesis, Georgia Institute of Technology (1995)

    Google Scholar 

  152. W.W. Gerberich et al Interpretations of indentation size effects. J. Appl. Mech. 69, 443–452 (2002)

    Article  CAS  Google Scholar 

  153. J. Fan et al Cyclic plasticity at pores and inclusions in cast Al–Si alloys. Eng. Fract. Mech. 68, 1687–1706 (2001)

    Article  Google Scholar 

  154. J. Fan et al Cyclic plasticity at pores and inclusions in cast Al–Si alloys. Eng. Fract. Mech. 70, 1281–1302 (2003)

    Article  Google Scholar 

  155. S. Johnston et al Three-dimensional finite element simulations of microstructurally small fatigue crack growth in 7,075 aluminium alloy. Fatigue Fract. Eng. Matl. Struct. 29, 597–605 (2006)

    Article  CAS  Google Scholar 

  156. K.A. Gall et al On the driving force for fatigue crack formation from inclusions and voids in a cast A356 aluminum alloy. Int.J. Fracture 198, 207–233 (2001)

    Article  Google Scholar 

  157. V.S. Deshpande et al Discrete dislocation plasticity modeling of short cracks in single crystals. Acta Mater. 51, 1–15 (2003)

    Article  CAS  Google Scholar 

  158. V.S. Deshpande et al Scaling of discrete dislocation predictions for near-threshold fatigue crack growth. Acta Mater. 51, 4637–4651 (2003)

    Article  CAS  Google Scholar 

  159. T. Morita and H. Tsuji, Zairyo, J. of the Soc. of Matls. Sci., Japan, 53 647-653 (2004).

    Google Scholar 

  160. I.N. Mastorakos, H.M. Zbib DD simulations of dislocation-crack interaction during fatigue. J. ASTM Int. 4, 1–9 (2007)

    Article  Google Scholar 

  161. S. Groh et al Fatigue crack growth from a cracked elastic particle into a ductile matrix. Phil. Mag. 88, 3565–3583 (2008)

    Article  CAS  Google Scholar 

  162. D.L. McDowell, G.B. Olson Concurrent design of hierarchical materials and structures. Sci. Model. Sim. 15, 207–240 (2008)

    Article  CAS  Google Scholar 

  163. A. Ramasubramaniam, E.A. Carter Coupled quantum–atomistic and quantum–continuum mechanics methods in materials research. MRS Bulletin 32, 913–918 (2007)

    CAS  Google Scholar 

  164. G. Lu, E. In: Rieth M et al (eds) Handbook of Theoretical and Computational Nanotechnology. Am. Sci. Publ, California (2004)

    Google Scholar 

  165. N. Choly et al Multiscale simulations in simple metals: A density-functional-based methodology. Phys. Rev. B 71, 094101 (2005)

    Article  CAS  Google Scholar 

  166. G. Lu et al From electrons to finite elements: a concurrent multiscale approach for metals. Physl. Rev. B Cond. Matt. Matls. Phys. 73, 024108 (2006)

    Article  CAS  Google Scholar 

  167. F. Ercolessi, J. Interatomic potentials from first-principles calculations: the force-matching method. Europhys. Lett. 26, 583–588 (1994)

    Article  CAS  Google Scholar 

  168. Y. Li et al Embedded-atom-method tantalum potential developed by the force-matching method. Phyl. Rev. B Cond. Mattr Matls. Phys 67, 125101 (2003)

    Article  CAS  Google Scholar 

  169. N. Govind et al Accurate ab initio energetics of extended systems via explicit correlation embedded in a density functional environment. Chem. Phys. Lett. 295, 129 (1998)

    Article  CAS  Google Scholar 

  170. Y.A. Wang et al Orbital-free kinetic-energy functionals for the nearly free electron gas. Phys. Rev. B 58, 13465–13471 (1998)

    Article  CAS  Google Scholar 

  171. Y.A. Wang et al Orbital-free kinetic-energy density functionals with a density-dependent kernel. Phys. Rev. B 60, 16350–16358 (1999)

    Article  CAS  Google Scholar 

  172. T. Kluner et al Prediction of electronic excited states of adsorbates on metal surfaces from first principles. Phys. Rev. Lett. 86, 5954 (2001)

    Article  CAS  Google Scholar 

  173. G. Csányi et al “Learn on the Fly”: A hybrid classical and quantum-mechanical molecular dynamics simulation. Phys. Rev. Lett. 93, 175503 (2004)

    Article  CAS  Google Scholar 

  174. M.I. Baskes Application of the embedded-atom method to covalent materials: a semiempirical potential for silicon. Physl. Rev. Lett. 59, 2666–2669 (1987)

    Article  CAS  Google Scholar 

  175. M.I. Baskes et al Semiempirical modified embedded-atom potentials for silicon and germanium. Physl. Rev. B 40, 6085–6100 (1989)

    Article  CAS  Google Scholar 

  176. M.I. Baskes et al Atomistic calculations of composite interfaces. Modell. Simul. Mater. Sci. Eng. 2, 505–518 (1994)

    Article  Google Scholar 

  177. M.I. Baskes, R.A. Johnson Modified embedded atom potentials for HCP metals. Modell. Simul. Mater. Sci. Eng. 2, 147–163 (1994)

    Article  CAS  Google Scholar 

  178. B. Jelinek et al Modified embedded-atom method interatomic potentials for the Mg-Al alloy system. Physl. Rev. B 75, 054106 (2007)

    Article  CAS  Google Scholar 

  179. M.S. Daw, M.I. Baskes Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Physl. Rev. Lett. 50, 1285–1288 (1983)

    Article  CAS  Google Scholar 

  180. M.Q. Chandler Horstemeyer, MF, Baskes, MI, Gullett, PM, Wagner, GJ, Jelinek, B, Hydrogen effects on nanovoid nucleation in face-centered cubic single -crystals. Acta Mater. 56, 95–104 (2008)

    Article  CAS  Google Scholar 

  181. M.Q. Chandler et al Hydrogen effects on nanovoid nucleation at nickel grain boundaries. Acta Mater. 56, 619–631 (2008)

    Article  CAS  Google Scholar 

  182. H. Fang et al Atomistic simulations of Bauschinger effects of metals with high angle and low angle grain boundaries. Comp. Meth. App. Mech. Eng. 193, 1789–1802 (2004)

    Article  Google Scholar 

  183. K. Solanki et al Multiscale study of dynamic void collapse in single crystals. Mech. Matls. 37, 317–330 (2005)

    Article  Google Scholar 

  184. D. Farkas Atomistic studies of intrinsic crack-tip plasticity. MRS Bulletin 25, 35–38 (2000)

    CAS  Google Scholar 

  185. D. Farkas Atomistic mechanisms of fatigue in nanocrystalline metals. Phys. Rev. Lett. 94, 165502 (2005)

    Article  CAS  Google Scholar 

  186. A. Luque et al Molecular dynamics simulation of crack tip blunting in opposing directions along a symmetrical tilt grain boundary of copper bicrystal. Fatigue Fract. Eng. Matls. Struct. 30, 1008–1015 (2007)

    Article  CAS  Google Scholar 

  187. A. Brandt Multiscale and Multiresolution Methods: Theory and Applications. Springer-Verlag, Heidelberg (2001)

    Google Scholar 

  188. E. Weinan, B. Heterogeneous multiscale methods. Comm. Math. Sci. 1, 87–132 (2003)

    Google Scholar 

  189. G.I. Barenblatt Scaling, Cambridge Texts in Applied Mathematics. Cambridge University press, Cambridge (2003)

    Google Scholar 

  190. A. Carpinteri et al Cohesive crack model description of ductile to brittle size-scale transition: dimensional analysis vs. renormalization group theory. Eng. Fract. Mech. 70(14):1809–1839 (2003)

    Article  Google Scholar 

  191. Y.T. Cheng, C.M. Cheng Fundamentals of nanoindentation and nanotribology. Matls. Rsrch. Soc. Sym. Proc. 522, 139–144 (1998)

    CAS  Google Scholar 

  192. N. Ansini et al Multi-scale analysis by Gamma-convergence of a one-dimensional non-local functional related to a shell-membrane transition. SIAM J. Math. Ana. 38, 944–976 (2006)

    Article  Google Scholar 

  193. B.B. Mandelbrot et al Fractal character of fracture surfaces of metals. Nature 308, 721–722 (1984)

    Article  CAS  Google Scholar 

  194. B.B. Mandelbrot The Fractal Geometry of Nature. W. H. Freeman and Company, NewYork (1982)

    Google Scholar 

  195. D. M. Mark and P. B. Aronson, Scale-dependent fractal dimensions of topographic surfaces: An empirical investigation, with applications in geomorphology and computer mapping Mathematical Geology 16, 7, 671–683 (Springer, 1984).

    Google Scholar 

  196. T. Chelidze, Y. Evidence of fractal fracture. Int. J. Rock Mech. Mining Sci. 27, 223–225 (1990)

    Google Scholar 

  197. A.B. Mosolov et al Fractal Fracture of Brittle Bodies during Compression. Soviet Phys. 37, 263–265 (1992)

    Google Scholar 

  198. A.V. Dyskin Micromechanics of materials. Int. J. Solids Struct. 42, 477–502 (2005)

    Article  Google Scholar 

  199. S. Graham, N. Representative volumes of materials based on microstructural statistics. Scripta Mater. 48, 269–274 (2003)

    Article  CAS  Google Scholar 

  200. S. Lee, R. Rao, Scale-based formulations of statistical self-similarity in images, Proceedings of the International Conference on Image Processing, ICIP, vol. 4 (2004), pp. 2323–2326

    Google Scholar 

  201. J. Fish, A. Wagiman, Adaptive, multilevel, and hierarchical computational strategies, Winter Annual Meeting of the American Society of Mechanical Engineers, vol. 157 (1992), pp. 95–117

    Google Scholar 

  202. J. Fish, Z. Multiscale enrichment based on partition of unity for nonperiodic fields and nonlinear problem. Comp. Mech. 40, 249–259 (2007)

    Article  Google Scholar 

  203. M.A. Nuggehally et al Adaptive model selection procedure for concurrent multiscale problems. Int. J. Multiscale Comp. Eng. 5, 369–386 (2007)

    Article  Google Scholar 

  204. G.W. He et al Multiscale coupling: Challenges and opportunities. Prog. Nat. Sci. 14, 463–466 (2004)

    Article  Google Scholar 

  205. H.Y. Wang et al Multiscale coupling in complex mechanical systems. Chem. Eng. Sci. 59, 1677–1686 (2004)

    Article  CAS  Google Scholar 

  206. J. W. Essam, Phase transitions and critical phenomena, Conf. Proc. Cambridge Phil Soc. 523–533 (1970)

    Google Scholar 

  207. S. Greenspoon Finite-size effects in one-dimensional percolation: a verification of scaling theory. Canadian J. Phys. 57, 550–552 (1979)

    Google Scholar 

  208. H. Kestin Percolation theory for mathematicians. Bull. Amer. Math. Soc. 11, 404–409 (1984)

    Article  Google Scholar 

  209. Y. Otsubo Elastic percolation in suspensions flocculated by polymer bridging. Langmuir 6, 114–118 (1992)

    Article  Google Scholar 

  210. D.F. Leclerc, J.A. Olson A percolation-theory model of lignin degradation. Macromolecules 25, 1667–1675 (1992)

    Article  CAS  Google Scholar 

  211. R. Fu et al Interpretation of porosity effect on strength of highly porous ceramics. Scripta Metall. et Matl. 25, 1583–1585 (1991)

    Article  CAS  Google Scholar 

  212. M. Ostoja-Starzewski Mechanics of damage in a random granular microstructure: Percolation of inelastic phases. Int. J. Eng. Sci. 27, 315–326 (1989)

    Article  Google Scholar 

  213. Y.L. Bai et al Statistical mesomechanics of solid, linking coupled multiple space and time scales. App. Mech. Rev. 58, 372–388 (2005)

    Article  Google Scholar 

  214. L.E. Reichl A Modern Course in Statistical Physics. University of Texas Press, Austin (1980)

    Google Scholar 

  215. B. Zhang et al Microstructural effects on high-cycle fatigue-crack initiation in A356.2 casting alloy. Metall. Matls. Trans. A 30, 2659-–2666 (1999)

    Article  Google Scholar 

  216. M.F. Horstemeyer, P. Wang Cradle-to-grave simulation-based design incorporating multiscale microstructure-property modeling: Reinvigorating design with science. J. Comput.-Aided Matls. Dsgn. 10, 13–34 (2003)

    Article  CAS  Google Scholar 

  217. R.A. Fisher Statistical Methods for Research Workers. Oliver and Boyd, Edinburg (1935)

    Google Scholar 

  218. R.A. Fisher The Design of Experiments. Oliver and Boyd, Edinburg (1935)

    Google Scholar 

  219. G. Taguchi System of Experimental Design: I and II. UNIPUB, New York (1987)

    Google Scholar 

  220. G. Taguchi Reports of statistical application research. JUSE 6, 1–52 (1960)

    Google Scholar 

  221. M.F. Horstemeyer, A.M. Gokhale A void-crack nucleation model for ductile metals. Int. J. Solids Struct. 36, 5029–5055 (1999)

    Article  Google Scholar 

  222. M.F. Horstemeyer et al Using a micromechanical finite element parametric study to motivate a phenomenological macroscale model for void/crack nucleation in aluminum with a hard second phase. Mech. Matls. 35, 675–687 (2003)

    Article  Google Scholar 

  223. J.C. Mauro, A.K. Varshneya Multiscale modeling of GeSe2 glass structure. J. Amer. Ceramic Soc. 89, 2323–2326 (2006)

    Article  CAS  Google Scholar 

  224. J.C. Mauro, A.K. Varshneya Ab initio modeling of volume–temperature curves for glassforming systems. J. Non-Crystalline Solids 353, 1226–1231 (2007)

    Article  CAS  Google Scholar 

  225. R. Krishnamurthy et al Oxygen diffusion in yttria-stabilized zirconia: A new simulation model. J. Amer. Ceramic Soc. 87, 1821–1830 (2004)

    Article  CAS  Google Scholar 

  226. A. Hansen et al Roughness of crack interfaces. Phys. Rev. Lett. 66, 2476–2479 (1991)

    Article  Google Scholar 

  227. J. Schmittbuhl et al Roughness of interfacial crack fronts: Stress-weighted percolation in the damage zone. Phys. Rev. Lett. 90, 045505 (2003)

    Article  CAS  Google Scholar 

  228. A. Hansen, J. Origin of the universal roughness exponent of brittle fracture surfaces: stress-weighted percolation in the damage zone. Phys. Rev. Lett. 90, 045504 (2003)

    Article  CAS  Google Scholar 

  229. L. Chong, L.B. Ray Whole-istic biology. Science 295, 1661 (2002)

    Article  CAS  Google Scholar 

  230. D.N. Theodorou Hierarchical modeling of amorphous polymers. Comp. Phys. Comm. 169, 82–88 (2005)

    Article  CAS  Google Scholar 

  231. A.E. Ismail et al Using wavelet transforms for multiresolution materials modeling. Comp. Chem. Eng., Cont. Multiscale Distrib. Proc. Sys. 29, 689–700 (2005)

    CAS  Google Scholar 

  232. J. Bicerano et al Polymer modeling at the dow chemical company. J. Macromolecular Sci. Poly. Rev. 44, 53–85 (2004)

    Google Scholar 

  233. Q. Yu, J. Multiscale asymptotic homogenization for multiphysics problems with multiple spatial and temporal scales: a coupled thermo-viscoelastic example problem. Int. J. Solids Struct. 39, 6429–6452 (2002)

    Article  Google Scholar 

  234. S. Curgul et al Molecular dynamics simulation of size-dependent structural and thermal properties of polymer nanofiber. Macromolecules 40, 8483–8489 (2007)

    Article  CAS  Google Scholar 

  235. J.C. Halpin et al Time dependent static strength and reliability for composites. Compo. Mater. 4, 462–474 (1970)

    Google Scholar 

  236. J.C. Halpin Structure-property relations and reliability concepts. J. Compo. Matls. 6, 208–231 (1972)

    Article  CAS  Google Scholar 

  237. H.T. Hahn, S.W. Tsai On the behavior of composite laminates after initial failures. J. Comp. Matls. 8, 288–305 (1974)

    Article  Google Scholar 

  238. J.C. Halpin, J.L. Kardos The halpin-tsai equations: A review. Poly. Eng. Sci. 16, 344–352 (1976)

    Article  CAS  Google Scholar 

  239. H.T. Chang, D.H. Allen Predicted dynamic response of a composite beam with history-dependent damage. Comp. Struct. 26, 575–580 (1987)

    Article  Google Scholar 

  240. D.H. Allen et al A cumulative damage model for continuous fiber composite laminates with matrix cracking and interply delaminations. ASTM Sp. Tech. Pub. 972, 57–80 (1988)

    CAS  Google Scholar 

  241. F. Costanzo, D.H. Allen Micromechanics and homogenization of inelastic composite materials with growing cracks. J. Mech. Phys. Solids 44, 333–370 (1996)

    Article  Google Scholar 

  242. D. Krajcinovic Constitutive equations for damaging materials. J. App. Mech. 50, 355–360 (1983)

    Article  Google Scholar 

  243. D. Krajcinovic Continuum damage mechanics: When and how? Int. J. Damage Mech. 4, 217 (1995)

    Article  Google Scholar 

  244. D. Krajcinovic Damage Mechanics. Noth-Holland, New York, NY (1996)

    Google Scholar 

  245. J. Fish, K. Multiscale analysis of composite materials and structures. Comp. Sci. Tech. 60, 2547–2556 (2000)

    Article  Google Scholar 

  246. J. Fish, Q. Yu, Multiscale damage modeling for composite materials: Theory and computational framework, Int. J. Num. Meth. Eng., 52, 161–191 (2001), 5th US Nat. Cong. on Comp. Mech.

    Google Scholar 

  247. V. Belsky et al Computer-aided multiscale modeling tools for composite materials and structures. Comp. Syst. Eng.: Int. J. 6, 213–223 (1995)

    Article  Google Scholar 

  248. B. Hassani, E. Hinton A review of homogenization and topology opimization II–analytical and numerical solution of homogenization equations. Comp. Struct 69, 719–738 (1998)

    Article  Google Scholar 

  249. B. Hassani, E. Hinton Comp. Struct. 69, 707–717 (1998)

    Article  Google Scholar 

  250. B. Hassani, E. Hinton A review of homogenization and topology optimization III–topology optimization using optimality criteria. Comp. Struct. 69, 739–756 (1998)

    Article  Google Scholar 

  251. P.B. Lourenco et al Analysis of masonry structures: review of and recent trends in homogenization techniques. Canadian J. Civil Eng. Special Issue on Masonry 34, 1443–1457 (2007)

    Article  Google Scholar 

  252. K. Matous et al Multiscale cohesive failure modeling of heterogeneous adhesives. J. Mech. Phys. Solids 56, 1511 (2008)

    Article  CAS  Google Scholar 

  253. J. Aboudi Micromechanical analysis of composites by the method of cells. App. Mech. Rev. 47, 193–221 (1989)

    Article  Google Scholar 

  254. J. Aboudi The generalized method of cells and high-fidelity generalized method of cells micromechanical models: A review. J Mech. Adv. Matls. Struct. 11, 329–366 (2004)

    Article  CAS  Google Scholar 

  255. M. Paley, J. Aboudi Micromechanical analysis of composites by the generalized cells model. Mech. Matls. 14, 127–139 (1992)

    Article  Google Scholar 

  256. T. O. Williams and T. B. Tippetts, Materials Damage Prognosis, Proceedings of a Sym. of the Matls. Sci. and Tech. Conf. 95–101 (2004)

    Google Scholar 

  257. D. Qian et al Mechanics of carbon nanotubes. App. Mech. Rev. 55, 495–532 (2002)

    Article  Google Scholar 

  258. A. Maiti Multiscale modeling with carbon nanotubes. Microelectron. J. 39, 208–221 (2008)

    Article  CAS  Google Scholar 

  259. G. Friesecke, R.D. James A scheme for the passage from atomic to continuum theory for thin films, nanotubes and nanorods. J. Mech. Phys. Solids 48, 1519–1540 (2000)

    Article  Google Scholar 

  260. J. Wescott et al Atomistic, mesoscale and finite element simulation of nanofube dispersion in polymers. VDI Berichte 1940, 23–24 (2006)

    Google Scholar 

  261. K. Laganà et al Multiscale modeling of the cardiovascular system: application to the study of pulmonary and coronary perfusions in the univentricular circulation. J. Biomech. 38, 1129–141 (2004)

    Article  Google Scholar 

  262. H. B. Tho et al., Multi-scale characterization and modeling of human cortical bone, Mat. Res. Soc. Symp. Proc. p. 898 (2006).

    Google Scholar 

  263. E. Budyn, T. Multi-scale modeling of human cortical bone: Aging and failure studies. Mat. Rsrch. Soc. Sym. Pro.- Mech. of Bio. Bio-Inspired Matls 975, 27–32 (2006)

    Google Scholar 

  264. A. Fritsch, C. Universal microstructural patterns in bone: Micromechanics-based prediction of anisotropic material behavior. Matls. Rsrch. Soc. Sym. Pro.-Mech. of Bio. Bio-Inspired Matls. 975, 128–134 (2006)

    Google Scholar 

  265. D. Porter Pragmatic multiscale modeling of bone as a natural hybrid nanocomposite. Matls. Sci. Eng. A 365, 38–45 (2004)

    Article  CAS  Google Scholar 

  266. J.L. Katz et al Multiscale mechanics of hierarchical structure/property relationships in calcified tissues and tissue/material interfaces. Matls. Sci. Eng. C-Next Gen. Biomatls 27, 450–468 (2007)

    CAS  Google Scholar 

  267. Z.A. Taylor, K. Miller Constitutive modeling of cartilaginous tissues: A review. J. App. Biomech. 22, 212–229 (2006)

    Google Scholar 

  268. C. Hellmich et al Can the diverse elastic properties of trabecular and cortical bone be attributed to only a few tissue-independent phase properties and their interactions? Biomech. Model. Mechanobio. 2, 219–238 (2004)

    Google Scholar 

  269. D. Taylor Fracture and repair of bone: a multiscale problem. J. Matls. Sci. 42, 8911–8918 (2007)

    Article  CAS  Google Scholar 

  270. M. Kawagai et al Multi-scale stress analysis of trabecular bone considering trabeculae morphology and biological apatite crystallite orientation. J. Soc. Matls. Sci. Japan 55, 874–880 (2006)

    Article  CAS  Google Scholar 

  271. C. Imielinska et al., Multi-scale modeling of trauma injury, Lecture Notes in Computer Science, LNCS - IV, Computational Science – ICCS, vol. 3(2006), p. 994 (2006), 822–830.

    Google Scholar 

  272. J.B. Bassingthwaighte et al., Strategies and tactics in multiscale modeling of cell-to-organ systems, Proceedings of the IEEE, vol. 94 pp. 819–830 (2006)

    Google Scholar 

  273. E.C.N. Silva et al Modeling bamboo as a functionally graded material: Lessons for the analysis of affordable materials. J. Matls. Sci. 41, 6991–7004 (2006)

    Article  CAS  Google Scholar 

  274. A. Makela Process-based modeling of tree and stand growth: Towards a hierarchical treatment of multiscale processes. Canadian J. Forest Res. 33, 398–409 (2003)

    Article  Google Scholar 

  275. J. H. Panchal et al., A strategy for simulation-based design of multiscale, multi-functional products and associated design processes, in Proceedings of the ASME Int. Design Eng. Tech. Con. and Comp. and Info. in Eng. Con. - DETC2005, 2B pp. 845–857 (2005)

    Google Scholar 

  276. G.B. Olson Computational design of hierarchically structured materials. Science 277, 1237–1242 (1997)

    Article  CAS  Google Scholar 

  277. H. J. Jou et al., Computer simulations for the prediction of microstructure/property variation in aeroturbine disks, Superalloys, Warrendale, PA pp. 877–886 (2004)

    Google Scholar 

  278. G.B. Olson Advances in theory: Martensite by design. Matls. Sci. Eng. A 25, 48–54 (2006)

    Article  CAS  Google Scholar 

  279. F. Mistree et al., Robust concept exploration methods in materials design, 9th AIAA/ISSMO Sym. on Multidisci. Ana. and Opt., AIAA, 5,568 (2002)

    Google Scholar 

  280. C. C. Seepersad et al., Design of Multifunctional Honeycomb Materials, 9th AIAA/ISSMO Sym. on Multidisci. Ana. and Opt., AAIA, 5,626 (2002)

    Google Scholar 

  281. C.C. Seepersad et al Robust design of cellular materials with topological and dimensional imperfections. J. Mech. Design 128, 1285–1297 (2006)

    Article  Google Scholar 

  282. R. Von Mises Mechanik der festen korper im plastisch deformablen zustand. Göttin. Nachr. Math. Phys. 1, 582–592 (1913)

    Google Scholar 

  283. D.J. Bammann, E.C. Aifantis A model for finite-deformation plasticity. Acta Mech. 69, 97–117 (1987)

    Article  Google Scholar 

  284. D.J. Bammann, E.C. Aifantis A damage model for ductile metals. Nuc. Eng. Design 116, 355–362 (1989)

    Article  Google Scholar 

  285. D.J. Bammann et al Failure in ductile materialsusing finite element methods. In: Wierzbicki T et al (eds) Structure Crashworthiness and Failure. Elsevier Applied Science, The Universities Press (Belfast) Ltd, Belfast (1993)

    Google Scholar 

  286. M.F. Horstemeyer et al Numerical, experimental, nondestructive, and image analyses of damage progression in cast A356 aluminum notch tensile bars. Theor. App. Fracture Mech. 39, 23–45 (2003)

    Article  CAS  Google Scholar 

  287. K. Solanki et al., Integration of microstructure-property relationships in an internal state variable plasticity and damage constitutive model for reliability-based optimization in engineering design. (submitted to Journal of Design Engineering). (2008)

    Google Scholar 

  288. E. Acar et al Uncertainty Analysis of Damage Evolution Computed through Microstructure-Property Relations, ASME 34th Design Automation Conference (DAC). NY, New York (2008)

    Google Scholar 

  289. X. Yin, S. Lee, W. Chen, W.K. Liu, M.F. Horstemeyer A Multiscale Design Approach with Random Field Representation of Material Uncertainty, ASME DETC08. NY, New York (2008)

    Google Scholar 

  290. M.D. Dighe et al Effect of loading condition and stress state on damage evolution of silicon particles in an Al-Si-Mg-Base cast alloy. Metall. Matls. Trans. A 33, 555–565 (2002)

    Article  Google Scholar 

  291. M.D. Dighe et al Effect of temperature on silicon particle damage in A356 alloy. Metall. Matls. Trans. A 29, 905–908 (1997)

    Google Scholar 

  292. M.D. Dighe et al Effect of strain rate on damage evolution in a cast Al-Si-Mg base alloy. Metall. Matls. Trans. A 31, 1725–1731 (2000)

    Article  Google Scholar 

  293. M.F. Horstemeyer et al Modeling stress state dependent damage evolution in a cast Al-Si-Mg aluminum alloy. Theor. App. Fracture Mech. 33, 31–47 (2000)

    Article  CAS  Google Scholar 

  294. J.B. Jordon et al Damage and stress state influence on the Bauschinger effect in aluminum alloys. Mech. Matls 39, 920–931 (2007)

    Article  Google Scholar 

  295. H.E. Kadir et al Fatigue crack growth mechanisms in high-pressure die-cast magnesium alloy. Metall. Mat. Trans. A 39, 190–205 (2008)

    Article  CAS  Google Scholar 

  296. H.E. Kadiri et al Identification and modeling of fatigue crack growth mechanisms in a die-cast AM50 magnesium alloy. Acta Mater. 54, 5061–5076 (2006)

    Article  CAS  Google Scholar 

  297. M.F. Horstemeyer et al High cycle fatigue of a die cast AZ91E-T4 magnesium alloy. Acta Mater. 52, 1327–1336 (2004)

    Article  CAS  Google Scholar 

  298. D.L. McDowell et al Microstructure-based fatigue modeling of cast A356-T6 alloy. Eng. Fracture Mech. 70, 49–80 (2003)

    Article  Google Scholar 

  299. Y. Xue et al Micromechanisms of multistage fatigue crack growth in a high-strength aluminum alloy. Acta Mater. 55, 1975–1984 (2007)

    Article  CAS  Google Scholar 

  300. Y. Xue et al Multistage fatigue modeling of cast A356–T6 and A380-F aluminum alloys. Metall. Matls. Trans. 38B:601–606 (2007)

    Article  CAS  Google Scholar 

  301. Y. Xue et al Microstructure-based multistage fatigue modeling of aluminum alloy 7,075–T651. Eng. Fract. Mech. 74, 2810–2823 (2007)

    Article  Google Scholar 

  302. Y. Xue et al Microstructure-based multistage fatigue modeling of a cast AE44 magnesium alloy. Int. J. Fatigue 29, 666–676 (2007)

    Article  CAS  Google Scholar 

  303. P.C. Paris, F. Erdogan A critical analysis of crack propagation laws. Trans. ASME J. Basic Eng. D85, 528–534 (1963)

    Google Scholar 

  304. J. C. Newman, FASTRAN-2: A fatigue crack growth structural analysis program, NASA-TM-104,159, (NASA Langley Research Center, 1992)

    Google Scholar 

  305. J.C. Newman A review of modeling small-crack behavior and fatigue-life predictions for aluminum alloys. J. Fatigue Fract. Eng. Mat. Struct. 17, 429–439 (1994)

    Article  CAS  Google Scholar 

  306. K.A. Gall et al Atomistic simulations on the tensile debonding of an Aluminum–Silicon interface. J. Mech. Phys. Solids 48, 2183–2212 (2000)

    Article  CAS  Google Scholar 

  307. Glimm J, Sharp DH Multiscale science: A challenge for the twenty-first century. Siam News 30, 1–7 (1997)

    Google Scholar 

  308. M.E. Kassner et al New directions in mechanics. Mech. Mater. 37, 231–259 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank the Center for Advanced Vehicular Systems at Mississippi State University for supporting this work, Jerzy Lesczczynski for his encouragement of documenting the current state of multiscale modeling, and Dean Norman for helping review this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Horstemeyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Horstemeyer, M.F. (2009). Multiscale Modeling: A Review. In: Leszczynski, J., Shukla, M. (eds) Practical Aspects of Computational Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2687-3_4

Download citation

Publish with us

Policies and ethics