Skip to main content

Detection of Polyploidy

  • Chapter
  • First Online:
Polyploidy: Recent Trends and Future Perspectives

Abstract

Earlier, polyploidy was detected on the basis of only a few morphological, cytological and genetic criteria. However, it may not be correct to characterize polyploidy on the above structural basis only because the chromosome pairing behaviour is also affected by other factors (Otto 2007). Polyploids have distinct morphology as compared to their diploid counterparts. Increased cell size that results in thicker and broader leaves and larger flowers and fruits is often associated with polyploidy. These characters are often used to identify putative polyploids, when screening of large number of plants has to be done. Larger pollen size and stomata are also often used to detect polyploidy. Although Stebbins (1950) had successfully used morphological criteria as evidence for finding the progenitor of the B-genome, yet some controversy still exists. Besides morphology, biochemical compounds, such as secondary metabolites, seed proteins and isozymes, have been also used to investigate progenitor of allopolyploids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barcaccia G, Meneghetti S, Albertini E, Triest L, Lucchin M (2003) Linkage mapping intetraploid willows: segregation of molecular markers and estimation of linkage phases support an allotetraploid structure for Salix alba × Salix fragilis interspecific hybrids. Heredity 90:169–180

    Article  CAS  PubMed  Google Scholar 

  • Barker MS, Kane NC, Matvienko M, Kozik A, Michelmore RW, Knapp SJ, Rieseberg LH (2008) Multiple paleopolyploidizations during the evolution of the Compositae reveal parallel patterns of duplicate gene retention after millions of years. Mol Biol Evol 25:2445–2455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barker MS, Vogel H, Schranz ME (2009) Paleopolyploidy in the Brassicales: analyses of the Cleome transcriptome elucidate the history of genome duplications in Arabidopsis and other Brassicales. Genome Biol Evol 1:391–399

    Article  PubMed  PubMed Central  Google Scholar 

  • Bennett MD, Leitch IJ (2005) Nuclear DNA amounts in angiosperms: progress, problems and prospects. Ann Bot 95(1):45–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett ST, Kenton AY, Bennett MD (1992) Genomic in situ hybridization reveals the allopolyploid nature of Milium montianum (Gramineae). Chromosoma 101:420–424

    Article  Google Scholar 

  • Besnard G, Garcia-verdugo C, Rubiodecasas R, Treier UA, Galland N, Vargas P (2008) Polyploidy in the olive complex (Olea europaea): evidence from flow cytometry and nuclear microsatellite analyses. Annal Bot 101:25–30

    Article  CAS  Google Scholar 

  • Blanc G, Wolfe KH (2004) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16:1679–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanc G, Barakat A, Guyot R, Cooke R, Delseny M (2000) Extensive duplication and reshuffling in the Arabidopsis genome. Plant Cell 12:1093–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438

    Article  CAS  PubMed  Google Scholar 

  • Chester M, Leitch AR, Soltis PS, Soltis DE (2010) Review of the application of modern cytogenetic methods (FISH/GISH) to the study of reticulation (polyploidy/hybridisation). Genes 1:166–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cifuentes M, Eber F, Lucas MO, Lode M, Chèvre AM, Jenczewski E (2010) Repeated polyploidy drove different levels of crossover suppression between homoeologous chromosomes in Brassica napus allohaploids. Plant Cell 22:2265–2276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui LY, Wall PK, Leebens-Mack JH, Lindsay BG, Soltis DE, Doyle JJ, Soltis PS, Carlson JE, Arumuganathan K, Barakat A, Albert VA, Ma H, DePamphills CW (2006) Widespread genome duplications throughout the history of flowering plants. Genome Res 16:738–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dar TH, Raina SN, Goel S (2013) Molecular analysis of genomic changes in synthetic autotetraploids Phlox drummondii Hook. Biol J Linn Soc 110:591–605

    Article  Google Scholar 

  • Esselink GD, Nybom H, Vosman B (2004) Assignment of allelic configuration in polyploids using the MAC-PR (microsatellite DNA allele counting—peak ratios) method. Theor Appl Genet 109:402–408

    Article  CAS  PubMed  Google Scholar 

  • Gaeta RT, Pires JC, Iniguez-Luy F, Leon E, Osborn TC (2007) Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell 19:3403–3417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta PK (2007) Cytogenetics. Rastogi Publications, Meerut

    Google Scholar 

  • Hasterok R, Draper J, Jenkins G (2004) Laying the cytotaxonomic foundations of a new model grass, Brachypodium distachyon L. Chromosome Res 12:397–403

    Article  CAS  PubMed  Google Scholar 

  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C et al (2007) French-Italian public consort. Grapevine genome charact. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  CAS  PubMed  Google Scholar 

  • Julier B, Flajoulot S, Barre P, Cardinet G, Santoni S, Huguet T, Huyghe C (2003) Construction of two genetic linkage maps in cultivated tetraploid alfalfa (Medicago sativa) using microsatellite and AFLP markers. BMC Plant Biol. https://doi.org/10.1186/1471-2229-3-9

  • Kenton A, Parokonny AS, Gleba YY, Bennett MD (1993) Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics. Mol Gen Genet 240:159–169

    Article  CAS  PubMed  Google Scholar 

  • Kron P, Suda J, Husband BC (2007) Applications of flow cytometry to evolutionary and population biology. Ann Rev Eco Evol Syst 38:847–876

    Article  Google Scholar 

  • Leitch IL, Bennett MD (1997) Polyploidy in angiosperms. Trends Plant Sci 2:470–476

    Article  Google Scholar 

  • Leuchtenberger C (1958) Quantitative determination of DNA in cells by Feulgen microspectophotometry. In: Danielli JF (ed) General cytochemical methods. Academic Press, New York, pp 219–278

    Google Scholar 

  • Li J, Das K, Liu J, Fu G, Li Y, Tobias C, Wu R (2012) Statistical models for genetic mapping in polyploids: challenges and opportunities. Methods Mol Biol 871:245–261

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Vega JM, Feldman M (1998) Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. II. Changes in low-copy coding DNA sequences. Genome 41:535–542

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Shen R, Zhao Z, Wissuwa M, Takeuchi Y, Ebitani T, Yano M (2002) Response of rice to Al stress and identification of quantitative trait loci for Al tolerance. Plant Cell Physiol 43:652–659

    Article  CAS  PubMed  Google Scholar 

  • Madlung A, Tyagi AP, Watson B, Jiang H, Kagochi T, Doerge RW, Martienssen R, Comai L (2005) Genomic changes in synthetic Arabidopsis polyploids. Plant J 41:221–230

    Article  CAS  PubMed  Google Scholar 

  • McLeish J, Sunderland N (1961) Measurements of deoxyribonucleic acid (DNA) in higher plants by Feulgen photometry and chemical methods. Exp Cell Res 24:527–540

    Article  CAS  Google Scholar 

  • Nicolas SD, Leflon M, Monod H, Eber F, Coriton O, Huteau V, Chèvre AM, Jenczewski E (2009) Genetic regulation of meiotic cross-overs between related genomes in Brassica napus haploids and hybrids. Plant Cell 21:373–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver R, Jellen E, Ladizinsky G, Korol A, Kilian A, Beard J, Dumlupinar Z, Wisniewski-Morehead N, Svedin E, Coon M et al (2011) New Diversity Arrays Technology (DArT) markers for tetraploid oat (Avena magna Murphy et Terrell) provide the first complete oat linkage map and markers linked to domestication genes from hexaploid A. sativa L. Theor Appl Genet 123:1159–1171

    Article  CAS  PubMed  Google Scholar 

  • Otto SP (2007) The evolutionary consequences of polyploidy. Cell 131:452–462

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Bowers JE, Chapman BA (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Nat Acad Sci U S A 101:9903–9908

    Article  CAS  Google Scholar 

  • Pires JC, Lim KY, Kovarik A, Matyasek R, Boyd A, Leitch AR, Leitch IJ, Bennett MD, Soltis PS, Soltis DE (2004) Molecular cytogenetic analysis of the recently evolved Tragopogon (Asteraceae) allopolyploids reveals a karyotype that is additive of the diploid progenitors. Am J Bot 91:1022–1035

    Article  CAS  PubMed  Google Scholar 

  • Porceddu A, Albertini E, Barcaccia G, Falistocco E, Falcinelli M (2002) Linkage mapping in apomictic and sexual Kentucky bluegrass (Poa pratensis L.) genotypes using a two way pseudo-testcross strategy based on AFLP and SAMPl markers. Theor Appl Genet 104:273–280

    Article  CAS  PubMed  Google Scholar 

  • Raina SN, Raini V (2001) GISH technology in plant genome research. Methods Cell Sci 23:83–104

    Article  CAS  PubMed  Google Scholar 

  • Reinisch AJ, Dong JM, Brubaker CL, Stelly DM, Wendel JF, Paterson AH (1994) A detailed RFLP map of cotton, Gossypium hirsutum x Gossypium bar badense: chromosome organization and evolution in a disomic polyploid genome. Genetics 138(3):829–847

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salmon A, Ainouche ML, Wendel JF (2005) Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Mol Ecol 14:1163–1175

    Article  CAS  PubMed  Google Scholar 

  • Sampedro J, Yi L, Robert EC, de Pamphilis C, Cosgrove DJ (2005) Use of genomic history to improve phylogeny and understanding of births and deaths in a gene family. Plant J 44:409–419

    Article  CAS  PubMed  Google Scholar 

  • Schlueter JA, Dixon P, Granger C, Grant D, Clark L, Doyle JJ, Shoemaker RC (2004) Mining EST databases to resolve evolutionary events in major crop species. Genome 47:868–876

    Article  CAS  PubMed  Google Scholar 

  • Shi T, Huang H, Barker MS (2010) Ancient genome duplications during the evolution of kiwifruit (Actinidia) and related Ericales. Ann Bot 106:497–504

    Article  PubMed  PubMed Central  Google Scholar 

  • Shoemaker RC, PolzinK LJ, SpechtJ BEC, OlsonT YN, ConcibidoV WJ, Tamulonis JP, Kochert G, Boerma HR (1996) Genome duplication in soybean (Glycine subgenus soja). Genetics 144:329–338

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song K, Lu P, Tang K, Osborn TC (1995) Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci USA 92:7719–7723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stace CA (2000) Cytology and cytogenetics as a fundamental taxonomic resource for the 20th and 21st centuries. Taxon 49:451–477

    Article  Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New York

    Google Scholar 

  • Sterck L, Rombauts S, Jansson S, Sterky F, Rouzé P, Van de Peer Y (2005) EST data suggest that poplar is an ancient polyploid. New Phytol 167(1):165–170

    Article  PubMed  Google Scholar 

  • Szadkowski E, Eber F, Huteau V, Lode M, Huneau C, Belcram H, Coriton O, Manzanares-Dauleux MJ, Delourme R, King GJ et al (2010) The first meiosis of resynthesized Brassica napus, a genome blender. New Phytol 186:102–112

    Article  CAS  PubMed  Google Scholar 

  • Udall JA, Wendel JF (2006) Polyploidy and crop improvement. Crop Sci 46:3–14

    Article  Google Scholar 

  • Van Dijk T, Noordijk Y, Dubos T, Bink M, Meulenbroek B, Visser R, van de Weg E (2012) Microsatellite allele dose and configuration establishment (MADCE): an integrated approach for genetic studies in allopolyploids. BMC Plant Biol 12. https://doi.org/10.1186/1471-2229-12-25

  • Vision TJ, Brown DG, Tanksley SD (2000) The origins of genomic duplications in Arabidopsis. Science 290:2114–2117

    Article  CAS  PubMed  Google Scholar 

  • Wu KK, Burnquist W, Sorrells ME, Tew TL, Moore PH, Tanksley SD (1992) The detection and estimation of linkage in polyploids using single-dose restriction fragments. Theor Appl Genet 83:294–300

    Article  CAS  PubMed  Google Scholar 

  • Wu R, Ma CX, Casella G (2004) A bivalent polyploid model for mapping quantitative trait loci in outcrossing tetraploids. Genetics 166:581–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Wang J, Lin W, Li S, Li H et al (2005) The genomes of Oryza sativa: a history of duplications. PLoS Biol 3:e38

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer (India) Pvt. Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dar, TUH., Rehman, RU. (2017). Detection of Polyploidy. In: Polyploidy: Recent Trends and Future Perspectives. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3772-3_4

Download citation

Publish with us

Policies and ethics