Skip to main content
Log in

Influence of water-stress acclimation and Tuber melanosporum mycorrhization on Quercus ilex seedlings

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Mycorrhizal and non-mycorrhizal holm oak (Quercus ilex L.) seedlings inoculated with black truffle (Tuber melanosporum) were grown under nursery conditions and subjected to drought hardening for 4 months in autumn and winter followed by irrigation for 10 days. Leaf water potential and stomatal conductance were monitored during the 4 months of drought. When the test was completed (March), measurements were made for each treatment (inoculated or non-inoculated), and watering regime (watered and water-stressed). Pressure–volume curves, osmotic potential at full turgor, osmotic potential at zero turgor and the tissue modulus of elasticity near full turgor were calculated. Mycorrhizal colonization and growth, and the content of the main mineral nutrients N, P, K, Ca and Mg were measured. Water stress affected plant growth, caused an elastic adjustment of the plant tissues, and decreased the P and K content, and inoculation improved the nitrogen content. Drought acclimation apparently achieved the goal of improving the drought tolerance of holm oak seedlings, without depressing ectomycorrhizal root colonization by T. melanosporum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agerer R (1987–1998) Colour atlas of ectomycorrhizae. Einhorn-Verlay, Munich

  • Augé RM, Schekel KA, Wample RL (1986) Osmotic adjustment in leaves of VA mycorrhizal and non-mycorrhizal rose plants in response to drought stress. Plant Physiol 82:765–770

    Article  PubMed  Google Scholar 

  • Bell TL, Adams MA (2004) Ecophysiology of ectomycorrhizal fungi associated with Pinus spp. in low rainfall areas of Western Australia. Plant Ecol 171:35–52. doi:10.1023/B:VEGE.0000029372.78102.9d

    Article  Google Scholar 

  • Brownlee C, Duddridge JA, Malibari A, Read DJ (1983) The structure and function of mycelial systems of ectomycorrhizal roots with special reference to their role in forming inter-plant connections and providing pathways for asimilate and water transport. Plant Soil 71:433–443. doi:10.1007/BF02182684

    Article  Google Scholar 

  • Burdett AN (1990) Physiological processes in plantation establishment and the development of specifications for forest planting. Can J For Res 20:415–427. doi:10.1139/x90-059

    Article  Google Scholar 

  • Castellano MA, Molina R (1989) Mycorrhizae. In: Landis TD et al (eds) The container tree nursery manual, vol 5. Agric. handbook 674. US Department of Agriculture Forest Service, Washington, DC, pp 101–167

    Google Scholar 

  • Coleman MD, Bledsoe CS, Lopushinsky W (1989) Pure culture responses of ectomycorrhizal fungi to imposed water stress. Can J Bot 67:29–39. doi:10.1139/b89-005

    Article  Google Scholar 

  • Coleman MD, Bledsoe CS, Smit BA (1990) Root hydraulic conductivity and xylem sap levels of zeatin riboside and abscisic acid in ectomycorrhizal Douglas fir seedlings. New Phytol 115:275–284. doi:10.1111/j.1469-8137.1990.tb00453.x

    Article  CAS  Google Scholar 

  • di Pietro M, Churin JL, Garbaye J (2007) Differential ability of ectomycorrhizas to survive drying. Mycorrhiza 17:547–550. doi:10.1007/s00572-007-0113-x

    Article  PubMed  Google Scholar 

  • Domínguez JA (2002) Aportaciones de la micorrización artificial con trufa negra en planta forestal. Tesis Doctoral. Universidad Politécnica de Madrid, 402 pp

  • Domínguez JA, Selva J, Rodríguez Barreal JA, Saiz de Omeñaca JA (2006) The influence of mycorrhization with Tuber melanosporum in the afforestation of a Mediterranean site with Quercus ilex and Quercus faginea. For Ecol Manag 231:226–233. doi:10.1016/j.foreco.2006.05.052

    Article  Google Scholar 

  • Domínguez JA, Planelles R, Rodríguez Barreal JA, Saiz de Omeñaca JA (2008) The effect of Tuber melanosporum Vitt. mycorrhization on growth, nutrition, and water relations of Quercus petraea Liebl., Quercus faginea Lamk., and Pinus halepensis Mill. seedlings. New For 35:159–171. doi:10.1007/s11056-007-9069-0

    Google Scholar 

  • Duddrige JA, Malibari A, Read JD (1980) Structure and function of mycorrhizal rhizomorphs with special reference to their role in water transport. Nature 287:834–836. doi:10.1038/287834a0

    Article  Google Scholar 

  • Garbaye J (2000) The role of ectomycorrhizal symbiosis in the resistance of forest to water stress. Outlook Agric 29(1):63–69

    Google Scholar 

  • Garbaye J, Guehl JM (1997) Le rôle des ectomycorrhizes dans l’utilisation de l’eau par les arbres forestiers. Rev For Fr. XLIX. Nº SP. 110–119

  • Guttenberger M (1995) The protein complement of ectomycorrhizas. In: Varma A, Hoch B (eds) Mycorrhiza. Structure, function, molecular biology and biotechnology. Springer, Berlin, pp 59–78

    Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, London, 483 pp

  • Joly RJ, Zaerr JB (1987) Alteration of cell-wall water content and elasticity in Douglas-fir during periods of water deficit. Plant Physiol 83:418–422

    Article  PubMed  Google Scholar 

  • Kennedy PG, Peay KG (2007) Different soil moisture conditions change the outcome of the ectomycorrhizal symbiosis between Rhizopogon species and Pinus muricata. Plant Soil 291:155–165. doi:10.1007/s11104-006-9183-3

    Article  CAS  Google Scholar 

  • Koide RT, Robichaux RH, Morse SR, Smith CM (1989) Plant water status, hydraulic resistance and capacitance. In: Pearcy RW, Ehleringer J, Mooney HA, Rundel PW (eds) Plant physiological ecology. Chapman & Hall, London, pp 161–179

    Google Scholar 

  • Kubiske ME, Abrams MD (1990) Pressure–volume relationships in non-rehydrated tissue at various water deficits. Plant Cell Environ 13:995–1000. doi:10.1111/j.1365-3040.1990.tb01992.x

    Article  Google Scholar 

  • Kyriakopoulos E, Richter H (1991) Desiccation tolerance and osmotic parameters in detached leaves of Quercus ilex L. Acta Oecol 12:357–367

    Google Scholar 

  • Lamhamedi MS, Bernier PY, Fortin JA (1992a) Growth, nutrition and response to water stress of Pinus pinaster inoculated with ten dikaryotic strains of Pisolithus sp. Tree Physiol 10:153–167

    PubMed  Google Scholar 

  • Lamhamedi MS, Bernier PY, Fortin JA (1992b) Hydraulic conductance and soil water potential at the soil–root interface of Pinus pinaster seedlings inoculated with different dikaryons of Pisolithus sp. Tree Physiol 10:231–244

    PubMed  Google Scholar 

  • Landhäusser S, Muhsin T, Zwiazek J (2002) The effect of ectomycorrhizae on water relations in aspen (Populus tremuloides) and white spruce (Picea glauca) at low soil temperatures. Can J Bot 80:684–689. doi:10.1139/b02-047

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  • Marx DH, Hatch AB, Medicino JF (1977) High soil fertility decreases sucrose content and susceptibility of lobolly pine roots to ectomycorrhizal infection by Pisolithus tinctorius. Can J Bot 55:1569–1574. doi:10.1139/b77-185

    Article  CAS  Google Scholar 

  • Morte A, Diaz G, Rodríguez P, Alarcón JJ, Sánchez-Blanco MJ (2001) Growth and water relations in mycorrhizal and nonmycorrhizal Pinus halepensis plants in response to drought. Biol Plant 44(2):263–267. doi:10.1023/A:1010207610974

    Article  Google Scholar 

  • Muhsin TM, Zwiazek JJ (2002) Ectomycorrhizas increase apoplastic water transport and root hydraulic conductivity in Ulmus Americana seedlings. New Phytol 153:153–158. doi:10.1046/j.0028-646X.2001.00297.x

    Article  Google Scholar 

  • Nardini A, Salleo S, Tyree M, Vertovec M (2000) Influence of the ectomycorrhizas formed by Tuber melanosporum Vitt. on hydraulic conductance and water relations of Quercus ilex L. seedlings. Ann For Sci 57:305–312. doi:10.1051/forest:2000121

    Article  Google Scholar 

  • Nilsen P, Borja I, Knutsen H, Brean R (1998) Nitrogen and drought effects on ectomycorrhizae of Norway spruce [Picea abies L. (Karst.)]. Plant Soil 198:179–184. doi:10.1023/A:1004399303192

    Article  CAS  Google Scholar 

  • Pallardy SG, Cermák J, Ewers FW, Kaufmann MR, Parker WC, Sperry JS (1995) Water transport dynamic in trees and stands. In: Smith MK, Hinckley WK (eds) Resource physiology of conifers: acquisition, allocation and utilization. London, Academic Press, pp 301–389

    Google Scholar 

  • Parke J, Linderman RG, Black CH (1983) The role of ectomycorrhizas in drought tolerance of Douglas-fir seedlings. New Phytol 95:83–95. doi:10.1111/j.1469-8137.1983.tb03471.x

    Article  Google Scholar 

  • Querejeta JI, Egerton-Warburton LM, Allen MF (2003) Direct nocturnal water transfer from oaks to their mycorrhizal symbionts during severe soil drying. Oecologia 134:55–64. doi:10.1007/s00442-002-1078-2

    Article  PubMed  Google Scholar 

  • Reyna S (1999) Aproximación a una Selvicultura Trufera. Tesis Doctoral. Universidad Politécnica de Madrid, 325 pp

  • Rodríguez JA, Domínguez JA, Saiz de Omeñaca JA, Mingot D, Placenave GJ (2005) Seguimiento de parcelas micorrizadas con Tuber melanosporum en la comunidad valenciana. Actas del IV Congreso Forestal Español, Zaragoza

    Google Scholar 

  • Runion GB, Mitchell RJ, Rogers HH, Prior SA, Counts TK (1997) Effects of nitrogen and water limitation and elevated atmospheric CO2 on ectomycorrhiza of longleaf pine. New Phytol 137:681–689. doi:10.1046/j.1469-8137.1997.00865.x

    Article  Google Scholar 

  • Sala A, Tenhunen JD (1994) Site-specific water relations and stomatal response of Quercus ilex in a Mediterranean watershed. Tree Physiol 14:601–617

    PubMed  Google Scholar 

  • Scholander PF, Hammel HT, Bradstreet ED, Hemmingsen EA (1965) Sap pressure in vascular plants. Science 148:339–346. doi:10.1126/science.148.3668.339

    Article  PubMed  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. 2nd edn. Academic Press, London, 605 pp

  • Swaty RL, Gehring CA, Van Ert M, Theimer TC, Keim P, Whitham TG (1998) Temporal variation in temperature and rainfall differentially affects ectomycorrhizal colonization at two contrasting sites. New Phytol 139:733–739. doi:10.1046/j.1469-8137.1998.00234.x

    Article  Google Scholar 

  • Turner NC (1986) Adaptation to water deficits: a changing perspective. Aust J Plant Physiol 13:175–190

    Article  Google Scholar 

  • Valdes M, Asbjornsen H, Gomez-Cardenas M, Juarez M, Vogt KA (2006) Drought effects on fine-root and ectomycorrhizal-root biomass in managed Pinus oaxacana Mirov stands in Oaxaca, Mexico. Mycorrhiza 16:117–124. doi:10.1007/s00572-005-0022-9

    Article  PubMed  Google Scholar 

  • Van Den Driessche R (1989) Changes in osmotic potential of Douglas-fir (Pseudotsuga menziesii) seedlings in relation to temperature and photoperiod. Can J For Res 19:413–421. doi:10.1139/x89-065

    Article  Google Scholar 

  • Villar-Salvador P, Planelles González R, Oliet Palá J, González de Chavez Fernández M (1998) Efecto de diferentes niveles de estrés hídrico y su duración en las relaciones hídricas de plántulas de Quercus ilex. Actas del 4º Simposium Hispano—Portugués de Relaciones Hídricas de las plantas. 2–3 noviembre 1998. Murcia, pp 65–68

  • Villar-Salvador P, Planelles R, Oliet J, Penuelas-Rubira JL, Jacobs DF, Gonzalez M (2004) Drought tolerance and transplanting performance of holm oak (Quercus ilex) seedlings after drought hardening in the nursery. Tree Physiol 24(10):1147–1155

    PubMed  Google Scholar 

  • Walker RF, McLaughlin SB, West DC (2004) Establishement of sweet birch on surface mine spoil as influenced by mycorrhizal inoculation and fertility. Restor Ecol 12:8–19. doi:10.1111/j.1061-2971.2004.00255.x

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the regional government of Valencia, Spain (Programa de Investigación y Desarrollo en Relación con la Restauración de la Cubierta Vegetal, CEAM, 1996–1999) and the regional government of Cantabria, Spain (Desarrollo de procedimientos de producción de setas comestibles de hongos de micorrización como alternativa a la obtención de productos excedentarios de cultivo agrícola, Consejería de Agricultura, 1999–2002). We thank ETSI Montes, EUIT Forestal in Madrid, and INIA (Instituto Nacional de Investigaciones Agrarias) for their support and help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Alfonso Domínguez Núñez.

Additional information

José Antonio Rodríguez Barreal—Deceased

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domínguez Núñez, J.A., Planelles González, R., Rodríguez Barreal, J.A. et al. Influence of water-stress acclimation and Tuber melanosporum mycorrhization on Quercus ilex seedlings. Agroforest Syst 75, 251–259 (2009). https://doi.org/10.1007/s10457-008-9197-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-008-9197-3

Keywords

Navigation