Skip to main content

Anticancer Activity of Lichen Metabolites and Their Mechanisms at the Molecular Level

  • Chapter
  • First Online:
Recent Advances in Lichenology

Abstract

As a result of symbiotic associations between mycobiont and photobiont, lichens can produce distinct and unique metabolites. Moreover, lichens are occasionally subjected to protect themselves from harsh environmental conditions during the growth. Therefore, lichen metabolites are expected to have various biological activities including antineoplastic action, for which it should suppress more than one of characteristics of the tumor progression. Here, we reviewed anticancer activity of lichen metabolites with molecular mechanisms by exerting cytotoxicity through regulation of cell cycle or induction of cell death, and by modulation of immune activity, angiogenesis, or energy metabolism. Alongside with these points, research will be expanded to yet unexplored areas by targeting cancer-specific signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Backorova M, Backor M, Mikes J, Jendzelovsky R, Fedorocko P (2011) Variable responses of different human cancer cells to the lichen compounds parietin, atranorin, usnic acid and gyrophoric acid. Toxicol In Vitro 25:37–44

    Article  CAS  PubMed  Google Scholar 

  • Backorova M, Jendzelovsky R, Kello M, Backor M, Mikes J, Fedorocko P (2012) Lichen secondary metabolites are responsible for induction of apoptosis in HT-29 and A2780 human cancer cell lines. Toxicol In Vitro 26:462–468

    Article  CAS  PubMed  Google Scholar 

  • Bingle L, Brown NJ, Lewis CE (2002) The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196:254–265

    Article  CAS  PubMed  Google Scholar 

  • Bucar F, Schneider I, Ogmundsdottir H, Ingolfsdottir K (2004) Anti-proliferative lichen compounds with inhibitory activity on 12(S)-HETE production in human platelets. Phytomedicine 11:602–606

    Article  CAS  PubMed  Google Scholar 

  • Cain BF (1966) Potential anti-tumour agents. IV. Polyporic acid series. J Chem Soc Perkin Trans 1 11:1041–1045

    Google Scholar 

  • Choi HS, Yim JH, Lee HK, Pyo S (2009) Immunomodulatory effects of polar lichens on the function of macrophages in vitro. Mar Biotechnol 11:90–98

    Article  CAS  PubMed  Google Scholar 

  • Cohen NR, Tatituri RV, Rivera A, Watts GF, Kim EY, Chiba A, Fuchs BB, Mylonakis E, Besra GS, Levitz SM et al (2011) Innate recognition of cell wall beta-glucans drives invariant natural killer T cell responses against fungi. Cell Host Microbe 10:437–450

    Article  CAS  PubMed  Google Scholar 

  • Einarsdottir E, Groeneweg J, Bjornsdottir GG, Harethardottir G, Omarsdottir S, Ingolfsdottir K, Ogmundsdottir HM (2010) Cellular mechanisms of the anticancer effects of the lichen compound usnic acid. Planta Med 76:969–974

    Article  CAS  PubMed  Google Scholar 

  • Ellis LM, Fidler IJ (1996) Angiogenesis and metastasis. Eur J Cancer 32A:2451–2460

    Article  CAS  PubMed  Google Scholar 

  • Freysdottir J, Omarsdottir S, Ingolfsdottir K, Vikingsson A, Olafsdottir ES (2008) In vitro and in vivo immunomodulating effects of traditionally prepared extract and purified compounds from Cetraria islandica. Int Immunopharmacol 8:423–430

    Article  CAS  PubMed  Google Scholar 

  • Fukuoka F, Nakanishi M, Shibata S, Nishikawa Y, Takeda T, Tanaka M (1968) Polysaccharides in lichens and fungi. II. Anti-tumor activities on sarcoma-180 of the polysaccharide preparations from Gyrophora esculenta Miyoshi, Cetraria islandica (L.) Ach. var. orientalis Asahina, and some other lichens. Gann = Gan 59:421–432

    Google Scholar 

  • Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  • Haraldsdottir S, Guolaugsdottir E, Ingolfsdottir K, Ogmundsdottir HM (2004) Anti-proliferative effects of lichen-derived lipoxygenase inhibitors on twelve human cancer cell lines of different tissue origin in vitro. Planta Med 70:1098–1100

    Article  CAS  PubMed  Google Scholar 

  • Jin JQ, Li CQ, He LC (2008) Down-regulatory effect of usnic acid on nuclear factor-kappa B-dependent tumor necrosis factor-alpha and inducible nitric oxide synthase expression in lipopolysaccharide-stimulated macrophages RAW 264.7. Phytother Res 22:1605–1609

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Hong JT, Kim Y, Han SB (2011) Stimulatory effect of beta-glucans on immune cells. Immune Netw 11:191–195

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim HS, Kim JY, Lee HK, Kim MS, Lee SR, Kang JS, Kim HM, Lee KA, Hong JT, Kim Y et al (2010a) Dendritic cell activation by glucan isolated from umbilicaria esculenta. Immune Netw 10:188–197

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim HS, Kim JY, Ryu HS, Park HG, Kim YO, Kang JS, Kim HM, Hong JT, Kim Y, Han SB (2010b) Induction of dendritic cell maturation by beta-glucan isolated from Sparassis crispa. Int Immunopharmacol 10:1284–1294

    Article  CAS  PubMed  Google Scholar 

  • Klimp AH, de Vries EG, Scherphof GL, Daemen T (2002) A potential role of macrophage activation in the treatment of cancer. Crit Rev Oncol/Hematol 44:143–161

    Article  CAS  Google Scholar 

  • Koparal AT, Ulus G, Zeytinoglu M, Tay T, Turk AO (2010) Angiogenesis inhibition by a lichen compound olivetoric acid. Phytother Res 24:754–758

    CAS  PubMed  Google Scholar 

  • Kupchan SM, Kopperman HL (1975) l-usnic acid: tumor inhibitor isolated from lichens. Experientia 31:625

    Article  CAS  PubMed  Google Scholar 

  • Lin X, Cai YJ, Li ZX, Chen Q, Liu ZL, Wang R (2003) Structure determination, apoptosis induction, and telomerase inhibition of CFP-2, a novel lichenin from Cladonia furcata. Biochim Biophys Acta 1622:99–108

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Liu YQ, Xu AH, Young CY, Yuan HQ, Lou HX (2010) A novel anticancer agent, retigeric acid B, displays proliferation inhibition, S phase arrest and apoptosis activation in human prostate cancer cells. Chem Biol Interact 188:598–606

    Article  CAS  PubMed  Google Scholar 

  • Molnar K, Farkas E (2010) Current results on biological activities of lichen secondary metabolites: a review. Zeitschrift fur Naturforschung C 65:157–173

    CAS  Google Scholar 

  • O’Neill MA, Mayer M, Murray KE, Rolim-Santos HM, Santos-Magalhaes NS, Thompson AM, Appleyard VC (2010) Does usnic acid affect microtubules in human cancer cells? Braz J Biol 70:659–664

    Article  PubMed  Google Scholar 

  • Ogmundsdottir HM, Zoega GM, Gissurarson SR, Ingolfsdottir K (1998) Anti-proliferative effects of lichen-derived inhibitors of 5-lipoxygenase on malignant cell-lines and mitogen-stimulated lymphocytes. J Pharm Pharmacol 50:107–115

    Article  CAS  PubMed  Google Scholar 

  • Omarsdottir S, Olafsdottir ES, Freysdottir J (2006) Immunomodulating effects of lichen-derived polysaccharides on monocyte-derived dendritic cells. Int Immunopharmacol 6:1642–1650

    Article  CAS  PubMed  Google Scholar 

  • Pavlovic V, Stojanovic I, Jadranin M, Vajs V, Djordjevic I, Smelcerovic A, Stojanovic G (2013) Effect of four lichen acids isolated from Hypogymnia physodes on viability of rat thymocytes. Food Chem Toxicol 51:160–164

    Article  CAS  PubMed  Google Scholar 

  • Pelicano H, Martin DS, Xu RH, Huang P (2006) Glycolysis inhibition for anticancer treatment. Oncogene 25:4633–4646

    Article  CAS  PubMed  Google Scholar 

  • Porporato PE, Dhup S, Dadhich RK, Copetti T, Sonveaux P (2011) Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review. Front Pharmacol 2:49

    Article  PubMed Central  PubMed  Google Scholar 

  • Ren MR, Hur JS, Kim JY, Park KW, Park SC, Seong CN, Jeong IY, Byun MW, Lee MK, Seo KI (2009) Anti-proliferative effects of Lethariella zahlbruckneri extracts in human HT-29 human colon cancer cells. Food Chem Toxicol 47:2157–2162

    Article  CAS  PubMed  Google Scholar 

  • Rerole AL, Jego G, Garrido C (2011) Hsp70: anti-apoptotic and tumorigenic protein. Methods Mol Biol 787:205–230

    Article  CAS  PubMed  Google Scholar 

  • Russo A, Caggia S, Piovano M, Garbarino J, Cardile V (2012) Effect of vicanicin and protolichesterinic acid on human prostate cancer cells: role of Hsp70 protein. Chem Biol Interact 195:1–10

    Article  CAS  PubMed  Google Scholar 

  • Russo A, Piovano M, Lombardo L, Vanella L, Cardile V, Garbarino J (2006) Pannarin inhibits cell growth and induces cell death in human prostate carcinoma DU-145 cells. Anticancer Drugs 17:1163–1169

    Article  CAS  PubMed  Google Scholar 

  • Seo C, Yim JH, Lee HK, Oh H (2011) PTP1B inhibitory secondary metabolites from the Antarctic lichen Lecidella carpathica. Mycology 2:18–23

    Article  CAS  Google Scholar 

  • Shibata S, Nishikawa Y, Tanaka M, Fukuoka F, Nakanishi M (1968) Antitumour activities of lichen polysaccharides. Zeitschrift fur Krebsforschung 71:102–104

    Article  CAS  PubMed  Google Scholar 

  • Shrestha G, Clair St LL (2013) Lichens: a promising source of antibiotic and anticancer drugs. Phytochem Rev 12:229–244

    Article  CAS  Google Scholar 

  • Shukla V, Joshi GP, Rawat MSM (2010) Lichens as a potential natural source of bioactive compounds: a review. Phytochem Rev 9:303–314

    Article  CAS  Google Scholar 

  • Sica A, Schioppa T, Mantovani A, Allavena P (2006) Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 42:717–727

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Nambiar D, Kale RK, Singh RP (2013) Usnic acid inhibits growth and induces cell cycle arrest and apoptosis in human lung carcinoma A549 cells. Nutr Cancer 65(Suppl 1):36–43

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Dai F, Zhai D, Dong Y, Zhang J, Lu B, Luo J, Liu M, Yi Z (2012) Usnic acid inhibits breast tumor angiogenesis and growth by suppressing VEGFR2-mediated AKT and ERK1/2 signaling pathways. Angiogenesis 15:421–432

    Article  CAS  PubMed  Google Scholar 

  • Zambare VP, Christopher LP (2012) Biopharmaceutical potential of lichens. Pharm Biol 50:778–798

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Seoun Hur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Kim, H., Kim, K.K., Hur, JS. (2015). Anticancer Activity of Lichen Metabolites and Their Mechanisms at the Molecular Level. In: Upreti, D., Divakar, P., Shukla, V., Bajpai, R. (eds) Recent Advances in Lichenology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2235-4_11

Download citation

Publish with us

Policies and ethics