Skip to main content

Advertisement

Log in

Usnic acid inhibits breast tumor angiogenesis and growth by suppressing VEGFR2-mediated AKT and ERK1/2 signaling pathways

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Tumor growth depends on angiogenesis and inducing angiogenesis is one of the most important hallmarks in the cancer development. Treatment with small molecules that inhibit angiogenesis has been an effective strategy for anti-cancer therapy. Some anti-angiogenic factors are derived from traditional Chinese herbs. Usnic acid (UA), an active compound mainly found in lichens, has shown some biological and physiological activities. However, the role and mechanism of UA in tumor angiogenesis are still unknown. The aim of this study was to assess the effects of UA on tumor angiogenesis. In this study, we demonstrated that UA strongly inhibited in vivo angiogenesis in a chick embryo chorioallantoic membrane assay and vascular endothelial growth factor-induced mouse corneal angiogenesis model. In a mouse xenograft tumor model, UA suppressed Bcap-37 breast tumor growth and angiogenesis without affecting mice body weight. In an in vitro assay, UA not only significantly inhibited endothelial cell proliferation, migration and tube formation, but also induced morphological changes and apoptosis in endothelial cells. In addition, UA inhibited Bcap-37 tumor cell proliferation. Moreover, western blot analysis of cell signaling molecules indicated that UA blocked vascular endothelial growth factor receptor (VEGFR) 2 mediated Extracellular signal-regulated protein kinases 1 and 2(ERK1/2) and AKT/P70S6K signaling pathways in endothelial cells. These results provided the first evidence of the biological function and molecular mechanism of UA in tumor angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Thairu N, Kiriakidis S, Dawson P, Paleolog E (2011) Angiogenesis as a therapeutic target in arthritis in 2011: learning the lessons of the colorectal cancer experience. Angiogenesis. doi:10.1007/s10456-011-9208-2

  2. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70. doi:10.1016/S0092-8674(00)81683-9

    Google Scholar 

  3. Cao R, Eriksson A, Kubo H, Alitalo K, Cao Y, Thyberg J (2004) Comparative evaluation of FGF-2-, VEGF-A-, and VEGF-C-induced angiogenesis, lymphangiogenesis, vascular fenestrations, and permeability. Circ Res 94(5):664–670. doi:10.1161/01.RES.0000118600.91698.BB

    Article  PubMed  CAS  Google Scholar 

  4. Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25(4):581–611. doi:10.1210/er.2003-0027

    Article  PubMed  CAS  Google Scholar 

  5. Chrzanowska-Wodnicka M, Kraus AE, Gale D, White GC II, Vansluys J (2008) Defective angiogenesis, endothelial migration, proliferation, and MAPK signaling in Rap1b-deficient mice. Blood 111(5):2647–2656. doi:10.1182/blood-2007-08-109710

    Article  PubMed  CAS  Google Scholar 

  6. Jiang BH, Liu LZ (2008) AKT signaling in regulating angiogenesis. Curr Cancer Drug Targets 8(1):19–26

    Article  PubMed  CAS  Google Scholar 

  7. Abu-Ghazaleh R, Kabir J, Jia H, Lobo M, Zachary I (2001) Src mediates stimulation by vascular endothelial growth factor of the phosphorylation of focal adhesion kinase at tyrosine 861, and migration and anti-apoptosis in endothelial cells. Biochem J 360(Pt 1):255–264

    Article  PubMed  CAS  Google Scholar 

  8. Pyun BJ, Choi S, Lee Y, Kim TW, Min JK, Kim Y, Kim BD, Kim JH, Kim TY, Kim YM, Kwon YG (2008) Capsiate, a nonpungent capsaicin-like compound, inhibits angiogenesis and vascular permeability via a direct inhibition of Src kinase activity. Cancer Res 68(1):227–235. doi:10.1158/0008-5472.CAN-07-2799

    Article  PubMed  CAS  Google Scholar 

  9. Somanath PR, Razorenova OV, Chen J, Byzova TV (2006) Akt1 in endothelial cell and angiogenesis. Cell Cycle 5(5):512–518. doi:10.4161/cc.5.5.2538

    Google Scholar 

  10. Berra E, Milanini J, Richard DE, Le Gall M, Vinals F, Gothie E, Roux D, Pages G, Pouyssegur J (2000) Signaling angiogenesis via p42/p44 MAP kinase and hypoxia. Biochem Pharmacol 60(8):1171–1178. doi:10.1016/S0006-2952(00)00423-8

    Google Scholar 

  11. Pages G, Milanini J, Richard DE, Berra E, Gothie E, Vinals F, Pouyssegur J (2000) Signaling angiogenesis via p42/p44 MAP kinase cascade. Ann N Y Acad Sci 902:187–200

    Article  PubMed  CAS  Google Scholar 

  12. Cabebe E, Wakelee H (2006) Sunitinib: a newly approved small-molecule inhibitor of angiogenesis. Drugs Today (Barc) 42(6):387–398. doi:10.1358/dot.2006.42.6.985633

    Article  CAS  Google Scholar 

  13. Kane RC, Farrell AT, Saber H, Tang S, Williams G, Jee JM, Liang C, Booth B, Chidambaram N, Morse D, Sridhara R, Garvey P, Justice R, Pazdur R (2006) Sorafenib for the treatment of advanced renal cell carcinoma. Clin Cancer Res 12(24):7271–7278. doi:10.1158/1078-0432.CCR-06-1249

    Article  PubMed  CAS  Google Scholar 

  14. Cocchietto M, Skert N, Nimis PL, Sava G (2002) A review on usnic acid, an interesting natural compound. Naturwissenschaften 89(4):137–146

    Article  PubMed  CAS  Google Scholar 

  15. Guo L, Shi Q, Fang JL, Mei N, Ali AA, Lewis SM, Leakey JE, Frankos VH (2008) Review of usnic acid and usnea barbata toxicity. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 26(4):317–338. doi:10.1080/10590500802533392

    Article  PubMed  CAS  Google Scholar 

  16. O’Neill MA, Mayer M, Murray KE, Rolim-Santos HM, Santos-Magalhaes NS, Thompson AM, Appleyard VC (2010) Does usnic acid affect microtubules in human cancer cells? Braz J Biol 70(3):659–664. doi:10.1590/S1519-69842010005000013

    Google Scholar 

  17. Einarsdottir E, Groeneweg J, Bjornsdottir GG, Harethardottir G, Omarsdottir S, Ingolfsdottir K, Ogmundsdottir HM (2010) Cellular mechanisms of the anticancer effects of the lichen compound usnic acid. Planta Med 76(10):969–974. doi:10.1055/s-0029-1240851

    Article  PubMed  CAS  Google Scholar 

  18. da Silva Santos NP, Nascimento SC, Wanderley MS, Pontes-Filho NT, da Silva JF, de Castro CM, Pereira EC, da Silva NH, Honda NK, Santos-Magalhaes NS (2006) Nanoencapsulation of usnic acid: an attempt to improve antitumour activity and reduce hepatotoxicity. Euro J Pharm Biopharm 64(2):154–160. doi:10.1016/j.ejpb.2006.05.018

    Article  Google Scholar 

  19. Mayer M, O’Neill MA, Murray KE, Santos-Magalhaes NS, Carneiro-Leao AM, Thompson AM, Appleyard VC (2005) Usnic acid: a non-genotoxic compound with anti-cancer properties. Anticancer Drugs 16(8):805–809. doi:10.1097/01.cad.0000175588.09070.77

    Google Scholar 

  20. Gupta GP, Nguyen DX, Chiang AC, Bos PD, Kim JY, Nadal C, Gomis RR, Manova-Todorova K, Massague J (2007) Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446(7137):765–770. doi:10.1038/nature05760

    Article  PubMed  CAS  Google Scholar 

  21. Ye H, Jin L, Hu R, Yi Z, Li J, Wu Y, Xi X, Wu Z (2006) Poly(gamma,l-glutamic acid)-cisplatin conjugate effectively inhibits human breast tumor xenografted in nude mice. Biomaterials 27(35):5958–5965. doi:10.1016/j.biomaterials.2006.08.016

    Article  PubMed  CAS  Google Scholar 

  22. Cho SG, Yi Z, Pang X, Yi T, Wang Y, Luo J, Wu Z, Li D, Liu M (2009) Kisspeptin-10, a KISS1-derived decapeptide, inhibits tumor angiogenesis by suppressing Sp1-mediated VEGF expression and FAK/Rho GTPase activation. Cancer Res 69(17):7062–7070. doi:10.1158/0008-5472.CAN-09-0476

    Article  PubMed  CAS  Google Scholar 

  23. Yi ZF, Cho SG, Zhao H, Wu YY, Luo J, Li D, Yi T, Xu X, Wu Z, Liu M (2009) A novel peptide from human apolipoprotein(a) inhibits angiogenesis and tumor growth by targeting c-Src phosphorylation in VEGF-induced human umbilical endothelial cells. Int J Cancer 124(4):843–852. doi:10.1002/ijc.24027

    Article  PubMed  CAS  Google Scholar 

  24. Pang X, Yi Z, Zhang X, Sung B, Qu W, Lian X, Aggarwal BB, Liu M (2009) Acetyl-11-keto-beta-boswellic acid inhibits prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis. Cancer Res 69(14):5893–5900. doi:10.1158/0008-5472.CAN-09-0755

    Article  PubMed  CAS  Google Scholar 

  25. Dong Y, Lu B, Zhang X, Zhang J, Lai L, Li D, Wu Y, Song Y, Luo J, Pang X, Yi Z, Liu M (2010) Cucurbitacin E, a tetracyclic triterpenes compound from Chinese medicine, inhibits tumor angiogenesis through VEGFR2-mediated Jak2-STAT3 signaling pathway. Carcinogenesis 31(12):2097–2104. doi:10.1093/carcin/bgq167

    Article  PubMed  CAS  Google Scholar 

  26. Yi T, Yi Z, Cho SG, Luo J, Pandey MK, Aggarwal BB, Liu M (2008) Gambogic acid inhibits angiogenesis and prostate tumor growth by suppressing vascular endothelial growth factor receptor 2 signaling. Cancer Res 68(6):1843–1850. doi:10.1158/0008-5472.CAN-07-5944

    Article  PubMed  CAS  Google Scholar 

  27. Ribatti D, Vacca A, Roncali L, Dammacco F (1996) The chick embryo chorioallantoic membrane as a model for in vivo research on angiogenesis. Int J Dev Biol 40(6):1189–1197

    PubMed  CAS  Google Scholar 

  28. Tozer GM, Kanthou C, Baguley BC (2005) Disrupting tumour blood vessels. Nat Rev Cancer 5(6):423–435. doi:10.1038/nrc1628

    Article  PubMed  CAS  Google Scholar 

  29. Rousseau S, Houle F, Landry J, Huot J (1997) p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells. Oncogene 15(18):2169–2177. doi:10.1038/sj.onc.1201380

    Article  PubMed  CAS  Google Scholar 

  30. Patan S (2004) Vasculogenesis and angiogenesis. Cancer Treat Res 117:3–32

    Article  PubMed  CAS  Google Scholar 

  31. Lynch CN, Wang YC, Lund JK, Chen YW, Leal JA, Wiley SR (1999) TWEAK induces angiogenesis and proliferation of endothelial cells. J Biol Chem 274(13):8455–8459

    Article  PubMed  CAS  Google Scholar 

  32. Strasser A, O’Connor L, Dixit VM (2000) Apoptosis signaling. Annu Rev Biochem 69:217–245. doi:10.1146/annurev.biochem.69.1.217

    Article  PubMed  CAS  Google Scholar 

  33. Johnstone RW, Ruefli AA, Lowe SW (2002) Apoptosis: a link between cancer genetics and chemotherapy. Cell 108(2):153–164. doi:10.1016/S0092-8674(02)00625-6

    Google Scholar 

  34. Ambrosini G, Adida C, Altieri DC (1997) A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 3(8):917–921

    Article  PubMed  CAS  Google Scholar 

  35. Yang D, Welm A, Bishop JM (2004) Cell division and cell survival in the absence of survivin. Proc Natl Acad Sci USA 101(42):15100–15105. doi:10.1073/pnas.0406665101

    Article  PubMed  CAS  Google Scholar 

  36. Kawasaki H, Toyoda M, Shinohara H, Okuda J, Watanabe I, Yamamoto T, Tanaka K, Tenjo T, Tanigawa N (2001) Expression of survivin correlates with apoptosis, proliferation, and angiogenesis during human colorectal tumorigenesis. Cancer 91(11):2026–2032. doi:10.1002/1097-0142(20010601)91:11<2026:AID-CNCR1228>3.0.CO;2-E

    Article  PubMed  CAS  Google Scholar 

  37. Conway EM, Zwerts F, Van Eygen V, DeVriese A, Nagai N, Luo W, Collen D (2003) Survivin-dependent angiogenesis in ischemic brain: molecular mechanisms of hypoxia-induced up-regulation. Am J Pathol 163(3):935–946

    Article  PubMed  CAS  Google Scholar 

  38. Tu SP, Jiang XH, Lin MC, Cui JT, Yang Y, Lum CT, Zou B, Zhu YB, Jiang SH, Wong WM, Chan AO, Yuen MF, Lam SK, Kung HF, Wong BC (2003) Suppression of survivin expression inhibits in vivo tumorigenicity and angiogenesis in gastric cancer. Cancer Res 63(22):7724–7732

    PubMed  CAS  Google Scholar 

  39. Li QX, Zhao J, Liu JY, Jia LT, Huang HY, Xu YM, Zhang Y, Zhang R, Wang CJ, Yao LB, Chen SY, Yang AG (2006) Survivin stable knockdown by siRNA inhibits tumor cell growth and angiogenesis in breast and cervical cancers. Cancer Biol Ther 5(7):860–866. doi:10.4161/cbt.5.7.2893

    Google Scholar 

  40. Caldas H, Fangusaro JR, Boue DR, Holloway MP, Altura RA (2007) Dissecting the role of endothelial SURVIVIN DeltaEx3 in angiogenesis. Blood 109(4):1479–1489. doi:10.1182/blood-2006-02-003749

    Article  PubMed  CAS  Google Scholar 

  41. Botto S, Streblow DN, Defilippis V, White L, Kreklywich CN, Smith PP, Caposio P (2010) IL-6 in human cytomegalovirus secretome promotes angiogenesis and survival of endothelial cells through the stimulation of survivin. Blood. doi:10.1182/blood-2010-06-291245

  42. Lohela M, Bry M, Tammela T, Alitalo K (2009) VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr Opin Cell Biol 21(2):154–165. doi:10.1016/j.ceb.2008.12.012

    Article  PubMed  CAS  Google Scholar 

  43. Risau W (1997) Mechanisms of angiogenesis. Nature 386(6626):671–674. doi:10.1038/386671a0

    Article  PubMed  CAS  Google Scholar 

  44. Yap TA, Garrett MD, Walton MI, Raynaud F, de Bono JS, Workman P (2008) Targeting the PI3K-AKT-mTOR pathway: progress, pitfalls, and promises. Curr Opin Pharmacol 8(4):393–412. doi:10.1016/j.coph.2008.08.004

    Article  PubMed  CAS  Google Scholar 

  45. Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129(7):1261–1274. doi:10.1016/j.cell.2007.06.009

    Article  PubMed  CAS  Google Scholar 

  46. Olszewska-Pazdrak B, Hein TW, Olszewska P, Carney DH (2009) Chronic hypoxia attenuates VEGF signaling and angiogenic responses by downregulation of KDR in human endothelial cells. Am J Physiol Cell Physiol 296(5):C1162–C1170. doi:10.1152/ajpcell.00533.2008

    Article  PubMed  CAS  Google Scholar 

  47. Surh YJ (2003) Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3(10):768–780. doi:10.1038/nrc1189

    Article  PubMed  CAS  Google Scholar 

  48. Tufan AC, Satiroglu-Tufan NL (2005) The chick embryo chorioallantoic membrane as a model system for the study of tumor angiogenesis, invasion and development of anti-angiogenic agents. Curr Cancer Drug Targets 5(4):249–266

    Article  PubMed  CAS  Google Scholar 

  49. Schwartz S, George J, Ben-Shoshan J, Luboshits G, Avni I, Levkovitch-Verbin H, Ziv H, Rosner M, Barak A (2008) Drug modification of angiogenesis in a rat cornea model. Invest Ophthalmol Vis Sci 49(1):250–254. doi:10.1167/iovs.06-1337

    Article  PubMed  Google Scholar 

  50. Jablonska J, Leschner S, Westphal K, Lienenklaus S, Weiss S (2010) Neutrophils responsive to endogenous IFN-beta regulate tumor angiogenesis and growth in a mouse tumor model. J Clin Investig 120(4):1151–1164. doi:10.1172/JCI37223

    Google Scholar 

  51. Wedge SR, Ogilvie DJ, Dukes M, Kendrew J, Chester R, Jackson JA, Boffey SJ, Valentine PJ, Curwen JO, Musgrove HL, Graham GA, Hughes GD, Thomas AP, Stokes ES, Curry B, Richmond GH, Wadsworth PF, Bigley AL, Hennequin LF (2002) ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res 62(16):4645–4655

    PubMed  CAS  Google Scholar 

  52. Murphy DA, Makonnen S, Lassoued W, Feldman MD, Carter C, Lee WM (2006) Inhibition of tumor endothelial ERK activation, angiogenesis, and tumor growth by sorafenib (BAY43-9006). Am J Pathol 169(5):1875–1885. doi:10.2353/ajpath.2006.050711

    Google Scholar 

Download references

Acknowledgments

We thank all members in the laboratory of Dr.Mingyao Liu’s lab at the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University. This study was partially sponsored by the Major State Basic Research Development Program of China (2012CB910400, 2009CB918402). National Natural Science Foundation of China (30930055, 30971523, 81071807) and The Science and Technology Commission of Shanghai Municipality (11DZ2260300).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengfang Yi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, Y., Dai, F., Zhai, D. et al. Usnic acid inhibits breast tumor angiogenesis and growth by suppressing VEGFR2-mediated AKT and ERK1/2 signaling pathways. Angiogenesis 15, 421–432 (2012). https://doi.org/10.1007/s10456-012-9270-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-012-9270-4

Keywords

Navigation