Skip to main content

Smart Materials for Energy Harvesting, Energy Storage, and Energy Efficient Solid-State Electronic Refrigeration

  • Chapter
  • First Online:
Micro and Smart Devices and Systems

Abstract

The new emerging fields of MEMS-based energy harvesting from piezoelectric materials, lead to the development of solid-state electrostatic energy storage for better power/energy distribution for renewable energy and the solid-state electrocaloric cooling for low energy and hazard free refrigeration. Among them it is being reported that on application of 8.693 TPas−1 oscillated stress generates 10 Vs−1 oscillated voltage in 300 nm 0.75PMN–0.15PT thin films where 22 Jcc−1 s−1 of oscillated energy density can be harvested on application of 15 TPas−1 oscillated pressure upon 500 nm thin film of same material. It is also described that La modified antiferroelectric PbZrO3 (PZ) thin films are the potential materials that can achieve the high energy density storage density in the order of 103 J/kg. Though PZT-based antiferroelectric cooling triggered the research on the materials for electrocaloric cooling by the amount of 12 K adiabatic decrease in temperature on withdrawal of electric field, the decrease in temperature by 11.4 K in pure PZ and by 31 K in 0.63PMN–0.37PT thin film are found commendable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Muralt P (2000) Ferroelectric thin films for micro-sensors and actuators: a review. J Micromech Microeng 10:136–146

    Article  Google Scholar 

  2. Shahinpoory M, Bar-Cohenz Y, Simpsonx JO, Smith J (1998) Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles—a review. Smart Mater Struct 7:R15–R30

    Google Scholar 

  3. Chabinyc ML, Salleo A (2004) Materials requirements and fabrication of active matrix arrays of organic thin-film transistors for displays. Chem Mater 16:4509–4521

    Article  Google Scholar 

  4. Fortunato E, Barquinha P, Martins R (2012) Oxide semiconductor thin-film transistors: a review of recent advances. Adv Mater 24:2945–2986

    Article  Google Scholar 

  5. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205

    Article  Google Scholar 

  6. Shah A, Torres P, Tscharner R, Wyrsch N, Keppner H (1999) Photovoltaic technology: the case for thin-film solar cells. Science 285:30

    Google Scholar 

  7. Tehrani S, Slaughter JM, Deherrera M, Engel BN, Rizzo ND, Salter J, Durlam M, Dave RW, Janesky J, Butcher B, Smith K, Grynkewich G (2003) Magnetoresistive random access memory using magnetic tunnel junctions. Proc IEEE 91(5):703

    Google Scholar 

  8. Murali B, Krupanidhi SB (2014) Transport properties of CuIn1–xAlxSe2/AlZnO heterostructure for low cost thin film photovoltaics. Dalton Trans 43:1974–1983

    Article  Google Scholar 

  9. Xiao L, Chen Z, Qu B, Luo J, Kong S, Gong Q, Kido J (2011) Recent progresses on materials for electrophosphorescent organic light-emitting devices. Adv Mater 23:926–952

    Article  Google Scholar 

  10. Baek SH, Park J, Kim DM, Aksyuk VA, Das RR, Bu SD, Felker DA, Lettieri J, Vaithyanathan V, Bharadwaja SSN, Bassiri-Gharb N, Chen YB, Sun HP, Folkman CM, Jang HW, Kreft DJ, Streiffer SK, Ramesh R, Pan XQ, Trolier-McKinstry S, Schlom DG, Rzchowski MS, Blick RH, Eom CB (2011) Giant piezoelectricity on Si for hyperactive MEMS. Science 334:958

    Article  Google Scholar 

  11. Sherrill SA, Banerjee P, Rubloff GW, Lee SB (2011) High to ultra-high power electrical energy storage. Phys Chem Chem Phys 13:20714–20723

    Article  Google Scholar 

  12. Valant M (2012) Electrocaloric materials for future solid-state refrigeration technologies. Prog Mater Sci 57:980–1009

    Article  Google Scholar 

  13. Chen N, Bai GR, Auciello O, Koritala RE, Lanagan MT (1999) Properties and orientation of antiferroelectric lead zirconate thin films grown by MOCVD. In: Material research society symposia proceedings, vol 541. Pittsburgh, pp 345–350

    Google Scholar 

  14. Parui J, Krupanidhi SB (2008) Enhancement of charge and energy storage in sol-gel derived pure and La-modified PbZrO3 thin films. Appl Phys Lett 92:192901

    Google Scholar 

  15. Jaffe B (1961) Antiferroelectric ceramics with field-enforced transitions: a new nonlinear circuit element. Proc IRE 49:1264

    Google Scholar 

  16. Mischenko AS, Zhang Q, Scott JF, Whatmore RW, Mathur ND (2006) Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science 311:1270

    Google Scholar 

  17. Kobeco P, Kurtchatov IV (1930) Dielectric properties of Rochelle salt crystal. Z Phys 66:192–205

    Article  Google Scholar 

  18. Parui J, Krupanidhi SB (2008) Electrocaloric effect in antiferroelectric PbZrO3 thin films. Phys Status Solidi (RRL) 2(5):230–232

    Google Scholar 

  19. Saranya D, Chaudhuri AR, Parui J, Krupanidhi SB (2009) Electrocaloric effect of PMN–PT thin films near morphotropic phase boundary. Bull Mater Sci 32(3):259–262

    Article  Google Scholar 

Download references

Acknowledgments

The research reported in this chapter was supported in part by National Programme on Smart Materials (NPSM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Krupanidhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Parui, J., Saranya, D., Krupanidhi, S.B. (2014). Smart Materials for Energy Harvesting, Energy Storage, and Energy Efficient Solid-State Electronic Refrigeration. In: Vinoy, K., Ananthasuresh, G., Pratap, R., Krupanidhi, S. (eds) Micro and Smart Devices and Systems. Springer Tracts in Mechanical Engineering. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1913-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-1913-2_18

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-1912-5

  • Online ISBN: 978-81-322-1913-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics