Skip to main content

The Use of Transgenic Plants in Insect Control

  • Chapter
  • First Online:
Basic and Applied Aspects of Biopesticides

Abstract

Over the last decade, the research data about the importance of the transgenic crops – named Bt crops – has increased commercially, leading them to take the second place among genetically modified (GM) crops most used and distributed. In 2006, total Bt crops reached 19 million hectares worldwide, and the Bt-corn already presented 16 commercial approvals, given that the first commercial Bt-rice plantation was made in Iran, in 2005. The clean t.echnology development, such as GM cultivars, presents several advantages in comparison to formulated insecticides, which depends on appropriated application methods according to the crop culture or the insect behavior and the impacts over the nontarget organisms and the environment. In this sense, the Bt-rice has the potential to increase productivity, decrease the pesticide application, and thus improve the environmental quality on the agricultural systems, which are highly related to environment conservation areas such as flooded regions of Brazil. The potential benefits that Bt-rice can offer, based on already obtained results with Bt-cotton and Bt-corn, should motivate new researches and the development of different varieties of Bt-rice. As a result, it could accelerate the approval and release of this technology to the rice farmers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adamczyk LC, Hardee DD (2001) Field efficacy and seasonal expression profiles for terminal leaves of single and double Bacillus thuringiensis toxin cotton genotypes. J Econ Entomol 94:1589–1593

    Article  CAS  PubMed  Google Scholar 

  • Adang MJ, Brody MS, Cardineau G, Petersen LJ, Parker GB, Mcpherson SA, Wyman J, Love S, Reed G, Biever D, Fischholf DA (1993) The reconstruction and expression of Bacillus thuringiensis cryIIIA gene in protoplants and potato plants. Plant Mol Biol 21:1131–1145

    Article  CAS  PubMed  Google Scholar 

  • Agaisse H, Lereclus D (1995) How does Bacillus thuringiensis produce so much insecticidal crystal protein? J Bacteriol 177:6027–6032

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alves SB (1998) Controle Microbiano de Insetos, 2nd edn. FEALQ, Piracicaba

    Google Scholar 

  • Bai YY, Jiang MX, Cheng JA (2005) Impacts of transgenic cry1Ab rice on two collembolan species and predation of Microvelia horvathi (Hemiptera: Veliidae). Acta Entomol Sin 48:42–47

    Google Scholar 

  • Barton K, Whiteley HR, Yang NS (1987) Bacillus thuringiensis δ-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidopteran insects. Plant Physiol 85:1103–1109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bates SL, Zhao JZ, Roush RT, Shelton AM (2005) Insect resistance management in GM crops: past, present and future. Nat Biotechnol 23(1):57–62. doi:10.1038/nbt1056

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya N, Bhat SR, Kirti PB, Chopra VL (2002) Development of insect-resistant transgenic cabbage plants expressing a synthetic cryIA(b) gene from Bacillus thuringiensis. Curr Sci 83:146–150

    CAS  Google Scholar 

  • Bobrowski LM, Pasquali G, Bodanese-Zanettini MH (2003) Genes de Bacillus thuringiensis: uma estratégia para conferir resistência a insetos em plantas. Ciência Rural 33(5):843–850

    Article  Google Scholar 

  • Bravo A, Gomez I, Conde J, Munoz-Garay C, Sanchez J, Miranda R, Zhuang M, Gill SS, Soberon M (2004) Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains. Biochim Biophys Acta 1667(1):38–46. doi:10.1016/j.bbamem.2004.08.013

    Article  CAS  PubMed  Google Scholar 

  • Bravo A, Gillb SS, Soberón M (2005) Bacillus thuringiensis mechanisms and use. In: Comprehensive molecular insect science. Elsevier BV, Amsterdam, pp 175–206

    Google Scholar 

  • Bravo A, Gill SS, Soberon M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49(4):423–435. doi:10.1016/j.toxicon.2006.11.022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Breitler JC, Vassal JM, del Mar CM, Meynard D, Marfa V, Mele E, Royer M, Murillo I, San Segundo B, Guiderdoni E, Messeguer J (2004) Bt rice harbouring cry genes controlled by a constitutive or wound-inducible promoter: protection and transgene expression under Mediterranean field conditions. Plant Biotechnol J 2(5):417–430. doi:10.1111/j.1467-7652.2004.00086.x

    Article  CAS  PubMed  Google Scholar 

  • Brookes G, Barfoot P (2006) GM crops: the first ten years – global socio-economic and environmental impacts. ISAAA brief. No. 36. ISAAA, Ithaca, NY

    Google Scholar 

  • Carlson DA, Caugant DA, Kolst AB (1994) Genotypic diversity among Bacillus cereus e Bacillus thuringiensis strains. Appl Environ Microbiol 60:1719–1725

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chakrabarti SKM, Shukla AD, Pattanayak A, Naik D, Sharma PS, Kumar RP (2000) Bacillus thuringiensis cry1Ab gene confers resistance to potato against Helicoverpa armigera (Hubner). Potato Res 43:143–152

    Article  CAS  Google Scholar 

  • Chen M, Ye GY, Liu ZC, Yao HW, Chen XX, Shen ZC, Hu C, Datta SK (2006) Field assessment of the effects of transgenic rice expressing a fused gene of cry1Ab and cry1Ac from Bacillus thuringiensis Berliner on non-target planthopper and leafhopper populations. Environ Entomol 35(1):127–134

    Article  Google Scholar 

  • Clark BW, Phillips TA, Coats J (2005) Environmental fate and effects of Bacillus thuringiensis (Bt) proteins from transgenic crops: a review. J Agric Food Chem 53:4643–4653

    Article  CAS  PubMed  Google Scholar 

  • Cohen MB, Gould F, Bentur JS (2000) Bt rice: practical steps to sustainable use. Int Rice Res Notes 25:4–10

    Google Scholar 

  • Coombs JJ, Douches DS, Li WB, Grafius EJE, Pett WL (2002) Combining engineered (Bt-cry3A) and natural resistance mechanisms in potato for control of Colorado potato beetle. J Am Soc Hortic Sci 127:62–68

    CAS  Google Scholar 

  • Cornu D, Leple JC, Bonadé-Bottino M, Ross A, Augustin S, Delplanque A, Jouanin L, Pilate G (1996) Expression of proteinase inhibitor and a Bacillus thuringiensis δ-endotoxin in transgenic poplars. In: Proceedings IUFRO meeting on somatic cell genetics and molecular genetics of trees. Kluwer, Dordrecht, pp 131–136

    Chapter  Google Scholar 

  • Crickmore N (2006) Beyond the spore – past and future developments of Bacillus thuringiensis as a biopesticide. J Appl Microbiol 101(3):616–619. doi:10.1111/j.1365-2672.2006.02936.x

    Article  CAS  PubMed  Google Scholar 

  • Crickmore NZ, Zeigler DR, Feitelson J, Schnep E, Van Rie J, Lerecus D, Baum J, Dean DH (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal protein. Microbiol Mol Biol Rev 62(3):807–813

    CAS  PubMed Central  PubMed  Google Scholar 

  • Datta S (2004) Rice biotechnology: a need for developing countries. AgBioForum 7(1–2):31–35

    Google Scholar 

  • de Maagd RA, Bravo A, Crickmore N (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet 17:193–199

    Article  PubMed  Google Scholar 

  • Dutton A, Romeis J, Bigler F (2003) Assessing the risks of insect resistant transgenic plants on entomophagous arthropods: Bt-maize expressing Cry1Ab as a case study. Biol Control 48(6):611–636

    CAS  Google Scholar 

  • Ferry N, Edwards MG, Gatehouse J, Capell T, Christou P, Gatehouse AM (2006) Transgenic plants for insect pest control: a forward looking scientific perspective. Transgenic Res 15(1):13–19. doi:10.1007/s11248-005-4803-x

    Article  CAS  PubMed  Google Scholar 

  • Fischolff DA, Bowdish KS, Perlak FJ, Marrone PG, Mccormick SM, Niedermeyer G, Dean DA, Kusano-Katzmer K, Mayer EJ, Rochester DE, Rogers SG, Finley RT (1987) Insect tolerant transgenic tomato plants. BioTechnology 5:807–813

    Article  Google Scholar 

  • Fiuza LM (2004) Receptores de Bacillus thuringiensis em insetos: análises in vitro de receptores membranares de proteínas Cry em larvas de lepidópteros. Biotecnologia 32:84–89

    Google Scholar 

  • Gao ML, Li R, Dai S, Wu Y, Yi D (2008) Diversity of Bacillus thuringiensis strains from soil in China and their pesticidal activities. Biol Control 44:380–388

    Article  CAS  Google Scholar 

  • High SM, Cohen MB, Shu QY, Altosaar I (2004) Achieving successful deployment of Bt rice. Trends Plant Sci 9(6):286–292. doi:10.1016/j.tplants.2004.04.002

    Article  CAS  PubMed  Google Scholar 

  • Höfte H, Whiteley HR (1989) Insecticidal crystal protein of Bacillus thuringiensis. Microbiol Rev 53(2):242–255

    PubMed Central  PubMed  Google Scholar 

  • Huang J, Hu R, Rozelle S, Pray C (2005) Insect-resistant GM rice in farmers’ fields: assessing productivity and health effects in China. Science 308(5722):688–690. doi:10.1126/science.1108972

    Article  CAS  PubMed  Google Scholar 

  • Indicadores IBGE – Estatística da Produção Agrícola – Brasil (2012) http://www.ibge.gov.br/home/estatistica/indicadores/agropecuaria/lspa/estProdAgr_201211.pdf. Accessed 9 Dec 2012

  • Jansen SV, Dickburt A, Buysse C, Piens L, Saey C, De Wulf B, Gossele A, Paez VA, Gobel E (1997) Transgenic corn expressing a cry9C insecticidal protein from Bacillus thuringiensis protected from European corn borer damage. Crop Sci 37:1616–1624

    Article  Google Scholar 

  • James C (2011) Global status of commercialized biotech/GM crops: 2011. ISAAA brief 43

    Google Scholar 

  • Jelenkovic GB, Chen S, Lashomb Q, Hamilton J, Ghidiu G (1998) Transformation of eggplant with synthetic cryIIIA gene produces a high level of resistance to the Colorado potato beetle. J Am Soc Hortic Sci 123:19–25

    CAS  Google Scholar 

  • Kamel F, Engel LS, Gladen BC, Hoppin JA, Alavanja MC, Sandler DP (2007) Neurologic symptoms in licensed pesticide applicators in the Agricultural Health Study. Hum Exp Toxicol 26(3):243–250. doi:10.1177/0960327107070582

    Article  CAS  PubMed  Google Scholar 

  • Khush GS (1997) Origin, dispersal, cultivation and variation of rice. Plant Mol Biol 35:25–34

    Article  CAS  PubMed  Google Scholar 

  • Kota MDH, Varma S, Garczynski F, Gould F, Moar WJ (1999) Overexpression of the Bacillus thuringiensis (Bt) cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects. Proc Natl Acad Sci U S A 96:1840–1845

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koziel MG, Beland GL, Bowman C, Carozzi NB, Crenshaw R, Crosslaind L, Dawson J, Desai N, Hill M, Kadwell M, Launis K, Lewis K, Maddox D, Mc Pherson D, Meghiji MR, Merlin E, Rhodes R, Warren G, Wright M, Evola SV (1993) Field performance of elite transgenic corn plants expressing insecticidal protein derived from Bacillus thuringiensis. Biotechnology 11:194–200

    Article  CAS  Google Scholar 

  • Kumar PA, Mandaokar A, Sreenivasu K, Chakrabarti SK, Bisaria S, Sharma SR, Kaur S, Sharma RP (1998) Insect-resistant transgenic brinjal plants. Mol Breed 4:33–37

    Article  CAS  Google Scholar 

  • Lereclus D, Deleclus A, Lecadet MM (1993) Diversity of Bacillus thuringiensis toxins and genes. In: Bacillus thuringiensis, an environmental biopesticide: theory and practice. Wiley, Chichester

    Google Scholar 

  • Lereclus D, Agaisse H, Grandvalet C, Slamitou S, Gominet M (2000) Regulation of toxin virulence gene transcription in Bacillus thuringiensis. Int J Med Microbiol 290:295–299

    Article  CAS  PubMed  Google Scholar 

  • Lightwood DJ, Ellar DJ, Jarrett P (2000) Role of proteolysis in determining potency of Bacillus thuringiensis Cry1Ac δ-endotoxin. Appl Environ Microbiol 66:5174–5181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu ZC, Ye GY, Hu C, Datta SK (2002) Effects of Bt transgenic rice on population dynamics of main nontarget insect pests and dominant spider species in rice paddies. Acta Phytophysiologica Sinica 29:138–144

    Google Scholar 

  • Liu Z, Ye G, Hu C (2004) Effects of Bacillus thuringiensis transgenic rice and chemical insecticides on arthropod communities in paddy-fields. Chin J Appl Ecol 15:2309–2314

    CAS  Google Scholar 

  • Mandaokar AD, Goyalb RK, Shukla A, Bisaria S, Bhalla R, Reddy VS, Chaurasia A, Sharma RP, Altosaar I, Kumar PA (2000) Transgenic tomato plants resistant to fruit borer (Helicoverpa armigera Hübner). Crop Prot 19:307–312

    Article  CAS  Google Scholar 

  • McBride KE, Svab Z, Schaaf DJ, Hogan PS, Stalker DM, Maliga P (1995) Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Biotechnology 13:362–365

    Article  CAS  PubMed  Google Scholar 

  • McCown BH, McCabe DE, Russll DR, Robison DJ, Barto KA, Rafffa KF (1991) Stable transformation of Populus and incorporation of pest resistance by electric discharge particle acceleration. Plant Cell Rep 9:590–594

    Article  CAS  PubMed  Google Scholar 

  • Monnerat RG, Batista AC, Medeiros PT, Martins ES, Melatti VM, Praça LB, Dumas VF, Morinaga C, Demo C, Gomes ACM, Falcão R, Siqueira CB, Silva-Werneck JO, Berry C (2007) Screening of Brazilian Bacillus thuringiensis isolates active against Spodoptera frugiperda, Plutella xylostella and Anticarsia gemmatalis. Biol Cont 41:291–295

    Article  Google Scholar 

  • O’Callaghan M, Glare TR, Burgess EP, Malone LA (2005) Effects of plants genetically modified for insect resistance on nontarget organisms. Annu Rev Entomol 50:271–292. doi:10.1146/annurev.ento.50.071803.130352

    Article  PubMed  Google Scholar 

  • Peferoen M (1992) Engineering of insect-resistant plants with Bacillus thuringiensis crystal protein genes. In: Plant genetic manipulation for crops protection. CAB, Wallingford

    Google Scholar 

  • Perlak FJ, Deaton RW, Armstrong TO, Fuchs RL, Sims SR, Greenplate JT, Fishholff DA (1990) Insect resistant cotton plants. Biotechnology 8:939–943

    Article  CAS  PubMed  Google Scholar 

  • Perlak FJ, Fuchs RL, Dean DA, Mcpherson SL, Fishholff DA (1991) Modification of the coding sequence enhances plant expression of insect control protein genes. Proc Natl Acad Sci U S A 88:3324–3328

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Perlak FJ, Stone TB, Muskopf YM, Eagan N, Roush RT, Shewmaker CK, Jones A, Oakes JV, Mcbride KE (1993) Genetically improved potatoes: protection from damage by Colorado potato beetles. Plant Mol Biol 22:313–321

    Article  CAS  PubMed  Google Scholar 

  • Pinto LMN, Fiuza LM (2002) Genes cry de Bacillus thuringiensis: uma alternativa biotecnológica aplicada ao manejo de insetos. Biociências 10(2):3–13

    Google Scholar 

  • Que Q, Chilton MD, De Fontes CM, He C, Nuccio M, Zhu T, Wu Y, Chen JS, Shi L (2010) Trait stacking in transgenic crops: challenges and opportunities. GM Crops 1(4):220–229

    Article  PubMed  Google Scholar 

  • Rico E, Ballester V, Mensua JL (1998) Survival of two strains of Phthorimaea operculella (Lepidoptera: Gelechiidae) reared on transgenic potatoes expressing a Bacillus thuringiensis crystal protein. Agronomie 18:151–155

    Article  Google Scholar 

  • Romeis J, Meissle M, Bigler F (2006) Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat Biotechnol 24(1):63–71

    Article  CAS  PubMed  Google Scholar 

  • Schnepf E, Crickmore N, Rie J, Lereculus D, Baum J, Feitelson J, Zeigler D, Dean D (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62(3):775–806

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schulz R (2004) Field studies on exposure, effects, and risk mitigation of aquatic nonpoint-source insecticide pollution: a review. J Environ Qual 33:419–448

    Article  CAS  PubMed  Google Scholar 

  • Selvapandiyan A, Reddy VS, Kumar PA, Tewari KK, Bhatnagar RK (1998) Transformation of Nicotiana tabacum with a native cry1Ia5 gene confers complete protection against Heliothis armigera. Mol Breed 4:473–478

    Article  CAS  Google Scholar 

  • Shelton AM, Sears MK (2001) The monarch butterfly controversy: scientific interpretations of a phenomenon. Plant J 27:483–488

    Article  CAS  PubMed  Google Scholar 

  • Shu QY, Ye GY, Cui HR, Cheng XY, Xiang YB, Wu DX, Gao MW, Xia YW, Hu C, Sardana R, Altosaar I (2000) Transgenic rice plants with a synthetic cry1Ab gene from Bacillus thuringiensis were highly resistant to eight lepidopteran rice pest species. Mol Breed 6:433–439

    Article  CAS  Google Scholar 

  • SOSBAI (Sociedade Sul-Brasileira De Arroz Irrigado) (2005) Arroz irrigado: recomendações técnicas da pesquisa para o Sul do Brasil. Editora Pallotti, Santa Maria, 159 p

    Google Scholar 

  • Stewart CN Jr, Adang MJ, All JN, Boerma HR, Cardineaux G, Tucker D, Parrot WA (1996a) Genetic transformation recovery, and characterization of fertile soybean transgenic for a synthetic Bacillus thuringiensis cryIA(c) gene. Plant Physiol 112:121–129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stewart CN Jr, Adang MJ, All JN, Raymer PL, Ramachandran S, Parrott WA (1996b) Insect control and dosage effects in transgenic canola containing a synthetic Bacillus thuringiensis cryIAc gene. Plant Physiol 112:115–120

    Article  CAS  Google Scholar 

  • Strizhov NKM, Mathur J, Koncz-Kalman K, Bosch D, Prudovsky E, Schel J, Sneh B, Koncz C, Zilberstein A (1996) A synthetic cryIC gene, encoding a Bacillus thuringiensis δ-endotoxin, confers Spodoptera resistance in alfalfa and tobacco. Proc Natl Acad Sci U S A 93

    Google Scholar 

  • Vaeck MR, Reynaerts A, Hofte H, Jansens S, Debeuckleer M, Dean C, Zabeau M, Van Montagu M, Leemans J (1987) Transgenic plants protected from insect attack. Nature 327:33–37

    Article  Google Scholar 

  • Velkov VV, Medvinsky AB, Sokolov MS, Marchenko AI (2005) Will transgenic plants adversely affect the environment? J Biosci 30(4):515–548

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Shu Q, Ye G, Cu H, Wu D, Altosaar I, Xia Y (2002) Genetic analysis of resistance of Bt rice to stripe stem borer (Chilo suppressalis). Euphytica 123:379–386

    Article  CAS  Google Scholar 

  • WHO (World Health Organization) (1999) International programme on chemical safety. Environmental health criteria 217: Microbial pest control agent Bacillus thuringiensis, Geneva. Disponível: http://www.inchem.org/documents/ehc/ehc/ehc217.htm. Accessed 04 May 2014

  • Williams S, Friedrich L, Dincher S, Carozzi N, Kessmann H, Ward E, Ryals J (1993) Chemical regulation of Bacillus thuringiensis delta-endotoxin expression in transgenic plants. Biotechnology 7:194–200

    Google Scholar 

  • Ye GY, Yao HW, Shu QY, Cheng X, Hu C, Xia YW, Gao MW, Altosaar I (2003) High level of stable resistance in transgenic rice with a cry1Ab gene from Bacillus thuringiensis Berliner to rice leaffolder, Cnaphalocrocis medinalis (Guenee) under field conditions. Crop Prot 22:171–178

    Article  CAS  Google Scholar 

  • Zhao JZ, Li YX, Collins HL, Cao J, Earle ED, Shelton AM (2001) Different cross-resistance patterns in the diamondback moth (Lepidoptera: Plutellidae) resistant to Bacillus thuringiensis toxin crylC. J Econ Entomol 94:1547–1552

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Massochin Nunes Pinto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Pinto, L.M.N., Ziegler, D.R., Fiuza, L.M. (2014). The Use of Transgenic Plants in Insect Control. In: Sahayaraj, K. (eds) Basic and Applied Aspects of Biopesticides. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1877-7_18

Download citation

Publish with us

Policies and ethics