Skip to main content

Membrane-Bound Dehydrogenases of Acetic Acid Bacteria

  • Chapter
  • First Online:
Acetic Acid Bacteria

Abstract

One of the major key features of acetic acid bacteria is their strong oxidation ability of alcohols and sugars, resulting in quantitative production of oxidized compounds. Respiratory chains consisting of ubiquinone, terminal ubiquinol oxidase, and several primary membrane-bound dehydrogenases are responsible for this unique ability. Here, we describe recent progress in the understanding of enzymatic and molecular properties and biogenesis of the membrane-bound dehydrogenases, such as pyrroloquinoline quinone-dependent alcohol dehydrogenase–cytochrome complex, and recent findings on new membrane-bound dehydrogenases. Quinate oxidation by quinate dehydrogenase (QDH) of acetic acid bacteria is a key agent in the vitro shikimate production process composed of the membranes containing QDH and 3-dehydroquinate dehydratase and NADP+-dependent shikimate dehydrogenase. The addition of a catalytic amount of NADP+ and an NADPH-regeneration system drive the process forward to produce shikimate with almost 100 % yield. The pentose oxidation respiratory chain produces 4-keto-d-arabonate or 4-keto-d-ribonate, depending on the substrate. Novel three different membrane-bound enzymes are indicated: d-aldopentose 4-dehydrogenase, 4-keto-d-aldopentose 1-dehydrogenase, and d-pentonate 4-dehydrogenase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi O, Tayama K, Shinagawa E, Matsushita K, Ameyama M (1978) Purification and characterization of particulate alcohol dehydrogenase from Gluconobacter suboxydans. Agric Biol Chem 42(11):2045–2056

    CAS  Google Scholar 

  • Adachi O, Tayama K, Shinagawa E, Matsushita K, Ameyama M (1980) Purification and characterization of membrane-bound aldehyde dehydrogenase from Gluconobacter suboxydans. Agric Biol Chem 44(3):503–515

    CAS  Google Scholar 

  • Adachi O, Tanasupawat S, Yoshihara N, Toyama H, Matsushita K (2003a) 3-Dehydroquinate production by oxidative fermentation and further conversion of 3-dehydroquinate to the intermediates in the shikimate pathway. Biosci Biotechnol Biochem 67(10):2124–2131

    Article  CAS  PubMed  Google Scholar 

  • Adachi O, Yoshihara N, Tanasupawat S, Toyama H, Matsushita K (2003b) Purification and characterization of membrane-bound quinoprotein quinate dehydrogenase. Biosci Biotechnol Biochem 67(10):2115–2123

    Article  CAS  PubMed  Google Scholar 

  • Adachi O, Ano Y, Toyama H, Matsushita K (2006a) High shikimate production from quinate with two enzymatic systems of acetic acid bacteria. Biosci Biotechnol Biochem 70(10):2579–2582. Epub 2006 Oct 7

    Article  CAS  PubMed  Google Scholar 

  • Adachi O, Ano Y, Toyama H, Matsushita K (2006b) Purification and properties of NADP-dependent shikimate dehydrogenase from Gluconobacter oxydans IFO 3244 and its application to enzymatic shikimate production. Biosci Biotechnol Biochem 70(11):2786–2789. Epub 2006 Nov 7

    Article  CAS  PubMed  Google Scholar 

  • Adachi O, Ano Y, Akakabe Y, Shinagawa E, Matsushita K (2008a) Coffee pulp koji of Aspergillus sojae as stable immobilized catalyst of chlorogenate hydrolase. Appl Microbiol Biotechnol 81(1):143–151. doi:10.1007/s00253-008-1659-z. Epub 2008 Sep 5

    Article  CAS  PubMed  Google Scholar 

  • Adachi O, Ano Y, Toyama H, Matsushita K (2008b) A novel 3-dehydroquinate dehydratase catalyzing extracellular formation of 3-dehydroshikimate by oxidative fermentation of Gluconobacter oxydans IFO 3244. Biosci Biotechnol Biochem 72(6):1475–1482. Epub 2008 Jun 7

    Article  CAS  PubMed  Google Scholar 

  • Adachi O, Ano Y, Shinagawa E, Yakushi T, Matsushita K (2010a) Conversion of quinate to 3-dehydroshikimate by Ca-alginate-immobilized membrane of Gluconobacter oxydans IFO 3244 and subsequent asymmetric reduction of 3-dehydroshikimate to shikimate by immobilized cytoplasmic NADP-shikimate dehydrogenase. Bioscience 74(12):2438–2444. Epub 2010 Dec 7

    CAS  Google Scholar 

  • Adachi O, Hours RA, Akakabe Y, Tanasupawat S, Yukphan P, Shinagawa E, Yakushi T, Matsushita K (2010b) Production of 4-keto-d-arabonate by oxidative fermentation with newly isolated Gluconacetobacter liquefaciens. Biosci Biotechnol Biochem 74(12):2555–2558. Epub 2010 Dec 7

    Article  CAS  PubMed  Google Scholar 

  • Adachi O, Hours RA, Shinagawa E, Akakabe Y, Yakushi T, Matsushita K (2011) Enzymatic synthesis of 4-pentulosonate (4-keto-d-pentonate) from d-aldopentose and d-pentonate by two different pathways using membrane enzymes of acetic acid bacteria. Biosci Biotechnol Biochem 75(12):2418–2420

    Article  CAS  PubMed  Google Scholar 

  • Adachi O, Hours RA, Shinagawa E, Akakabe Y, Yakushi T, Matsushita K (2012) 4-Keto-d-aldopentoses and 4-pentulosonates, new products with acetic acid bacteria. Acetic acid bacteria 1(s1):23

    Google Scholar 

  • Adachi O, Hours RA, Akakabe Y, Shinagawa E, Ano Y, Yakushi T, Matsushita K (2013) Pentose oxidation by acetic acid bacteria led to a finding of membrane-bound purine nucleosidase. Biosci Biotechnol Biochem 77(5):1131–1133

    Article  CAS  PubMed  Google Scholar 

  • Ameyama M, Kondô K (1958a) Carbohydrate metabolism by Acetobacter species. Part III. Isolation and identification of d-lyxuronic acid on glucose oxidation by A. melanogenum. Bull Agric Chem Soc Jpn 22(6):380–386

    Article  Google Scholar 

  • Ameyama M, Kondô K (1958b) Isolation of d-lyxuronic acid as an oxidative metabolite from glucose by Acetobacter melanogenum. Bull Agric Chem Soc Jpn 22(4):271–272

    Article  Google Scholar 

  • Ameyama M, Shinagawa E, Matsushita K, Adachi O (1981a) d-Fructose dehydrogenase of Gluconobacter industrius: purification, characterization, and application to enzymatic microdetermination of d-fructose. J Bacteriol 145(2):814–823

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ameyama M, Shinagawa E, Matsushita K, Adachi O (1981b) d-Glucose dehydrogenase of Gluconobacter suboxydans: solubilization, purification and characterization. Agric Biol Chem 45(4):851–861

    CAS  Google Scholar 

  • Ameyama M, Shinagawa E, Matsushita K, Adachi O (1985) Solubilization, purification and properties of membrane-bound glycerol dehydrogenase from Gluconobacter industrius. Agric Biol Chem 49(4):1001–1010

    CAS  Google Scholar 

  • Charoenyingcharoen P, Matsutani M, Yakushi T, Theeragool G, Yukphan P, Matsushita K (2015) A functionally critical single nucleotide polymorphism in the gene encoding the membrane-bound alcohol dehydrogenase found in ethanol oxidation-deficient Gluconobacter thailandicus. Gene (Amst) 567(2):201–207

    Article  CAS  Google Scholar 

  • Draths KM, Knop DR, Frost JW (1999) Shikimic acid and quinic acid: replacing isolation from plant sources with recombinant microbial biocatalysis. J Am Chem Soc 121(7):1603–1604

    Article  CAS  Google Scholar 

  • Ducati RG, Basso LA, Santos DS (2007) Mycobacterial shikimate pathway enzymes as targets for drug design. Curr Drug Targets 8(3):423–435

    Article  CAS  PubMed  Google Scholar 

  • Elias MD, Nakamura S, Migita CT, Miyoshi H, Toyama H, Matsushita K, Adachi O, Yamada M (2004) Occurrence of a bound ubiquinone and its function in Escherichia coli membrane-bound quinoprotein glucose dehydrogenase. J Biol Chem 279(4):3078–3083

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Manzo S, Contreras-Zentella M, González-Valdez A, Sosa-Torres M, Arreguín-Espinoza R, Escamilla-Marván E (2008) The PQQ-alcohol dehydrogenase of Gluconacetobacter diazotrophicus. Int J Food Microbiol 125(1):71–78

    Article  PubMed  Google Scholar 

  • Gomez-Manzo S, Chavez-Pacheco JL, Contreras-Zentella M, Sosa-Torres ME, Arreguin-Espinosa R, Perez de la Mora M, Membrillo-Hernandez J, Escamilla JE (2010) Molecular and catalytic properties of the aldehyde dehydrogenase of Gluconacetobacter diazotrophicus, a quinoheme protein containing pyrroloquinoline quinone, cytochrome b, and cytochrome c. J Bacteriol 192(21):5718–5724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez-Manzo S, González-Valdez AA, Oria-Hernández J, Reyes-Vivas H, Arreguín-Espinosa R, Kroneck PMH, Sosa-Torres ME, Escamilla JE (2012) The active (ADHa) and inactive (ADHi) forms of the PQQ-alcohol dehydrogenase from Gluconacetobacter diazotrophicus differ in their respective oligomeric structures and redox state of their corresponding prosthetic groups. FEMS Microbiol Lett 328(2):106–113

    Article  PubMed  Google Scholar 

  • Gomez-Manzo S, Escamilla JE, Gonzalez-Valdez A, Lopez-Velazquez G, Vanoye-Carlo A, Marcial-Quino J, de la Mora-de la Mora I, Garcia-Torres I, Enriquez-Flores S, Contreras-Zentella ML, Arreguin-Espinosa R, Kroneck PM, Sosa-Torres ME (2015) The oxidative fermentation of ethanol in Gluconacetobacter diazotrophicus is a two-step pathway catalyzed by a single enzyme: alcohol-aldehyde dehydrogenase (ADHa). Int J Mol Sci 16(1):1293–1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habe H, Shimada Y, Yakushi T, Hattori H, Ano Y, Fukuoka T, Kitamoto D, Itagaki M, Watanabe K, Yanagishita H, Matsushita K, Sakaki K (2009) Microbial production of glyceric acid, an organic acid that can be mass produced from glycerol. Appl Environ Microbiol 75(24):7760–7766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hölscher T, Weinert-Sepalage D, Görisch H (2007) Identification of membrane-bound quinoprotein inositol dehydrogenase in Gluconobacter oxydans ATCC 621H. Microbiology 153(Pt 2):499–506

    Article  PubMed  Google Scholar 

  • Kataoka N, Matsutani M, Yakushi T, Matsushita K (2015) Efficient production of 2,5-diketo-d-gluconate via heterologous expression of 2-ketogluconate kehydrogenase in Gluconobacter japonicus. Appl Environ Microbiol 81(10):3552–3560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai S, Goda-Tsutsumi M, Yakushi T, Kano K, Matsushita K (2013) Heterologous overexpression and characterization of a flavoprotein-cytochrome c complex fructose dehydrogenase of Gluconobacter japonicus NBRC3260. Appl Environ Microbiol 79(5):1654–1660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo K, Beppu T, Horinouchi S (1995) Cloning, sequencing, and characterization of the gene encoding the smallest subunit of the three-component membrane-bound alcohol dehydrogenase from Acetobacter pasteurianus. J Bacteriol 177(17):5048–5055

    CAS  PubMed  PubMed Central  Google Scholar 

  • Madigan MT, Martinko JM, Parker J (2003) Biology of microorganisms, 10th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Matsushita K, Shinagawa E, Adachi O, Ameyama M (1989a) Quinoprotein d-glucose dehydrogenase of the Acinetobacter calcoaceticus respiratory chain: membrane-bound and soluble forms are different molecular species. Biochemistry 28(15):6276–6280

    Article  CAS  PubMed  Google Scholar 

  • Matsushita K, Shinagawa E, Adachi O, Ameyama M (1989b) Reactivity with ubiquinone of quinoprotein d-glucose dehydrogenase from Gluconobacter suboxydans. J Biochem (Tokyo) 105(4):633–637

    CAS  Google Scholar 

  • Matsushita K, Takaki Y, Shinagawa E, Ameyama M, Adachi O (1992) Ethanol oxidase respiratory chain of acetic acid bacteria. Reactivity with ubiquinone of pyrroloquinoline quinone-dependent alcohol dehydrogenases purified from Acetobacter aceti and Gluconobacter suboxydans. Biosci Biotechnol Biochem 56(2):304–310

    Article  CAS  Google Scholar 

  • Matsushita K, Toyama H, Adachi O (1994) Respiratory chains and bioenergetics of acetic acid bacteria. Adv Microb Physiol 36:247–301

    Article  CAS  PubMed  Google Scholar 

  • Matsushita K, Yakushi T, Takaki Y, Toyama H, Adachi O (1995) Generation mechanism and purification of an inactive form convertible in vivo to the active form of quinoprotein alcohol dehydrogenase in Gluconobacter suboxydans. J Bacteriol 177(22):6552–6559

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsushita K, Yakushi T, Toyama H, Shinagawa E, Adachi O (1996) Function of multiple heme c moieties in intramolecular electron transport and ubiquinone reduction in the quinohemoprotein alcohol dehydrogenase-cytochrome c complex of Gluconobacter suboxydans. J Biol Chem 271(9):4850–4857

    Article  CAS  PubMed  Google Scholar 

  • Matsushita K, Yakushi T, Toyama H, Adachi O, Miyoshi H, Tagami E, Sakamoto K (1999) The quinohemoprotein alcohol dehydrogenase of Gluconobacter suboxydans has ubiquinol oxidation activity at a site different from the ubiquinone reduction site. Biochim Biophys Acta 1409(3):154–164

    Article  CAS  PubMed  Google Scholar 

  • Matsushita K, Fujii Y, Ano Y, Toyama H, Shinjoh M, Tomiyama N, Miyazaki T, Sugisawa T, Hoshino T, Adachi O (2003) 5-Keto-d-gluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in Gluconobacter species. Appl Environ Microbiol 69(4):1959–1966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsushita K, Kobayashi Y, Mizuguchi M, Toyama H, Adachi O, Sakamoto K, Miyoshi H (2008) A tightly bound quinone functions in the ubiquinone reaction sites of quinoprotein alcohol dehydrogenase of an acetic acid bacterium, Gluconobacter suboxydans. Biosci Biotechnol Biochem 72(10):2723–2731

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki T, Tomiyama N, Shinjoh M, Hoshino T (2002) Molecular cloning and functional expression of d-sorbitol dehydrogenase from Gluconobacter suboxydans IFO3255, which requires pyrroloquinoline quinone and hydrophobic protein SldB for activity development in E. coli. Biosci Biotechnol Biochem 66(2):262–270

    Article  CAS  PubMed  Google Scholar 

  • Moonmangmee D, Fujii Y, Toyama H, Theeragool G, Lotong N, Matsushita K, Adachi O (2001) Purification and characterization of membrane-bound quinoprotein cyclic alcohol dehydrogenase from Gluconobacter frateurii CHM 9. Biosci Biotechnol Biochem 65(12):2763–2772

    Article  CAS  PubMed  Google Scholar 

  • Mustafa G, Migita CT, Ishikawa Y, Kobayashi K, Tagawa S, Yamada M (2008) Menaquinone as well as ubiquinone as a bound quinone crucial for catalytic activity and intramolecular electron transfer in Escherichia coli membrane-bound glucose dehydrogenase. J Biol Chem 283(42):28169–28175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishikura-Imamura S, Matsutani M, Insomphun C, Vangnai AS, Toyama H, Yakushi T, Abe T, Adachi O, Matsushita K (2014) Overexpression of a type II 3-dehydroquinate dehydratase enhances the biotransformation of quinate to 3-dehydroshikimate in Gluconobacter oxydans. Appl Microbiol Biotechnol 98(7):2955–2963

    Article  CAS  PubMed  Google Scholar 

  • Pappenberger G, Hohmann H-P (2014) Industrial production of l-ascorbic acid (vitamin C) and d-isoascorbic acid. In: Zorn H, Czermak P (eds) Biotechnology of food and feed additives. Springer, Berlin, pp 143–188

    Google Scholar 

  • Peters B, Mientus M, Kostner D, Junker A, Liebl W, Ehrenreich A (2013) Characterization of membrane-bound dehydrogenases from Gluconobacter oxydans 621H via whole-cell activity assays using multideletion strains. Appl Microbiol Biotechnol 97(14):6397–6412

    Article  CAS  PubMed  Google Scholar 

  • Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke WF, Ehrenreich A, Gottschalk G, Deppenmeier U (2005) Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat Biotechnol 23(2):195–200

    Article  CAS  PubMed  Google Scholar 

  • Sakuraba H, Yokono K, Yoneda K, Watanabe A, Asada Y, Satomura T, Yabutani T, Motonaka J, Ohshima T (2010) Catalytic properties and crystal structure of quinoprotein aldose sugar dehydrogenase from hyperthermophilic archaeon Pyrobaculum aerophilum. Arch Biochem Biophys 502(2):81–88

    Article  CAS  PubMed  Google Scholar 

  • Schneider CZ, Parish T, Basso LA, Santos DS (2008) The two chorismate mutases from both Mycobacterium tuberculosis and Mycobacterium smegmatis: biochemical analysis and limited regulation of promoter activity by aromatic amino acids. J Bacteriol 190(1):122–134. Epub 2007 Oct 26

    Article  CAS  PubMed  Google Scholar 

  • Shinagawa E, Matsushita K, Adachi O, Ameyama M (1981) Purification and characterization of 2-keto-d-gluconate dehydrogenase from Gluconobacter melanogenus. Agric Biol Chem 45(5):1079–1085

    CAS  Google Scholar 

  • Shinagawa E, Matsushita K, Adachi O, Ameyama M (1982) Purification and characterization of d-sorbitol dehydrogenase from membrane of Gluconobacter suboxydans var. alpha. Agric Biol Chem 46(1):135–141

    CAS  Google Scholar 

  • Shinagawa E, Matsushita K, Adachi O, Ameyama M (1984) d-Gluconate dehydrogenase, 2-keto-d-gluconate yielding, from Gluconobacter dioxyacetonicus: purification and characterization. Agric Biol Chem 48(6):1517–1522

    CAS  Google Scholar 

  • Shinagawa E, Toyama H, Matsushita K, Tuitemwong P, Theeragool G, Adachi O (2006) A novel type of formaldehyde-oxidizing enzyme from the membrane of Acetobacter sp. SKU 14. Biosci Biotechnol Biochem 70(4):850–857

    Article  CAS  PubMed  Google Scholar 

  • Shinagawa E, Adachi O, Ano Y, Yakushi T, Matsushita K (2010) Purification and characterization of membrane-bound 3-dehydroshikimate dehydratase from Gluconobacter oxydans IFO 3244, a new enzyme catalyzing extracellular protocatechuate formation. Biosci Biotechnol Biochem 74(5):1084–1088

    Article  CAS  PubMed  Google Scholar 

  • Shinjoh M, Tomiyama N, Asakura A, Hoshino T (1995) Cloning and nucleotide sequencing of the membrane-bound l-sorbosone dehydrogenase gene of Acetobacter liquefaciens IFO 12258 and its expression in Gluconobacter oxydans. Appl Environ Microbiol 61(2):413–420

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sugisawa T, Hoshino T (2002) Purification and properties of membrane-bound d-sorbitol dehydrogenase from Gluconobacter suboxydans IFO 3255. Biosci Biotechnol Biochem 66(1):57–64

    Article  CAS  PubMed  Google Scholar 

  • Sugisawa T, Hoshino T, Nomura S, Fujiwara A (1991) Isolation and characterization of membrane-bound l-sorbose dehydrogenase from Gluconobacter melanogenus UV10. Agric Biol Chem 55(2):363–370

    CAS  Google Scholar 

  • Takemura H, Horinouchi S, Beppu T (1991) Novel insertion sequence IS1380 from Acetobacter pasteurianus is involved in loss of ethanol-oxidizing ability. J Bacteriol 173(22):7070–7076

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takemura H, Tsuchida T, Yoshinaga F, Matsushita K, Adachi O (1994) Prosthetic group of aldehyde dehydrogenase in acetic acid bacteria not pyrroloquinoline quinone. Biosci Biotechnol Biochem 58(11):2082–2083

    Article  CAS  Google Scholar 

  • Tayama K, Fukaya M, Okumura H, Kawamura Y, Beppu T (1989) Purification and characterization of membrane-bound alcohol dehydrogenase from Acetobacter polyoxogenes sp. nov. Appl Microbiol Biotechnol 32(2):181–185

    Article  CAS  Google Scholar 

  • Thurner C, Vela C, Thony-Meyer L, Meile L, Teuber M (1997) Biochemical and genetic characterization of the acetaldehyde dehydrogenase complex from Acetobacter europaeus. Arch Microbiol 168(2):81–91

    Article  CAS  PubMed  Google Scholar 

  • Toyama H, Soemphol W, Moonmangmee D, Adachi O, Matsushita K (2005) Molecular properties of membrane-bound FAD-containing d-sorbitol dehydrogenase from thermotolerant Gluconobacter frateurii isolated from Thailand. Biosci Biotechnol Biochem 69(6):1120–1129

    Article  CAS  PubMed  Google Scholar 

  • Toyama H, Furuya N, Saichana I, Ano Y, Adachi O, Matsushita K (2007) Membrane-bound, 2-keto-d-gluconate-yielding d-gluconate dehydrogenase from “Gluconobacter dioxyacetonicus” IFO 3271: molecular properties and gene disruption. Appl Environ Microbiol 73(20):6551–6556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vangnai AS, Toyama H, De-Eknamkul W, Yoshihara N, Adachi O, Matsushita K (2004) Quinate oxidation in Gluconobacter oxydans IFO3244: purification and characterization of quinoprotein quinate dehydrogenase. FEMS Microbiol Lett 241(2):157–162

    Article  CAS  PubMed  Google Scholar 

  • Vangnai AS, Promden W, De-Eknamkul W, Matsushita K, Toyama H (2010) Molecular characterization and heterologous expression of quinate dehydrogenase gene from Gluconobacter oxydans IFO3244. Biochemistry (Moscow) 75(4):452–459

    Article  CAS  Google Scholar 

  • Yakushi T, Matsushita K (2010) Alcohol dehydrogenase of acetic acid bacteria: structure, mode of action, and applications in biotechnology. Appl Microbiol Biotechnol 86(5):1257–1265

    Article  CAS  PubMed  Google Scholar 

  • Yamada M, Sumi K, Matsushita K, Adachi O, Yamada Y (1993) Topological analysis of quinoprotein glucose dehydrogenase in Escherichia coli and its ubiquinone-binding site. J Biol Chem 268(17):12812–12817

    CAS  PubMed  Google Scholar 

  • Yamaoka H, Ferri S, Fujikawa M, Sode K (2004) Essential role of the small subunit of thermostable glucose dehydrogenase from Burkholderia cepacia. Biotechnol Lett 26(22):1757–1761

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Osao Adachi or Toshiharu Yakushi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Adachi, O., Yakushi, T. (2016). Membrane-Bound Dehydrogenases of Acetic Acid Bacteria. In: Matsushita, K., Toyama, H., Tonouchi, N., Okamoto-Kainuma, A. (eds) Acetic Acid Bacteria. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55933-7_13

Download citation

Publish with us

Policies and ethics