Skip to main content

Cerebral Microvasculature Is an Early Target of Subarachnoid Hemorrhage

  • Chapter
  • First Online:
Cerebral Vasospasm: Neurovascular Events After Subarachnoid Hemorrhage

Part of the book series: Acta Neurochirurgica Supplement ((NEUROCHIRURGICA,volume 115))

Abstract

Most subarachnoid hemorrhage (SAH) patients exhibit clinical signs of cerebral ischemia at admission but no angiographic vasospasm. Consequently, the source of early cerebral ischemia is not understood. Parenchymal microvessels may contribute to early cerebral ischemia, but the low resolution of current imaging has prevented their analysis in SAH patients. Animal studies demonstrated that early after SAH structure and function of parenchymal vessels are compromised to the level that may very well contribute to early ischemia. We review these studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bederson JB, Connolly ES Jr, Batjer HH, Dacey RG, Dion JE, Diringer MN, Duldner JE Jr, Harbaugh RE, Patel AB, Rosenwasser RH (2009) Guidelines for the management of aneurysmal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke 40:994–1025

    Article  PubMed  Google Scholar 

  2. Broderick JP, Brott TG, Duldner JE, Tomsick T, Leach A (1994) Initial and recurrent bleeding are the major causes of death following subarachnoid hemorrhage. Stroke 25:1342–1347

    Article  PubMed  CAS  Google Scholar 

  3. Stoltenberg-Didinger G, Schwartz K (1987) Brain lesions secondary to subarachnoid hemorrhage due to ruptured aneurysms. In: Cervos-Navarro J, Ferst R (eds) Stroke and microcirculation. Raven, New York, pp 471–480

    Google Scholar 

  4. Inagawa T (1997) What are the actual incidence and mortality rates of subarachnoid hemorrhage? Surg Neurol 47:47–52

    Article  PubMed  CAS  Google Scholar 

  5. Gewirtz RJ, Dhillon HS, Goes SE, DeAtley SM, Scheff SW (1999) Lactate and free fatty acids after subarachnoid hemorrhage. Brain Res 840:84–91

    Article  PubMed  CAS  Google Scholar 

  6. Weir B, Grace M, Hansen J, Rothberg C (1978) Time course of vasospasm in man. J Neurosurg 48:173–178

    Article  PubMed  CAS  Google Scholar 

  7. Grosset DG, Straiton J, McDonald I, Bullock R (1993) Angiographic and Doppler diagnosis of cerebral artery vasospasm following subarachnoid haemorrhage. Br J Neurosurg 7:291–298

    Article  PubMed  CAS  Google Scholar 

  8. Nornes H (1973) The role of intracranial pressure in the arrest of hemorrhage in patients with ruptured intracranial aneurysm. J Neurosurg 39:226–234

    Article  PubMed  CAS  Google Scholar 

  9. Nornes H (1978) Cerebral arterial flow dynamics during aneurysm haemorrhage. Acta Neurochir 41:39–48

    Article  CAS  Google Scholar 

  10. Bederson JB, Germano IM, Guarino L (1995) Cortical blood flow and cerebral perfusion pressure in a new noncraniotomy model of subarachnoid hemorrhage in the rat. Stroke 26:1086–1091

    Article  PubMed  CAS  Google Scholar 

  11. Hatake K, Wakabayashi I, Kakishita E, Hishida S (1992) Impairment of endothelium-dependent relaxation in human basilar artery after subarachnoid hemorrhage. Stroke 23:1111–1116, discussion 1116–1117

    Article  PubMed  CAS  Google Scholar 

  12. Uhl E, Lehmberg J, Steiger HJ, Messmer K (2003) Intraoperative detection of early microvasospasm in patients with subarachnoid hemorrhage by using orthogonal polarization spectral imaging. Neurosurgery 52:1307–1315

    Article  PubMed  Google Scholar 

  13. Sehba FA, Friedrich V (2011) Early micro vascular changes after subarachnoid hemorrhage. Acta Neurochir Suppl 110:49–55

    Article  PubMed  Google Scholar 

  14. Peppiatt CM, Howarth C, Mobbs P, Attwell D (2006) Bidirectional control of CNS capillary diameter by pericytes. Nature 443:700–704

    Article  PubMed  CAS  Google Scholar 

  15. Schechter J (1972) Ultrastructural changes in the capillary bed of human pituitary tumors. Am J Pathol 67:109–126

    PubMed  CAS  Google Scholar 

  16. Chiang J, Kowada M, Ames A 3rd, Wright RL, Majno G (1968) Cerebral ischemia. III. Vascular changes. Am J Pathol 52:455–476

    PubMed  CAS  Google Scholar 

  17. Friedrich V, Flores R, Muller A, Sehba FA (2010) Escape of intraluminal platelets into brain parenchyma after subarachnoid hemorrhage. Neuroscience 165:968–975

    Article  PubMed  CAS  Google Scholar 

  18. Sehba FA, Makonnen G, Friedrich V, Bederson JB (2007) Acute cerebral vascular injury occurs after subarachnoid hemorrhage and can be prevented by administration of a nitric oxide donor. J Neurosurg 106:321–329

    Article  PubMed  CAS  Google Scholar 

  19. Sehba FA, Mostafa G, Knopman J, Friedrich V Jr, Bederson JB (2004) Acute alterations in microvascular basal lamina after subarachnoid hemorrhage. J Neurosurg 101:633–640

    Article  PubMed  Google Scholar 

  20. Sehba FA, Flores R, Muller A, Friedrich V, Bederson JB (2007) Early decrease in cerebral endothelial nitric oxide synthase occurs after subarachnoid hemorrhage. Annu Stroke Conf Session 172:P527

    Google Scholar 

  21. Friedrich V, Flores R, Muller A, Bi W, Peerschke EI, Sehba FA (2011) Reduction of neutrophil activity decreases early microvascular injury after subarachnoid haemorrhage. J Neuroinflammation 8:103. doi:1742-2094-8-103

    Article  PubMed  CAS  Google Scholar 

  22. Handa Y, Kubota T, Kaneko M, Tsuchida A, Kobayashi H, Kawano H (1995) Expression of intercellular adhesion molecule 1 (ICAM-1) on the cerebral artery following subarachnoid haemorrhage in rats. Acta Neurochir (Wien) 132:92–97

    Article  CAS  Google Scholar 

  23. Sills AK Jr, Clatterbuck RE, Thompson RC, Cohen PL, Tamargo RJ (1997) Endothelial cell expression of intercellular adhesion molecule 1 in experimental posthemorrhagic vasospasm. Neurosurgery 41:453–460, discussion 460–451

    Article  PubMed  Google Scholar 

  24. Ishikawa M, Kusaka G, Yamaguchi N, Sekizuka E, Nakadate H, Minamitani H, Shinoda S, Watanabe E (2009) Platelet and leukocyte adhesion in the microvasculature at the cerebral surface immediately after subarachnoid hemorrhage. Neurosurgery 64:546–553, discussion 553–544

    Article  PubMed  Google Scholar 

  25. Suzuki H, Ayer R, Sugawara T, Chen W, Sozen T, Hasegawa Y, Kanamaru K, Zhang JH (2010) Protective effects of recombinant osteopontin on early brain injury after subarachnoid hemorrhage in rats. Crit Care Med 38:612–618

    Article  PubMed  CAS  Google Scholar 

  26. Sherchan P, Lekic T, Suzuki H, Hasegawa Y, Rolland W, Duris K, Zhan Y, Tang J, Zhang JH (2011) Minocycline improves functional outcomes, memory deficits, and histopathology after endovascular perforation-induced subarachnoid hemorrhage in rats. J Neurotrauma. doi:10.1089/neu.2011.1864

  27. Dodson RF, Hashi K, Meyer JS (1973) The effect of glycerol and intracarotid phenoxybenzamine after experimental subarachnoid hemorrhage. An ultrastructural study. Acta Neuropathol 24:1–11

    Article  PubMed  CAS  Google Scholar 

  28. Prunell GF, Svendgaard NA, Alkass K, Mathiesen T (2005) Delayed cell death related to acute cerebral blood flow changes following subarachnoid hemorrhage in the rat brain. J Neurosurg 102:1046–1054

    Article  PubMed  Google Scholar 

  29. Bignami A, Eng LF, Dahl D, Uyeda CT (1972) Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res 43:429–435

    Article  PubMed  CAS  Google Scholar 

  30. Dodson RE (1973) Electron microscopy of microvascular pericytes in the brain. Cytobios 1:183–188

    Google Scholar 

  31. Kutcher ME, Herman IM (2009) The pericyte: cellular regulator of microvascular blood flow. Microvasc Res 77:235–246

    Article  PubMed  CAS  Google Scholar 

  32. Trojanowski T (1984) Early effects of experimental arterial subarachnoid haemorrhage on the cerebral circulation. Part II: regional cerebral blood flow and cerebral microcirculation after experimental subarachnoid haemorrhage. Acta Neurochir 72:241–255

    Article  CAS  Google Scholar 

  33. Friedrich V, Flores R, Muller A, Sehba FA (2010) Luminal platelet aggregates in functional deficits in parenchymal vessels after subarachnoid hemorrhage. Brain Res 1354:179–187

    Article  PubMed  CAS  Google Scholar 

  34. Park KW, Metais C, Dai HB, Comunale ME, Sellke FW (2001) Microvascular endothelial dysfunction and its mechanism in a rat model of subarachnoid hemorrhage. Anesth Analg 92:990–996

    Article  PubMed  CAS  Google Scholar 

  35. Sehba FA, Schwartz AY, Chereshnev I, Bederson JB (2000) Acute decrease in cerebral nitric oxide levels after subarachnoid hemorrhage. J Cereb Blood Flow Metab 20:604–611

    Article  PubMed  CAS  Google Scholar 

  36. Pluta RM, Boock RJ, Afshar JK, Clouse K, Bacic M, Ehrenreich H, Oldfield EH (1997) Source and cause of endothelin-1 release into cerebrospinal fluid after subarachnoid hemorrhage. J Neurosurg 87:287–293

    Article  PubMed  CAS  Google Scholar 

  37. Bederson JB, Levy AL, Ding WH, Kahn R, DiPerna CA, Jenkins AL 3rd, Vallabhajosyula P (1998) Acute vasoconstriction after subarachnoid hemorrhage. Neurosurgery 42:352–360

    Article  PubMed  CAS  Google Scholar 

  38. Ono S, Date I, Onoda K, Ohmoto T (2003) Time course of the diameter of the major cerebral arteries after subarachnoid hemorrhage using corrosion cast technique. Neurol Res 25:383–389

    Article  PubMed  Google Scholar 

  39. Sehba FA, Flores R, Muller A, Friedrich V, Chen JF, Britz GW, Winn HR, Bederson JB (2010) Adenosine A(2A) receptors in early ischemic vascular injury after subarachnoid hemorrhage. Laboratory investigation. J Neurosurg 113:826–834

    Article  PubMed  Google Scholar 

  40. Sabri M, Ai J, Knight B, Tariq A, Jeon H, Shang X, Marsden PA, Loch Macdonald R (2011) Uncoupling of endothelial nitric oxide synthase after experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab 31:190–199

    Article  PubMed  CAS  Google Scholar 

  41. Ansar S, Edvinsson L (2008) Subtype activation and interaction of protein kinase C and mitogen-activated protein kinase controlling receptor expression in cerebral arteries and microvessels after subarachnoid hemorrhage. Stroke 39:185–190

    Article  PubMed  CAS  Google Scholar 

  42. Joseph R, Tsering C, Welch KM (1992) Study of platelet-mediated neurotoxicity in rat brain. Stroke 23:394–398

    Article  PubMed  CAS  Google Scholar 

  43. Gryglewski RJ, Palmer RM, Moncada S (1986) Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 320:454–456

    Article  PubMed  CAS  Google Scholar 

  44. Sehba FA, Ding WH, Chereshnev I, Bederson JB (1999) Effects of S-nitrosoglutathione on acute vasoconstriction and glutamate release after subarachnoid hemorrhage. Stroke 30:1955–1961

    Article  PubMed  CAS  Google Scholar 

  45. Sehba FA, Pluta RM, Zhang JH (2011) Metamorphosis of subarachnoid hemorrhage research: from delayed vasospasm to early brain injury. Mol Neurobiol 43:27–40

    Article  PubMed  CAS  Google Scholar 

  46. Ayer RE, Zhang JH (2008) Oxidative stress in subarachnoid haemorrhage: significance in acute brain injury and vasospasm. Acta Neurochir Suppl 104:33–41

    Article  PubMed  CAS  Google Scholar 

  47. Gaetani P, Marzatico F, Rodriguez y Baena R, Pacchiarini L, Vigano T, Grignani G, Crivellari MT, Benzi G (1990) Arachidonic acid metabolism and pathophysiologic aspects of subarachnoid hemorrhage in rats. Stroke 21:328–332

    Article  PubMed  CAS  Google Scholar 

  48. Marzatico F, Gaetani P, Cafe C, Spanu G, Rodriguez y Baena R (1993) Antioxidant enzymatic activities after experimental subarachnoid hemorrhage in rats. Acta Neurol Scand 87:62–66

    Article  PubMed  CAS  Google Scholar 

  49. Park S, Yamaguchi M, Zhou C, Calvert JW, Tang J, Zhang JH (2004) Neurovascular protection reduces early brain injury after subarachnoid hemorrhage. Stroke 35:2412–2417

    Article  PubMed  CAS  Google Scholar 

  50. Simard JM, Geng Z, Woo SK, Ivanova S, Tosun C, Melnichenko L, Gerzanich V (2009) Glibenclamide reduces inflammation, vasogenic edema, and caspase-3 activation after subarachnoid hemorrhage. J Cereb Blood Flow Metab 29:317–330

    Article  PubMed  CAS  Google Scholar 

  51. Cahill J, Calvert JW, Solaroglu I, Zhang JH (2006) Vasospasm and p53-induced apoptosis in an experimental model of subarachnoid hemorrhage. Stroke 37:1868–1874

    Article  PubMed  Google Scholar 

  52. Yan J, Chen C, Hu Q, Yang X, Lei J, Yang L, Wang K, Qin L, Huang H, Zhou C (2008) The role of p53 in brain edema after 24 h of experimental subarachnoid hemorrhage in a rat model. Exp Neurol 214:37–46

    Article  PubMed  CAS  Google Scholar 

  53. Yatsushige H, Ostrowski RP, Tsubokawa T, Colohan A, Zhang JH (2007) Role of c-Jun N-terminal kinase in early brain injury after subarachnoid hemorrhage. J Neurosci Res 85:1436–1448

    Article  PubMed  CAS  Google Scholar 

  54. Hall ED, Travis MA (1988) Attenuation of progressive brain hypoperfusion following experimental subarachnoid hemorrhage by large intravenous doses of methylprednisolone. Exp Neurol 99:594–606

    Article  PubMed  CAS  Google Scholar 

  55. Hall ED, Travis MA (1988) Effects of the nonglucocorticoid 21-aminosteroid U74006F on acute cerebral hypoperfusion following experimental subarachnoid hemorrhage. Exp Neurol 102:244–248

    Article  PubMed  CAS  Google Scholar 

  56. Smith SL, Scherch HM, Hall ED (1996) Protective effects of tirilazad mesylate and metabolite U-89678 against blood–brain barrier damage after subarachnoid hemorrhage and lipid peroxidative neuronal injury. J Neurosurg 84:229–233

    Article  PubMed  CAS  Google Scholar 

  57. Sehba FA, Mustafa G, Friedrich V, Bederson JB (2005) Acute microvascular platelet aggregation after subarachnoid hemorrhage. J Neurosurg 102:1094–1100

    Article  PubMed  Google Scholar 

  58. Rothoerl RD, Schebesch KM, Kubitza M, Woertgen C, Brawanski A, Pina AL (2006) ICAM-1 and VCAM-1 expression following aneurysmal subarachnoid hemorrhage and their possible role in the pathophysiology of subsequent ischemic deficits. Cerebrovasc Dis 22:143–149

    Article  PubMed  CAS  Google Scholar 

  59. Polin RS, Bavbek M, Shaffrey ME, Billups K, Bogaev CA, Kassell NF, Lee KS (1998) Detection of soluble E-selectin, ICAM-1, VCAM-1, and L-selectin in the cerebrospinal fluid of patients after subarachnoid hemorrhage. J Neurosurg 89:559–567

    Article  PubMed  CAS  Google Scholar 

  60. Bavbek M, Polin R, Kwan AL, Arthur AS, Kassell NF, Lee KS (1998) Monoclonal antibodies against ICAM-1 and CD18 attenuate cerebral vasospasm after experimental subarachnoid hemorrhage in rabbits. Stroke 29:1930–1935, discussion 1935–1936

    Article  PubMed  CAS  Google Scholar 

  61. Rosenblum WI (1997) Platelet adhesion and aggregation without endothelial denudation or exposure of basal lamina and/or collagen. J Vasc Res 34:409–417

    Article  PubMed  CAS  Google Scholar 

  62. Akopov SE, Sercombe R, Seylaz J (1995) Leukocyte-induced endothelial dysfunction in the rabbit basilar artery: modulation by platelet-activating factor. J Lipid Mediat Cell Signal 11:267–279

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of Interest Statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima A. Sehba Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Sehba, F.A., Friedrich, V. (2013). Cerebral Microvasculature Is an Early Target of Subarachnoid Hemorrhage. In: Zuccarello, M., Clark, J., Pyne-Geithman, G., Andaluz, N., Hartings, J., Adeoye, O. (eds) Cerebral Vasospasm: Neurovascular Events After Subarachnoid Hemorrhage. Acta Neurochirurgica Supplement, vol 115. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1192-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1192-5_37

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1191-8

  • Online ISBN: 978-3-7091-1192-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics