Skip to main content

Beta-Lactam Antibiotics: Aspects of Manufacture and Therapy

  • Chapter
Industrial Applications

Part of the book series: The Mycota ((MYCOTA,volume 10))

Abstract

For more than half a century, β-lactams have been the most important agents used in chemotherapeutic combat against bacterial infections. Their wide range of antibacterial activities, together with their excellent pharmaceutical properties and the almost complete lack of toxicity have made them the most successful compounds ever used in medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aharonowitz Y, Cohen G, Martin JF (1992) Penicillin and cephalosporin biosynthetic genes: structure, organization, regulation and evolution. Annu Rev Microbiol 46: 461–495

    Article  CAS  Google Scholar 

  • Am yes SGB, Miles RS (1998) Extended-spectrum beta lactamases: the role of inhibitors in therapy. J Antimicrob Chemother 42: 415–417

    Article  Google Scholar 

  • Ariyo BT, Bucke C, Keshavarz T (1997) Alginate oligosaccharides as enhancers of penicillin production in cultures of Penicillium chrysogenum. Biotechnol Bioeng 53: 17–20

    Article  CAS  Google Scholar 

  • Barredo JL, Diez B, Alvarez E, Martin JF (1989) Large amplification of 35-kb DNA fragment carrying two penicillin biosynthetic genes in high penicillin producing strains of R. chrysogenum. Curr Genet 16: 453–459

    Article  CAS  Google Scholar 

  • Bellgardt KH (1998) Process models for production of beta-lactam antibiotics. Adv Biochem Eng Biotechnol 60: 153–194

    CAS  Google Scholar 

  • Bettenhausen KD, Marenbach P, Freser S, Rettenmaier H, Nieken U (1995) Self-organizing structured modelling of a biotechnological fed-batch fermentation by means of genetic programming. In: Zalzala A (ed) Proceeding of the International Conference on Genetic algorithms in engineering systems: innovations and applications, vol 14. IEE Conference Publication, London, pp 481–486

    Google Scholar 

  • Bianchi D, Bortolo R, Golini P, Cesti P (1998) Application of immobilized enzymes in the manufacture of betalactam antibiotics. Chim In (Milan) 80: 875–885

    Google Scholar 

  • Binder RG, Numata K, Lowe DA, Murakami T, Brown JL (1993) Isolation and characterization of a Pseudomonas strain producing glutaryl-7-aminocephalosporanic acid acylase. Appl Environ Microbiol 59: 3321–3326

    CAS  Google Scholar 

  • Borthwick AD, Weingarten G. Haley TM, Tomaszewski M. Wang W, Hu Z, Bedard J, Jin H, Yuen L, Mansour TS (1998) Design and synthesis of monocyclic betalactarns as mechanism-based inhibitors of human cytomegalovirus protease. Bioorg Med Chem Lett 8: 365–370

    Article  CAS  Google Scholar 

  • Brakhage AA (1998) Molecular regulation of ß-lactam biosynthesis in filamentous fungi. Microbiol Mol Biol Rev 62: 547–585

    CAS  Google Scholar 

  • Brakhage AA, Turner G (1995) Biotechnical genetics of antibiotic synthesis. In: Kück U (ed) The Mycota II: genetics and biotechnology. Springer, Berlin Heidelberg New York, pp 263–285

    Chapter  Google Scholar 

  • Brakhage AA, Browne P, Turner G (1994) Analysis of penicillin biosynthesis and the expression of penicillin biosynthesis genes of Aspergillus nidulans by targeted disruption of the acvA gene. Mol Gen Genet 242: 57–64

    CAS  Google Scholar 

  • Brandt D, Kleiber W (1972) Verfahren zur Herstellung von 6-Aminopenicillansäure. Austrian Patent no 297923, Vienna

    Google Scholar 

  • Bruggink A, Roos EC, de Vroom E (1998) Penicillin acylase in the industrial production of beta-lactam antibiotics. Org Process Res Dev 2:128–133

    Google Scholar 

  • Bryskier A (1997) Dual beta-lactam-fluoroquinolone compounds: a novel approach to antibacterial treatment. Exp Op Inv Drugs 6: 1479–1499

    Article  CAS  Google Scholar 

  • Bryson HM, Spencer CM (1996) QuinupristinDalfopristin. Drugs 52: 406–415

    Article  CAS  Google Scholar 

  • Calam CT (1976) Starting investigational and production cultures. Proc Biochem 4: 7–12

    Google Scholar 

  • Cantwell CA, Beckmann RJ, Dotzlaf RJ, Fisher DL, Skatrud PL, Yeh WK, Queener SW (1990) Cloning and expression of a hybrid S. clavuligerus cefE gene in P. chrysogenum. Curr Genet 17: 213–221

    Article  CAS  Google Scholar 

  • Christ W (1999) Antibiotika-Entwicklungen and Trends. Ausgewählte Aspekte der Resistenz. Med Monatszeitschr Pharm 3: 72–80

    Google Scholar 

  • Christensen LH, Nielsen J, Villadsen J (1994) Degradation of penicillin V in fermentation media. Biotechnol Bioeng 44: 165–169

    Article  CAS  Google Scholar 

  • Conder MJ, Crawford L, McAda PC, Rambosek JE (1992) Novel bioprocess for preparing 7-ADCA. European patent no 0532 341

    Google Scholar 

  • Conder MJ, Almeida N, Behrens S, Crawford L, Delawder S. Hoerner T, McAda PC, Rambosek JE, Reeves C, Schimmel’ `l’, Stepan AM, Stieber R. long IT, Vinci V (1994) Cephalosporin production in Penicillium chrysogenum: the application of metabolic engineering to the development of a new biocatalytic process. Biotechnology — Appl Biocatalysis, Brighton, 4–6 July, pp 20–24

    Google Scholar 

  • Coque TM, Tomayko JF, Ricke SC, Okhyusen PC (1996) Vancomycin resistant enterococci from nosocomial, community and animal sources in the United States. Antimicrob Agents Chemother 40: 2605–2609

    Google Scholar 

  • Crawford L, Stepan AM, McAda PC, Rambosek JA, Conder MJ, Vinci VA, Reeves C (1995) Production of cephalosporin intermediates by feeding adipic acid to recombinant Penicillium chrysogenum strains expressing ring expansion activity. Biotechnology 13: 58–62

    Article  CAS  Google Scholar 

  • Davies J (1994) Inactivation of antibiotics and the dissem- ination of resistance genes. Science 264: 375–382

    Article  CAS  Google Scholar 

  • DeLaPena A, Derendorf H (1999) Pharmacokinetic properties of h-lactamase inhibitors. Int J Clin Pharmacol Titer 37: 63–75

    CAS  Google Scholar 

  • Demain AL, Zhang J (1998) Cephalosporin C production by Cephalosporium acremonium: the methionine story. Crit Rev Biotechnol 18: 283–294

    Article  CAS  Google Scholar 

  • DeModena JA, Gutierrez S, Velasco J. Fernandez FJ. Fachini RA, Galazzo JL, Hughes DE. Martin JE (1993) The production of cephalosporin C by Acremonium chrysogenum is improved by the intracellular expression of a bacterial hemoglobin. Bio/Technology 11:926–929

    Google Scholar 

  • Deziel R, Malenfant E (1998) Inhibition of human cytomegalovirus protease N(o) with monocyclic betalactams. Bioorg Med Chem Lett 8: 1437–1442

    Article  CAS  Google Scholar 

  • DiGuilmi AM, Mouz N, Martin L, Hoskins J, Jaskunas SR, Dideberg O. Vernet T (1999) Glycosyltransferase domain of penicillin-binding protein 2a from Streptococcus pneumoniae is membrane associated. J Bacteriol 181: 2773–2781

    CAS  Google Scholar 

  • DiModugno E, Felici A (1999) The renewed challenge of b-lactams to overcome bacterial resistance. Curr Opin Ant Infect Invest Drug 1: 26–39

    Google Scholar 

  • Doherty JB, Ashe BM, Argenbright LW, Barker PL, Bonney RJ, Chandler GO, Dahlgren ME, Dorn CP, Finke PE, Firestone RA, Fletcher D. Hagmann WK, Mumford R, O’Grady L, Maycock AL, Pisano JM, Shah SK, Thompson KR, Zimmerman M (1986) Cephalosporin antibiotics can be modified to inhibit human leukocyte clastase. Nature 322: 192–194

    Article  CAS  Google Scholar 

  • Elmayergi H, Moo-Young M (1973) Effect of a polymer additive on mass transfer into mold pellets. In: Sikyta B (ed) Advances in microbial engineering. Biotechnol Bioeng Symp 4. Wiley, New York, pp 507–512

    Google Scholar 

  • Fehrenbach R, Comberbach M, Pêtre JO (1992) Measuring filamentous cells with the biomass monitor. J Biotechnol 23: 303–314

    Article  CAS  Google Scholar 

  • Feng B, Friedlin E, Marzlug GA (1994) A reporter gene analysis of penicillin biosynthesis gene expression in Penicilliurn chrysogenum and its regulation by nitrogen and glucose catabolite repression. Appl Environ Microbiol 60: 4432–4439

    CAS  Google Scholar 

  • Fierro F, Barredo JL, Diez B, Guiterrez S. Fernandez J, Martin JF (1995) The penicillin cluster is amplified in tandem repeats linked by conserved hexanucleotide sequences. Proc Natl Acad Sci USA 92: 6200–6204

    Article  CAS  Google Scholar 

  • Fukagawa M, Isogai T, Aramori 1, Iwami M, Kojo H, Ono T, Kohsaka M. Imanaka H (1991) Direct production of 7-aminodeacetylcephalosporanic acid by Acremonium chrysogenum Hm 178. Agric Biol Chem 55: 2163–2165

    CAS  Google Scholar 

  • Gomez A, Rodriguez M, Ospina S, Zamora R. Merino E, Bolivar F, Ramirez OT, Quintero R, Lopcz-Munguia A (1994) Strategies in the design of a penicillin acylase process. In: Galindo R, Ramirez OT (eds) Advances in bioprocess engineering. Kluwer, Dordrecht. pp 29–40

    Chapter  Google Scholar 

  • Gosh AC, Bora MM, Dutta NN (1996) Developments in liquid membrane separation of beta-lactam antibiotics. Bioseparation 6: 91–105

    Google Scholar 

  • Gosh AC, Mathur RK, Dutta NN (1997) Extraction and purification of cephalosporin antibiotics. In: Scheper T (ed) Advances in biochemical engineering/biotechnology, vol 56. Springer, Berlin Heidelberg New York, pp 111–145

    Google Scholar 

  • Gotoh N (1999) Multidrug reistance mechanisms in Pseu- domonas aerigunosa. Jpn J Chemother 47: 319–328

    CAS  Google Scholar 

  • Griffiths D, Hall G (1993) Biosensors–what real progress is being made. Trends Biotechnol 11: 122–130

    Article  CAS  Google Scholar 

  • Gubernator K, Heinze-Krauss I, Angehrn P, Charanas RL, Hubschwerlen C. Oefner C, Page MGP, Winkler FK (1998) Structure-based design of potent betalactamase inhibitors. Meth Princ Med Chem 6: 89103

    Google Scholar 

  • Guiterrez S, Velasco J. Fernandez FJ, Martin JF (1992) The cefG gene of Cephalosporium acremonium is linked to the cefEF gene and encodes a deacetylcephalosporin C acetyltransferase closely related to homoserin O-acetyltransferase. J Bacteriol 174: 30563064

    Google Scholar 

  • Hammond SV (1992) NIR analysis of antibiotic fermentations. In: Murray I, Cowe IA (eds) Making light work: advances in near infrared spectroscopy, vol 1. VCH, New York, pp 584–589

    Google Scholar 

  • Hammond SV. Brookes IK (1992) Near-infrared spectroscopy–a powerful technique for at-line and on-line analysis of fermentations. In: Ladisch MR, Bose A (eds) Harnessing biotechnology for the 21st century: proceedings of the 9th international symposium and exhibition. American Chemical Society, Washington, DC, pp 325–333

    Google Scholar 

  • Hartwig OH (1996) Beta-lactam antibiotics. Modern drugs and new concepts. Pharm Zeitung 141: 11–16

    Google Scholar 

  • Heim J, Shen Y, Wolfe S, Demain AL (1984) Regulation of isopenicillin N synthetase and deacetoxycephalosporin C synthetase by carbon source during the fermentation of Cephalosporin acremonium. Appl Microbiol Biotechnol 19: 232–236

    Article  CAS  Google Scholar 

  • Ho CS, Lu-Kwang J, Baddour RF (1990) Enhancing penicillin fermentations by increased oxygen solubility through the addition of n-hexadecane. Biotechnol Bioeng 36: 1110–1118

    Article  CAS  Google Scholar 

  • Hönlinger C, Kubicek CP (1989) Regulation of S-(L-aaminoadipyl)-L-cysteinyl-D-valine and isopenicillin N biosynthesis in Penicillium chrysogenum by the aaminoadipate pool size. FEMS Microbiol Lett 65: 71–76

    Article  Google Scholar 

  • Humber DC, Cammack N, Coates JAV, Cobley KN, Orr DC, Storer R, Weingarten GG, Weir MP (1992) Penicillin derived C2-symmetric dimers as a novel inhibitor of HIV-1 proteinase. J Med Chem 35: 3080–3081

    Article  CAS  Google Scholar 

  • Ingolla TD, Queener SW, Samson SM, Skatrud PL (1988) Recombinant DNA expression vectors and DNA compounds that encode deacetoxycephalosporin C synthetase and deacetylcephalosporin C synthetase. European Patent no 0281 391

    Google Scholar 

  • Isogai T (1997) New processes for production of 7aminocephalosporanic acid from cephalosporin. Drugs Pharm Sci 82: 733–751

    Article  CAS  Google Scholar 

  • Isogai T, Fukagawa M (1991) Direct production of 7aminocephalosporanic acid and 7-aminodeacetylcephalosporanic acid by recombinant Acremonium chrysogenum. Actinomycetology 5: 102–111

    Article  Google Scholar 

  • Isogai T, Fukagawa M, Aramori I, Iwami M, Kojo H, Ono T, Ueda Y, Kohsaka M, Imanaka H (1991) Construction of 7-aminocephalosporanic acid (7-ACA) biosynthesis operon and direct production of 7-ACA in Acremonium chrysogenum. Bio/Technology 9: 188–191

    Article  CAS  Google Scholar 

  • Karaffa L, Sandor E, Kozma J, Szentirmai A (1996) Cephalosporin C production, morphology and alternative respiration of Acremonium chrysogenum in glucose limited chemostat. Biotechnol Lett 18: 701–706

    Article  CAS  Google Scholar 

  • Karaffa L, Sandor E, Kozma J, Kubicek CP, Szentirmai A (1999) The role of the alternative respiratory pathway in the stimulation of cephalosporin C formation by soybean oil in Acremonium chrysogenum. Appl Microbiol Biotechnol 51: 633–638

    Article  CAS  Google Scholar 

  • Kell DB, Davey CL (1992) On fitting dielectric spectra using artificial neural networks in studies of the dielectric b-dispersion. Bioelectrochem Bioenerg 28: 425434

    Google Scholar 

  • Kidwai M, Sapra P, Shushan KR (1999) Synthetic strategies and medicinal properties of b-lactams. Curr Med Chem 6: 195–215

    CAS  Google Scholar 

  • Kotra LP. Mobashery S (1998) Beta-lactam antibiotics, beta-lactamases and bacterial resistance. Bull Inst Pasteur (Paris) 96: 139–150

    Article  Google Scholar 

  • Kovar K, Kunze A, Schneiter N, Gehlen S, Hellmuth K van Loon APGM (1999) Application of artificial neural networks to optimize the fermentation process for production of phytase. 58th Annu Assoc SSM hosting Cost action

    Google Scholar 

  • Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. The MIT Press, Cambridge, Massachusetts

    Google Scholar 

  • Kraeft H (1996) Oral cephalosporins of the 3rd generation. Internist 37: 319–323

    CAS  Google Scholar 

  • Kück U, Walz M, Mohr G, Mracek M (1989) The 5’-sequence of the isopenicillin N-synthetase gene (pcbC) from Cephalosporium acremonium directs the expression of the prokaryotic hygromycin B phosphotransferase gene (hph) in Aspergillus niger. Appl Microbiol Biotechnol 31: 358–365

    Article  Google Scholar 

  • Küenzi MT (1980) Regulation of cephalosporin synthesis in Cephalosporium acremonium by phosphate and glucose. Arch Microbiol 128: 78–83

    Article  Google Scholar 

  • Leclercq (1996) Epidemiology and control of multiresistant enterococci. Drugs 52: 47–49

    Article  Google Scholar 

  • Lee VJ (1999) Patents (and patent applications) on ßlactam antibacterials: January 1995-December 1998. Exp Opin Ther Patents 9: 269–279

    Article  CAS  Google Scholar 

  • Lein J (1988) One-step enzymatic conversion of cephalosporin C and derivatives to 7-aminocephalosporanic acid and derivatives. European Patent no 0283218

    Google Scholar 

  • Liras P, Asturias JA, Martin JF (1990) Phosphate control sequences involved in transcriptional regulation of antibiotic biosynthesis. TIBTECH 8: 184–188

    Article  CAS  Google Scholar 

  • Lübbe C, Jensen SE, Demain AL (1984) Prevention of phosphate inhibition of cephalosporin synthetases by ferrous ion. FEMS Microbiol Lett 25: 75–90

    Article  Google Scholar 

  • Maiti SN, Phillips OA, Micetich RG, Livermore DM (1998) Beta-lactamase inhibitors: agents to overcome bacterial resistance. Curr Med Chem 5: 441–456

    CAS  Google Scholar 

  • Martin JF (1998) New aspects of genes and enzymes for /3lactam antibiotic synthesis. Appl Microbiol Biotechnol 50: 1–15

    Article  CAS  Google Scholar 

  • Martin JF, Casqueiro J, Kosalkova K, Marcos AT, Gutierrez S (1999) Penicillin and cephalosporin biosynthesis: mechanism of carbon catabolite regulation of penicillin production. Antonie van Leeuwenhoek 75: 21–31

    Article  CAS  Google Scholar 

  • Masuda N, Gotoh N, Ishii C, Sakagawa E, Ohya S, Nishino T (1999) Interplay between chromosomal b-lactamase and the MexAB-OprM efflux system in intrinsic resistance to beta-lactams in Pseudomonas aerigunosa. Antimicrob Agents Chemother 43: 400–402

    CAS  Google Scholar 

  • Mathison L, Soliday Ch, Stepan T, Aldrich T, Rambosek J (1993) Cloning, characterization, and use in strain improvement of the Cephalosporium acremonium gene cefG encoding acetyl transferase. Curr Genet 23: 33–41

    Article  CAS  Google Scholar 

  • Matsumara M, Yoshida T, Taguchi H (1982) Synthesis of cephalosporin C by a methionine analogue resistant mutant of Cephalosporium acremonium. Eur J Appl Microbiol Biotechnol 16: 114–118

    Article  Google Scholar 

  • McCabe AB, van den Hombergh JPTW, Tiburn J, Arst HN, Visser J (1996) Identification, cloning and analysis of the Aspergillus niger gene pacC, a wide domain regulatory gene response to ambient pH. Mol Gen Genet 250: 367–374

    Google Scholar 

  • Menne S, Walz M, Kück U (1994) Expression studies with the bidirectional pcbAB-pcbC promoter region from Acremonium chrysogenum using reporter gene fusions. Appl Microbiol Biotechnol 42: 57–66

    Article  CAS  Google Scholar 

  • Mizen L, Burton G (1998) The use of esters as prodrugs for oral delivery of b-lactam antibiotics. Pharm Biotechnol 11: 345–365

    Article  CAS  Google Scholar 

  • Müller C, Kohls O, Anders KD, Scheper T (1993) Optical chemo-and biosensors. BlOforum 3: 64–67

    Google Scholar 

  • Munoz P. Garcia-Garrote F, Bouza E (1996) Broad-spectrum beta-lactam antibiotics with b-lactamase inhibitors. Int J Antimicrob Agents 7: S9 — S14

    Google Scholar 

  • Newbert RW, Barton B, Greaves P, Harper J. Turner G (1997) Analysis of a commercially improved Penicillium chrysogenum strain series: involvement of recombinogenic regions in amplification and deletion of the penicillin biosynthesis gene cluster. J Ind Microbiol Biotechnol 19: 18–27

    Article  CAS  Google Scholar 

  • Nikaido H (1994) Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 264: 382–387

    Article  CAS  Google Scholar 

  • Nishi H, Tsumagari N, Kakimoto T, Terabe S (1989) Separation of b-lactam antibiotics by micellar electrokinczic chromatography. J Chromatogr 477: 259–270

    Article  CAS  Google Scholar 

  • Nishi H, Fukuyama T, Matsuo M (1990) Separation and determination of aspoxicillin in human plasma by micellar clectrokinetic chromatography with direct sample injection. J Chromatogr 515: 245–255

    Article  CAS  Google Scholar 

  • Ohashi H, Katsuta Y, Nagashima M, Kamei T, Yano M (1989) Expression of the Arthrobacter viscosus penicillin G acylase gene in Escherichia coli and Bacillus subtilis. Appl Environ Microbiol 55: 1351–1356

    CAS  Google Scholar 

  • Page MI, Laws AP (1998) The mechanism of catalysis and the inhibition of beta-lactamases. Chem Commun (Cambridge) 16: 1609–1617

    Article  Google Scholar 

  • Parmar A, Kumar H, Marwaha SS, Kennedy JF (1998) Recent trends in enzymatic conversion of cephalosporin C to 7-aminocephalosporanic acid (7-ACA). Crit Rev Biotechnol 18: 1–12

    Article  CAS  Google Scholar 

  • Pechère JC (1996) Streptogramins. A unique class of antibiotics. Drugs 51: 13–19

    Article  Google Scholar 

  • Penalva MA, Rowlands RT, Turner G (1998) The optimization of penicillin biosynthesis in fungi. TIBTECH 16: 483–489

    Article  CAS  Google Scholar 

  • Pusztahelyi T, Pocsi I, Kozma J, Szentirmai A (1997) Aging of Penicillium chrysogenum cultures under carbon starvation: I: morphological changes and secondary metabolism. Biotechnol Appl Biochem 25: 81–86

    Google Scholar 

  • Revilla G, Lopez-NietoMJ, Luengo JM, Martin JF (1984) Carbon catabolite repression of penicillin biosynthesis by Penicillium chrysogenum. J Antibiot 37: 781–789

    CAS  Google Scholar 

  • Revilla G, Ramos FR, Lopez-Nieto MJ, Alvarez E, Martin JF (1986) Glucose represses formation of 6-(L-aaminoadipyl)- L-cysteinyl-D-valine and isopenicillin N synthase but not penicillin acyltransferase in Penicillium chrysogenum. J Bacteriol 168: 947–952

    CAS  Google Scholar 

  • Rowlands RT (1984) Industrial strain improvement: muta-genesis and random screening procedures. Enzyme Microb Technol 6: 3–10

    Article  CAS  Google Scholar 

  • Rowlands RT (1992) Strain improvement and strain stability. In: Finkelstein DB, Ball C (eds) Biotechnology of filamentous fungi. technology and products. CRC Press, Boca Raton, pp 41–64

    Google Scholar 

  • Schneider WI, Roehr M (1976) Purification and properties of penicillin acylase of Bovista plumbea. Biochim Biophys Acta 452: 177–185

    Article  CAS  Google Scholar 

  • Schügerl K, Seidel G (1998) Monitoring of the concentration of b-lactam antibiotics and their precursors in complex cultivation media by high performance liquid chromatography. J Chromatogr 812: 179–189

    Article  Google Scholar 

  • Shen YQ, Heim J, Solomon NA, Wolfe S, Demain AL (1984) Repression of ß-lactam production in Cephalosporium acremonium by nitrogen sources. J Antibiot 37: 503–511

    Article  CAS  Google Scholar 

  • Shewale JG, Sudhakaran VK (1997) Penicillin V acylase: its potential in the production of 6-aminopenicillanic acid. Enzyme Microb Technol 20: 402–410

    Article  CAS  Google Scholar 

  • Siehnel RJ, Martin NL, Hancock (1991) Function and structure of porin proteins OprF and OprP of Pseudomonas aerigunosa. In: Silver S, Chakrabarty AM, Iglewski B, Kaplan S (eds) Pseudomonas: biotransformation, pathogenesis and evolving biotechnology. Am Soc Microbiol, Washington, DC, pp 328–342

    Google Scholar 

  • Sieradzki K, Tomasz A (1996) A highly vancomycinresistant laboratory mutant of Staphylococcus aureus. FEMS Microbiol Lett 142: 161–166

    Article  CAS  Google Scholar 

  • Singh K, Sehgal SN, Vezina C (1967) Conversion of penicillin V to 6-aminopenicillanic acid by the use of spores. US Patent no 3.305. 453

    Google Scholar 

  • Skatrud PL (1992) Genetic engineering of b-lactam antibiotic biosynthetic pathways in filamentous fungi. TIBTECH 10: 324–329

    Article  CAS  Google Scholar 

  • Skatrud PL. Queener SW (1989) An electrophoretic molecular karyotype for an industrial strain of Cephalosporium acremonium. Gene 79: 331–338

    Google Scholar 

  • Skatrud PL, Schwecke T, van Liempt H, Tobin MB (1997) Advances in the molecular genetics of b-lactam antibiotic biosynthesis. In: Kleinkauf H, von Doehren H (eds) Biotechnology, 2nd edn. American Chemical Society, Columbus, OH, pp 247–276

    Chapter  Google Scholar 

  • Smith AW, Collis K, Ramsden M, Fox HM, Peberdy JF (1991) Chromosome rearrangements in improved cephalosporin C producing strains of Acremoinium chrysogenum. Curr Genet 18: 235–237

    Article  Google Scholar 

  • Smith DJ. Bull JH, Edwards J, Turner G (1989) Amplification of the isopenicillin N synthase gene in a strain of Penicillium chrysogenum producing high levels of penicillin. Mol Gen Genet 216: 492–497

    Article  Google Scholar 

  • Smith DJ. Burnham MRK, Bull JH, Hodgson JE, Ward JM, Browne P, Brown J, Barton B. Earl AJ, Turner G (1990) ß-lactam antibiotic biosynthetic genes have been conserved in clusters in prokaryotes and eukaryotes. EMBO J 9: 741–747

    Google Scholar 

  • Spratt (1994) Resistance to antibiotics mediated by target alteration. Science 264: 388–392

    Article  CAS  Google Scholar 

  • Stoppok E, Wagner F, Zadrazil F (1981) Identification of a penicillin V acylase processing fungus. Eur J Appl Microbiol Biotechnol 13: 60–61

    Article  Google Scholar 

  • Suarez T, Penalva MA (1996) Characterization of a Penicillium chrysogenum gene encoding a PacC transcription factor and its binding sites in the divergent pcbAB-pcbC promoter of the penicillin biosynthetic cluster. Mol Microbiol 20: 529–540

    Article  CAS  Google Scholar 

  • Trautmann M, Ruhnke M, Kresken M, Brauers J (1997) Quinupristin/Dalfopristin (RP 59500/Synercid): Mikrobiologische Profil der ersten parenteralen Substanzkombination aus der Gruppe der Streptogramine. Chemother J 6: 31–42

    Google Scholar 

  • Usher J, Lewis MA, Hughes DW, Compton BJ (1988) Development of the cephalosporin C fermentation taking into account the instability of cephalosporin C. Biotechnol Lett 10: 343–348

    Article  Google Scholar 

  • van Suijdam JC, Kossen NWF, Paul PG (1980) An inoculum technique for the production of fungal pellets. Eur J Appl Microbiol Biotechnol 10: 211–221

    Article  Google Scholar 

  • Walz M, Kick U (1991) Polymorphic karyotypes in related Acrernonium strains. Curr Genet 19: 73–76

    Article  CAS  Google Scholar 

  • Weil J, Miramonti J, Ladisch MR (1995) Biosynthesis of cephalosporin C: regulation and recombinant technology. Enzyme Microbial `Iechnol 17: 88–90

    Article  CAS  Google Scholar 

  • Wilmouth RC, Westwood NJ, Anderson K, Brownlee W, Claridge TD, Clifton IJ (1998) Inhibition of diastase by N-sulfonylaryl beta-lactams: anatomy of a stable acyl-enzyme complex. Biochemistry 37: 1750617513

    Google Scholar 

  • Wilms J, de Vroom E (1998) Preparation of ß-lactam antibiotics. European Patent no 0201688

    Google Scholar 

  • Yoakim C, Ogilvie WW, Cameron DR, Chabot C, Grand-Maître C, Guse I, Hache B, Kawai S, Naud J, O’Meara JA, Plante R, Deziel R (1998) Potent b-lactam inhibitors of human cytomegalovirus protease. Antivir Chem Chemother 9: 379–387

    CAS  Google Scholar 

  • Yong Kim E, Young JY (1992) Analysis of broth rheology with cell morphology in Cephalosporium fermentation. Biotechnol Techniques 6: 501–506

    Article  Google Scholar 

  • Zhang J, Demain A (1992) ACV synthetase. Crit Rev Biotechnol 12: 245–260

    Article  CAS  Google Scholar 

  • Zhang J, Greasham R (1999) Chemically defined media for commercial fermentations. Appl Microbiol Biotechnol 51: 407–421

    Article  CAS  Google Scholar 

  • Zhang J, Wolfe S, Demain AL (1988) Phosphate repressible and inhibitable b-lactam synthetases in Cephalosporium acremonium strain C-10. Appl Microbiol Biotechnol 29: 242–247

    CAS  Google Scholar 

  • Zhang J, Wolfe S, Demain AL (1989) Carbon source regulation of the ACV synthetase in Cephalosporium acremonium C-10. Curr Microbiol 18: 361–367

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmidt, F.R. (2002). Beta-Lactam Antibiotics: Aspects of Manufacture and Therapy. In: Osiewacz, H.D. (eds) Industrial Applications. The Mycota, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10378-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10378-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07481-3

  • Online ISBN: 978-3-662-10378-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics