Skip to main content

Biochemistry and Molecular Biology of Fungal Sterols

  • Chapter
Biochemistry and Molecular Biology

Part of the book series: The Mycota ((MYCOTA,volume 3))

Abstract

Sterols are produced via the ubiquitous isoprenoid pathway which also gives rise to an array of products such as the dolichols and ubiquinone, or components of important molecules such as isopentenyl adenine, heme A, and farnesylated proteins (Ras). Although there are major groups of organisms that cannot produce sterols including insects, parasitic nematodes, and pythiaceous fungi, sterols are widely distributed in nature, where they are required for the growth and/or reproduction of essentially all eukaryotic organisms. With few exceptions, prokaryotes cannot synthesize sterols and, except for some mycoplasmas, they are not required for growth or reproduction. Specific sterols tend to be produced as end products and accumulate in the major groups of organisms, e.g., cholesterol in mammals, and sitosterol in many plants along with cholesterol, stigmasterol, and campesterol. Families of algae tend to accumulate specific sterols such as cholesterol in the red algae (Rhodophyceae) and fucosterol in the brown algae (Phaeophyceae), and others have several predominant sterols which may include 24-methyl and 24-ethylcholesterol and cholesterol (Patterson 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andreasen AA, Stier TJB (1953) Anaerobic nutrition of Saccharomyces cerevisiae. J Cell Comp Physiol 41: 23–26

    Article  CAS  Google Scholar 

  • Aoyama Y, Yoshida Y, Hata S, Nishino T, Katsuki H, Maitra US, Mohan VP, Sprinson DB (1983) J Biol Chem 258: 9040–9042

    PubMed  CAS  Google Scholar 

  • Arthington BA, Bennett LG, Skatrud PL, Guynn CJ, Barbuch RJ, Ulbright CE, Bard M (1991) Cloning, description, and sequence of the gene encoding yeast C-5 sterol desaturase. Gene 102: 39–44

    Article  PubMed  CAS  Google Scholar 

  • Ashman WH, Barbuch RJ, Ulbright CE, Jarrett HW, Bard M (1991) Cloning and disruption of the yeast C-8 sterol isomerase gene. Lipids 26: 628–632

    Article  PubMed  CAS  Google Scholar 

  • Augustyn OPH, Koch JLF, Ferrerira D (1992) Differentiation between yeast species and strains within species by cellular fatty acid analysis: a feasible technique? Syst Appl Microbial 15: 105–115

    Article  CAS  Google Scholar 

  • Baloch RI, Mercer EI, Wiggins TE, Baldwin BC (1984) Inhibition of ergosterol biosynthesis in Saccharomyces cerevisiae and Ustilago maydis by tridemorph, fenpropimorph and fenpropidin. Phytochemistry 23: 2219

    Article  CAS  Google Scholar 

  • Bard M (1972) Biochemical and genetic aspects of nystatin resistance in Saccharomyces cerevisiae. J Bacteriol 111: 649–657

    PubMed  CAS  Google Scholar 

  • Bard M, Lees ND, Turi T, Croft D, Cofrin L, Barbuch R, Koegel C, Loper JC (1993) Sterol synthesis and viability of ergll (cytochrome P-450 lanosterol demethylase) mutations in Saccharomyces cerevisiae and Candida albicans. Lipids 28: 963–967

    Article  PubMed  CAS  Google Scholar 

  • Barton DHR, Collie JET, Widdowson DA, Bard M, Woods RA (1974) Biosynthesis of terpenes and steroids. Part IX. The sterols of some mutant yeasts and their relationship to be biosynthesis of ergosterol. Chem Soc Perk Trans 1: 1326–1333

    Google Scholar 

  • Basson ME, Thorness M, Rine J (1986) Saccharomyces cerevisiae contains two functional genes encoding 3hydroxy-3-methylglutaryl coenzyme A reductase. Proc Natl Acad Sci USA 83: 5553–5567

    Google Scholar 

  • Benveniste P (1986) Sterol biosynthesis. Annu Rev Plant Physiol 37: 275–308

    Article  CAS  Google Scholar 

  • Berg D, Plempel M (eds) (1988) Sterol biosynthesis inhibitors: pharmaceutical and agrochemical aspects. Ellis Harwood, Chichester

    Google Scholar 

  • Bil1heimer JT, Reinhart MP (1990) Intracellular trafficking of sterols. In: Hilderson HG (ed) Subcellular biochemistry intracellular transfer of lipid molecules, vol 16. Plenum, New York, pp 301–331

    Google Scholar 

  • Bloch KE (1983) Sterol structure and membrane function. In: Fasman GD (ed) CRC Crit Rev Biochem 14: 47–92

    Google Scholar 

  • Bloch KE (1987) Summing up. Annu Rev Biochem 56: 1–19

    Article  CAS  Google Scholar 

  • Blomquist G, Andersson B, Andersson K, Brondz I (1992) Analysis of fatty acids. A new method for characterization of moulds. J Microbial Methods 16: 59–68

    Google Scholar 

  • Butko P, Hapala I, Nemecz G, Schroeder F (1992) Sterol domains in phospholipid membranes: dehydroergosterol polarization measures molecular sterol transfer. J Biochem Biophys Methods 24: 15–37

    Article  PubMed  CAS  Google Scholar 

  • Casey WM, Keesler GA, Parks LW (1992) Regulation of partitioned sterol biosynthesis in Saccharomyces cerevisiae. J Bacteriol 174: 7283–7288

    PubMed  CAS  Google Scholar 

  • Chambon C, Ladeveze V, Oulmonden A, Servous M, Karst F (1990) Isolation and properties of yeast mutants in farnesyl diphosphate synthetase. Curr Genet 18: 41–46

    Article  PubMed  CAS  Google Scholar 

  • Chambon C, Ladeveze V, Servouse M, Blanchard L, Javelot C, Vladescu B, Karst F (1991) Sterol pathway in yeast. Identification and properties of mutant strains defective in mevalonate diphosphate decarboxylase and farnesyl diphosphate synthetase. Lipids 26: 633–636

    Google Scholar 

  • Connerton IF, Dean SM, Butters JA, Loeffler RST, Hollomon DW (1991) RIP as a tool in the analysis of P-450 and sterol biosynthesis in Neurospora crassa. Biochem Soc Trans 19: 779–802

    Google Scholar 

  • Croxen R, Goosey MW, Keon JPR, Hargreaves JA (1994) Isolation of an Ustilago maydis gene encoding 3hydroxy-3-methylglutaryl coenzyme A reductase and expression of a C-terminal truncated form in Escherichia coli. Microbiology 140: 2363–2370

    Article  PubMed  CAS  Google Scholar 

  • Dahl C, Dahl J (1988) Cholesterol and cell function In: Yeagle PL (ed) Biology of cholesterol. CRC Press, Boca Raton, pp 147–170

    Google Scholar 

  • Dahl C, Dahl J, Bloch K (1980) Sterols in membranes: growth characteristics and membrane properties of Mycoplasma capricolum cultured on cholesterol and lanosterol. Biochemistry 19: 1462–1467

    Article  PubMed  CAS  Google Scholar 

  • Dahl C, Biemann H-P, Dahl J (1987) A protein kinase antigenetically related to pp 60v-src involved in yeast cell cycle control: positive in vivo regulation by sterol. Proc Natl Acad Sci USA 84: 4012–4016

    Article  PubMed  CAS  Google Scholar 

  • Dahl J, Dahl C (1985) Stimulation of cell proliferation and polyphosphoinositol metabolism in Saccharomyces cerevisiae by ergosterol. Biochem Biophys Res Commun 113: 844–850

    Article  Google Scholar 

  • Dahl JS, Dahl CE, Bloch K (1981) Effect of cholesterol on macromolecular synthesis and fatty acid uptake by Mycoplasma capricolum. J Biol Chem 256: 87–91

    PubMed  CAS  Google Scholar 

  • Demel RA, de Kruijff B (1976) The function of sterols in membranes. Biochim Biophys Acta 457: 109–132

    Article  PubMed  CAS  Google Scholar 

  • Erwin JA (1973) Comparative biochemistry of fatty acids in eukaryotic organisms. In: Erwin JA (ed) Lipids and biomembranes of eukaryotic microorganisms. Academic Press, New York, pp 41–143

    Google Scholar 

  • Fegueur M, Richard L, Charles AD, Karst F (1991) Isolation and primary structure of the ERG9 gene of Saccharomyces cerevisiae encoding squalene synthetase. Curr Genet 20: 365–372

    Article  PubMed  CAS  Google Scholar 

  • Gaber RF, Copple DM, Kennedy BK, Vidal M, Bard M (1989) The yeast gene ERG6 is required for normal membrane function but is not essential for biosynthesis of the cell-cycle-sparking sterol. Mol Cell Biol 9: 34473456

    Google Scholar 

  • Goosey MW, Moore DJ (1991) Sterol biochemistry in filamentous fungi: a coming of age. Biochem Soc Trans 19: 769–773

    PubMed  CAS  Google Scholar 

  • Grindle M (1973) Sterol mutants of Neurospora crassa: their isolation, growth characteristics and resistance to polyene antibiotics. Mol Gen Genet 120: 283–290

    Article  PubMed  CAS  Google Scholar 

  • Grindle M (1974) The efficiency of various mutagens and polyene antibiotics for the induction and isolation of sterol mutants of Neurospora crassa. Mol Gen Genet 130: 81–90

    Article  PubMed  CAS  Google Scholar 

  • Grindle M, Farrow R (1978) Sterol content and enzyme defects of nystatin-resistant mutants. Mol Gen Genet 165: 305–308

    Article  PubMed  CAS  Google Scholar 

  • Gullub EG, Liu K, Dayan J, Adlersberg M, Sprinson DB (1977) The mutants deficient in heure biosynthesis and a heme mutant additionally blocked in cyclization of 2,3oxidosqualene. J Biol Chem 252: 2846–2854

    Google Scholar 

  • Hendrix JW (1970) Sterols in growth and reproduction of fungi. Annu Rev Phytopathol 8: 111–130

    Article  CAS  Google Scholar 

  • Hippe S (1991) Influence of fungicides on fungal fine structure. In: Mendgen K, Lesemann DE (eds) Electron microscopy of plant pathogens. Springer, Berlin Heidelberg New York, pp 317–331

    Chapter  Google Scholar 

  • Hollomon DW (1993) Resistance to azole fungicides in the field. Biochem Soc Trans 21: 1047–1051

    PubMed  CAS  Google Scholar 

  • Howell SA, Mallet AI, Noble WC (1990) A comparison of the sterol content of multiple isolates of the Candida albicans Darlington strain with other clinically azolesensitive and resistant strains. J Appl Bacteriol 69: 692696

    Google Scholar 

  • Hull SE, Woolfson MM (1976) Crystal structure of ergosterol monohydrate. Acta Cryst B32: 2370–2373

    Article  Google Scholar 

  • Ikeguchi T (1919) A new sterol. J Biol Chem 40: 175–182

    CAS  Google Scholar 

  • Ishida N, Aoyama Y, Hatanaka R, Oyama Y, Imajo S, Ishiuguro M, Oshima T, Nakazato H, Noguchi T, Martra US, Mohan VP, Sprinson DB, Yoshida Y (1988) A single amino acid substitution converts cytochrome P-450146M to an active from P4505G1: Complete primary structures deduced from cloned DNAs. Biochem Biophys Res Commun 155: 317–323

    Google Scholar 

  • Julmanop C, Takano Y, Takemoto JY, Miyakawa T (1993) Protection by sterols against the cytotoxicity of syringomycin in the yeast Saccharomyces cerevisiae. J Gen Microbiol 139: 2323–2327

    Article  PubMed  CAS  Google Scholar 

  • Kalb VK, Woods CW, Tuse TG, Dey CR, Sutter TR, Loper JC (1987) Primary structure of the P450 lanosterol demethylase gene from Saccharomyces cerevisiae. DNA 6: 529–537

    Article  PubMed  CAS  Google Scholar 

  • Karst F, Lacroute F (1977) Ergosterol biosynthesis in Saccharomyces cerevisiae mutants deficient in the early steps of the pathway. Mol Gen Genet 154: 259–277

    Article  Google Scholar 

  • Kelly SL, Quail MA, Rowe J, Kelly DE (1992) Sterol 14ademethylase: Target for azole antifungals. In: Fernandez PB (ed) New approaches for antifungal drugs. Brikhauser, Boston, pp 155–187

    Google Scholar 

  • Kelly SL, Kenna S, Arnaldi, Kelly DE (1994) Studies on azole-induced cell death in Saccharomyces cerevisiae. FEMS Microbial Lett 115: 219–222

    Article  CAS  Google Scholar 

  • Kerkenaar A (1990) Inhibition of the sterol A’4 — reductase and 48 — A’ isomerase in fungi. Biochem Soc Trans 18: 59–61

    PubMed  CAS  Google Scholar 

  • Koller W (1992) Antifungal agents with target sites in sterol functions and biosynthesis. In: Koller W (cd) Target sites of fungicidal action. CRC Press, London, pp 119–206

    Google Scholar 

  • Ladbrooke BO, Williams RM, Chapman D (1968) Studies on lecithin-cholesterol-water interaction by differential scanning calorimetery and x-ray diffraction. Biochim Biophys Acta 150: 333–340

    Article  PubMed  CAS  Google Scholar 

  • Lai MH, Bard M, Pierson CA, Alexander JF, Goebl M, Carter GT, Kirsch DR (1994) The identification of a gene family in the Saccharomyces cerevisiae ergosterol biosynthesis pathway. Gene 140: 41–49

    Article  PubMed  CAS  Google Scholar 

  • Lechevalier H, Lechevalier MP (1988) Chemotaxonomic use of lipids an overview. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 1. Academic Press, London. pp 869–902

    Google Scholar 

  • Lorenz RT, Parks LW (1989) Structural discrimination in the sporting function of sterols in the yeast Saccharomyces cerevisiae. J Bacteriol 171: 6169–6173

    PubMed  CAS  Google Scholar 

  • Lorenz RT, Parks LW (1991) Involvement of heme components in sterol metabolism of Saccharomyces cerevisiae. Lipids 26: 598–603

    Article  PubMed  CAS  Google Scholar 

  • Lorenz RT, Parks LW (1992) Cloning, sequencing and description of the gene encoding sterol C-14 reductase in Saccharomyces cerevisiae. DNA Cell Biol 11: 685692

    Google Scholar 

  • Marcireau C, Guilloton M, Karst F (1990) In vivo effects of fenpropimorph on the yeast Saccharomyces cerevisiae and determination of the molecular basis of the antifungal property. Antimicrob Agents Chemother 34: 989–993

    Article  PubMed  CAS  Google Scholar 

  • Marcireau C, Guyonnet D, Karst F (1992) Construction and growth properties of a yeast strain defective in sterol 14-reductase. Curr Genet 22: 267–272

    Article  PubMed  CAS  Google Scholar 

  • McCammon MT, Hartman MA, Bottema CD, Parks LW (1984) Sterol methylation in Saccharomyces cerevisiae. J Bacteriol 157: 475–483

    PubMed  CAS  Google Scholar 

  • Mead JF, Alfen-Slater RB, Howton DR, Popjak G (1986) Lipids: chemistry, biochemistry, nutrition. Plenum Press, New York, 295 pp

    Google Scholar 

  • Mercer EI (1991) Morpholine antifungals and their mode of action. Biochem Soc Trans 19: 788–793

    PubMed  CAS  Google Scholar 

  • Mercer I (1984) The biosynthesis of ergosterol. Pesti Sci 15: 133–155

    Article  CAS  Google Scholar 

  • Mercer I (1993) Inhibitors of sterol biosynthesis and their applications. Prog Lipid Res 32: 357–416

    Article  PubMed  CAS  Google Scholar 

  • Mishra P, Prasad R (1990) An overview of lipids of Candida albicans. Prog Lipid Res 29: 65–85

    Article  PubMed  CAS  Google Scholar 

  • Morris DC, Safe S, Subden RE (1974) Detection of ergosterol and episterol isomers in nystatin-resistant mutants of Neurospora crassa. Biochem Genet 12: 459466

    Google Scholar 

  • Muller MM, Kantola R, Kitunen V (1994) Combining sterol and fatty acid profiles for the characterization of fungi. Mycol Res 98: 593–603

    Article  CAS  Google Scholar 

  • Nes DW (1987) Biosynthesis and requirement for sterols in the growth and reproduction of Oomycetes In: Fuller G, Nes WD (eds) Ecology and metabolism of plant lipids. ACS Symp Ser 325, Washington, DC, pp 304–328

    Google Scholar 

  • Nes RW, Dhanuka IC (1988) Inhibition of sterol synthesis by A5 — sterols in a sterol auxotroph of yeast defective in oxidosqualene cyclase and cytochrome P-450. J Biol Chem 263: 11844–11850

    PubMed  CAS  Google Scholar 

  • Nes WD, Jenssen GG, Crumley FG, Kalinowska M, Akihisa T (1983) The structural requirements for membrane function in Saccharomyces cerevisiae. Arch Biochem Biophys 300: 724–733

    Article  Google Scholar 

  • Nes WD, Parker SR, Crumley PG, Ross SA (1993) Regulation of phytosterol biosynthesis. In: Moore TS (ed) Lipid metabolism in plants. CRC Press, Boca Raton, pp 389426

    Google Scholar 

  • Nes WR, McKean ML (1977) The biochemistry of steroids and other isopentenoids. Univ Park Press, Baltimore, MD

    Google Scholar 

  • Nes WR, Nes WD (1980) Lipids in evolution. Plenum Press, New York

    Book  Google Scholar 

  • Nes WR, Sekula BC, Nes WD, Adler JH (1978) The functional importance of structural features of ergosterol in yeast. J Biol Chem 253: 6218–6225

    PubMed  CAS  Google Scholar 

  • Oulmouden A, Karst F (1990) Isolation of ERG12 gene of Saccharomyces cerevisiae encoding mevalonate kinase. Gene 88: 253–257

    Article  PubMed  CAS  Google Scholar 

  • Oulmouden A, Karst F (1991) Nucleotide sequence of the ERG12 gene of Saccharomyces cerevisiae encoding mevalonate kinase. Curr Genet 19: 9–14

    Article  PubMed  CAS  Google Scholar 

  • Parker SR, Nes WD (1992) Regulation of sterol biosynthesis and its phylogenetic implications. ACS Symp Ser 497: 110

    Article  CAS  Google Scholar 

  • Parks LW (1978) Metabolism of sterols in yeast. CRC Crit Rev Microbiol 6: 300–341

    Article  Google Scholar 

  • parks LW, Weete JD (1991) Fungal Sterols. In: Patterson GW, Nes WD (eds) Physiology and biochemistry of sterols. Am Oil Chem Soc, Champaign, pp 158–171

    Google Scholar 

  • Patterson GW (1991) Sterols of algae. In: Patterson GW, Nes WD (eds) Physiology and biochemistry of sterols. Am Oil Chem Soc, Champaign, pp 118–169

    Google Scholar 

  • Patterson GW, Nes WD (eds) (1991) Physiology and bio- chemistry of sterols. Am Oil Chem Soc, Champaign

    Google Scholar 

  • Pesti M, Campbell JM, Peberdy JF (1981) Alteration of ergosterol content and chitin synthase activity in Candida albicans. Curr Microbiol 5: 187–190

    Article  CAS  Google Scholar 

  • Pinto WJ, Nes WR (1983) Stereochemical specificity for sterols in Saccharomyces cerevisiae. J Biol Chem 258: 4472–4476

    PubMed  CAS  Google Scholar 

  • Pinto WJ, Lozano R, Sekula BC, Nes WR (1983) Stereochemically distinct roles for sterol in Saccharomyces cerevisiae. Biochem Biophys Res Commun 112: 47–54

    Article  PubMed  CAS  Google Scholar 

  • Pommer EH (1984) Chemical structure-fungicidal activity relationships in substituted morpholines. Pestic Sci 15: 285–295

    Article  CAS  Google Scholar 

  • Quinn PJ (1981) The fluidity of cell membrane and its regulation. Prog Biophys Mol Biol 38: 1–104

    Article  PubMed  CAS  Google Scholar 

  • Ramgopal M, Bloch K (1983) Sterol synergism in yeast. Proc Natl Acad Sci USA 80: 712–715

    Article  PubMed  CAS  Google Scholar 

  • Ramgopal M, Zundel M, Bloch K (1990) Sterol effects on phospholipid biosynthesis in the yeast strain GL7. J Lipid Res 31: 653–658

    PubMed  CAS  Google Scholar 

  • Rodriguez RJ, Parks LW (1983) Structural and physiological features of sterols necessary to satisfy the bulk membrane and sparking sterol requirements in yeast auxotrophs. Arch Biochem Biophys 225: 861–871

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez RJ, Taylor FR, Parks LW (1982) A requirement for ergosterol to permit growth of yeast sterol auxotrophs on cholesterol. Biochem Biophys Res Commun 106: 435–441

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez RJ, Low C, Bottema CDK, Parks LW (1985) Multiple functions for sterols in Saccharomyces cerevisiae. Biochime Biophys Acta 837: 336–343

    Article  CAS  Google Scholar 

  • Rodwell VW, Nordstrom JL, Mitschelen JJ (1976) Regula- tion of HMG-CoA reductase. Adv Lipid Res 14: 1–74

    PubMed  CAS  Google Scholar 

  • Rosenheim O, Webster TA (1927) The parent substance of vitamin D. Biochem J 21: 389–397

    PubMed  CAS  Google Scholar 

  • Ryder NS (1985) Effect of allylamine antimycotic agents on fungal sterol biosynthesis measured by sterol side-chain methylation. J Gen Microbiol 131: 1595–1602

    PubMed  CAS  Google Scholar 

  • Ryder NS (1988) Mode of action of allylamines. In: Berg D, Plempel M (eds) Sterol biosynthesis inhibitors. Ellis Harwood, Chichester, pp 151–167

    Google Scholar 

  • Ryder NS (1990) Inhibition of squalene epoxidase and sterol-side chain methylation by allyamines. Biochem Soc Trans 18: 45–46

    PubMed  CAS  Google Scholar 

  • Ryder NS (1991) Squalene epoxidase as a target for the allylamines. Biochem Soc Trans 19: 774–777

    PubMed  CAS  Google Scholar 

  • Sancholle M, Dargent R, Weete JD, Rushing AE, Miller KS, Montant C (1988) Effects of triazoles on fungi VI Ultrastructure of Taphrina deformans. Mycologia 80: 162–175

    Article  CAS  Google Scholar 

  • Schroepfer GJ (1981) Sterol biosynthesis. Annu Rev Biochem 50: 585–621

    Article  PubMed  CAS  Google Scholar 

  • Semer R, Gelerinter E (1979) A spin label study of the effects on egg lecithin bilayers. Chem Phys Lipids 23: 201–211

    Article  CAS  Google Scholar 

  • Servouse M, Mons N, Baillangeat JL, Karst F (1984) Isolation and characterization of yeast mutants blocked in mevalonic acid formation. Biochem Biophys Res Commun 123: 424–430

    Article  PubMed  CAS  Google Scholar 

  • Shaw R (1966) The polyunsaturated fatty acids of microorganisms. Adv Lipid Res 4: 107–174

    PubMed  CAS  Google Scholar 

  • Shimizu S, Kawashima H, Wada M, Yamada H (1992) Occurrence of a novel sterol, 24, 25-methylenecholest-5ene-3ß-ol, in Mortierella alpina 1S-4. Lipids 27: 481–483

    Google Scholar 

  • Shimokawa O, Nakayama H (1991) Phenotype of Candida albicans sterol mutants deficient in A57 isomerization or A5 desaturation. J Med Vet Mycol 29: 53–56

    Article  PubMed  CAS  Google Scholar 

  • Shimokawa O, Kato Y, Nakayama H (1986) Accumulation of 14-methyl sterols and defective hyphal growth in Candida albicans. J Med Vet Mycol 24: 327–336

    Article  PubMed  CAS  Google Scholar 

  • Shimokawa O, Kato Y, Kawano K, Nakayama H (1989) Accumulation of 14a-methylergosta-8,24(28)-dien43, 6a-diol in 14a-demethylation mutants of Candida albicans: genetic evidence for the involvement of 5desaturase. Biochim Biophys Acta 1003: 15–19

    CAS  Google Scholar 

  • Siperstein MD (1984) Role of cholesterogenesis and isoprenoid synthesis in DNA replication and cell growth. J Lipid Res 25: 1462–1467

    PubMed  CAS  Google Scholar 

  • Smedley-MacLean I, Thomas EM (1920) The nature of yeast fat. Biochem J 1: 483–493

    Google Scholar 

  • Stutz A (1988) Synthesis and structure activity correlation within allylamine antibiotics. Ann NY Acad Sci 544: 4662

    Article  Google Scholar 

  • Takemoto JY, Yu Y, Stock SD, Migakawa T (1993) Yeast genes involved in growth inhibition by Pseudimonas syringae pv syringae syringomycin family Lipodepsipetides. FEMS Microb Lett 114: 339–342

    Article  CAS  Google Scholar 

  • Tauret C (1889) Sur un nouveau principe immediat de l’ergot deseigle ergosterine. C R Seances Acad Sci 108: 98–100

    Google Scholar 

  • Taylor FR, Rodriquez FJ, Parks LW (1983) Requirement for a second sterol biosynthetic mutation for viability of a C-14 demethylation defect in Saccharomyces cerevisiae. J Bacteriol 155: 64–68

    PubMed  CAS  Google Scholar 

  • Thorness M, Schafer W, D’Ari L, Rine J (1989) Positive and negative transcriptional control by heme of genes encoding 3-hydroxy-3-methylglutaryl coenzyme A in Saccharomyces cerevisiae. Mol Cell Biol 9: 5702–5712

    Google Scholar 

  • Trocha PJ, Jasne SJ, Sprinson DB (1977) Yeast mutant blocked in removing the methyl group of lanosterol at C14: separation of sterols by high pressure liquid chromatography. Biochemistry 16: 4721–4726

    Article  PubMed  CAS  Google Scholar 

  • Van den Bossche H (1985) Biochemical targets for antifungal azole derivatives: hypothesis on mode of ac-

    Google Scholar 

  • tion. In: McGinnis MR (ed) Current topics in medical mycology, vol 1. Springer, Berlin Heidelberg New York, pp 313–351

    Google Scholar 

  • Van den Bossche H, Marichal P, Garrens K, Bellens D, Moereels H, Janssen PAJ (1990) Mutation in cytochrome P-450 dependent 14a-demethylase results in decreased affinity for azole antifungals. Biochem Soc Trans 18: 56–59

    Google Scholar 

  • Weete JD (1980) Lipid biochemistry of fungi and other organisms. Plenum Press, New York

    Book  Google Scholar 

  • Weete JD (1987) Mechanism of fungal growth suppression by inhibitors of ergosterol biosynthesis. In: Fuller G, Nes WD (eds) Ecology and metabolism of plant lipids. ACS Symp Ser 325: 268–287, Am Chem Soc, Washington. DC

    Chapter  Google Scholar 

  • Weete JD (1989) Structure and function of sterols in fungi. Adv Lipid Res 23: 115–167

    CAS  Google Scholar 

  • Weete JD, Wise ML (1987) Effects of triazloes on fungi: V response by a naturally tolerant species, Mucor rouxii. Exp Mycol 11: 214–222

    Article  CAS  Google Scholar 

  • Weete JD, Fuller MS, Huang MQ, Gandhi S (1989) Fatty acids and sterols of selected Hypochytriomycetes and Chytridiomycetes. Exp Mycol 13: 183–195

    Article  CAS  Google Scholar 

  • Woods RA (1971) Nystatin-resistant mutants of yeast: alteration in sterol content. J Bacteriol 108: 69–73

    PubMed  CAS  Google Scholar 

  • Yeagle PL (1991) Modulation of membrane function by cholesterol. Biochimie 73: 1303–1310

    Article  PubMed  CAS  Google Scholar 

  • Yoshida Y (1988) Cytochrome P-450 of fungi: Primary target for azole antifungal agents. In: McGinnis MR (ed) Current topics in medical mycology, vol 2. Springer, Berlin Heidelberg New York, p 388

    Chapter  Google Scholar 

  • Yoshida Y, Aoyama Y, Nishino T, Katsuki H, Maitre US, Mohan VP, Sprinson DB (1985) Special properties of a novel cytochrome P-450 of a Saccharomyces cerevisiae mutant SG1. A cytochrome P-450 species having a nitrogenous ligand trans to thiolate. Biochem Biophys Res Commun 127: 623–628

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weete, J.D., Gandhi, S.R. (1996). Biochemistry and Molecular Biology of Fungal Sterols. In: Brambl, R., Marzluf, G.A. (eds) Biochemistry and Molecular Biology. The Mycota, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10367-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10367-8_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-10369-2

  • Online ISBN: 978-3-662-10367-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics