Skip to main content

Early Diagenesis at the Benthic Boundary Layer: Oxygen and Nitrate in Marine Sediments

  • Chapter
Marine Geochemistry

Abstract

All particles settling to the sea floor continuously undergo diagenetic alteration due to physical and chemical processes in the sediment (e.g. particle mixing, compaction, redox reactions). One of the most intensely studied topic in marine geology and geochemistry is the early diagenesis of organic material deposited in marine sediments. Marine sediments are the primary long-term repository of organic matter and the analysis of the controls on the input of organic particles and the processes those undergo until they are finally buried is a major prerequisite for the reconstruction of biogeochemical cycles in the ocean. This chapter mainly focuses on processes occurring when fresh, bio-available organic material reaches the sea floor and is subject to intense bacterially mediated oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aller, R.C., 1990. Bioturbation and manganese cycling in hemipelagic sediments. Phil. Trans. R. Soc. Lond., 331: 51–68.

    Article  Google Scholar 

  • Andersen, T.K., Jensen, M.H. and Sorensen, J., 1984. Diurnal variation of nitrogen cycling in coastal marine sediments: 1. Dentrification. Marine Biology, 83: 171–176.

    Article  Google Scholar 

  • Anderson, L.A. and Sarmiento, J.L., 1994. Redfield ratios of remineralization determined by nutrient data analysis. Global Biogeochemical Cycles, 8: 65–80.

    Article  Google Scholar 

  • Antoine, D., Andre, J.-M. and Morel, A., 1996. Oceanic primary production; 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll. Global Biogechemical Cycles, 10: 57–69.

    Article  Google Scholar 

  • Baden, S.P., Loo, L.O., Pihl, L. and Rosenberg, R., 1990. Effects of eutrophication on benethic communities including fish: Swedish west coast. Ambio., 19: 113–122.

    Google Scholar 

  • Bartlett, K.B., Bartlett, D.S., Harriss, R.C. and Sebacher, D.I., 1987. Methane emission along a salt marsh salinity gradient. Biogeochemistry, 4: 183–202.

    Article  Google Scholar 

  • Behrenfeld, M.J. and Falkowski, P.G., 1997. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnology and Oceanography, 42: 1–20.

    Article  Google Scholar 

  • Bender, M.L. and Heggie, D.T., 1984. Fate of organic Carbon reaching the deep-sea floor: a status report. Geochimica et Cosmochimica Acta, 48: 977–986.

    Article  Google Scholar 

  • Berelson, W.M., Hammond, D.E. and Johnson, K.S., 1987. Benthic fluxes and the cycling of biogenic silica and carbon in two southern California borderland basins. Geochimica et Cosmochimica Acta, 51: 1345–1363.

    Article  Google Scholar 

  • Berelson, W.M. et al., 1990. Benthic fluxes and pore water studies from sediments of the central equatorial north Pacific: Nutrient diagenesis. Geochimica et Cosmochimica Acta, 54: 3001–3012.

    Article  Google Scholar 

  • Berelson, W.M., Hammond, D.E., McManus, J. and Kilgore, T.E., 1994. Dissolution kinetics of calcium carbonate in equatorial Pacific sediments. Global Biogeochemical Cycles, 8: 219–235.

    Article  Google Scholar 

  • Berger, W.H., Fischer, K., Lai, C. and Wu, G., 1987. Ocean producitivity and organic carbon flux. I. Overview and maps of primary production and export production. University California, San Diego, SIO Reference, 87–30, 67 pp.

    Google Scholar 

  • Betzer, P.R., Showers, W.J., Laws, E.A., Winn, CD., DiTullio, G.R. and Kroopnick, P.M., 1984. Primary productivity and particle fluxes on a transect of the equator at 153°W in the Pacific Ocean. Deep-Sea Research, 31:1–11.

    Article  Google Scholar 

  • Brendel, P.J. and Luther, III G.W., 1995. Development of a gold amalgam votametric microelectrode for the determination of dissolved iron, manganese 02, and S(-II) in pore waters of marine and freshwater sediments. Enviromental Sciense & Technology, 29: 751–761.

    Article  Google Scholar 

  • Broecker, W.S. and Peng, T.H., 1982. Tracer in the Sea. Palisades, NY, 690 pp.

    Google Scholar 

  • Cai, W.-J., Reimers, C.E. and Shaw, T., 1995. Microelectrode studies of organic carbon degradation and calcite dissolution at a California Continental rise site. Geochimica et Cosmochimica Acta, 59: 497–511.

    Article  Google Scholar 

  • Canfield, D.E., 1989. Sulfate reduction and oxic respiration in marine sediments: implications for organic carbon preservation in euxinic environments. Deep-Sea Research, 36: 121–138.

    Article  Google Scholar 

  • Canfield, D.E., 1993. Organic matter oxidation in marine sediments. In: Wollast, R., Chou, L. and Mackenzie, F. (eds) Interactions of C,N,P and S biogeochemical cycles. NATO ASI Series, Springer, Berlin, Heidelberg, NY, pp 333–363.

    Chapter  Google Scholar 

  • Canfield, D.E., Jorgensen, B.B., Fossing, H., Glud, R.N., Gundersen, J.K., Ramsing, N.B., Thamdrup, B., Hansen, J.W. and Hall, P.O.J., 1993a. Pathways of organic carbon oxidation in three continental margin sediments. Marine Geology, 113: 27–40.

    Article  Google Scholar 

  • Canfield, D.E., Thamdrup, B. and Hansen, J.W., 1993b. The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and sulfate reduction. Geochimica et Cosmochimica Acta, 57: 3867–3883.

    Article  Google Scholar 

  • Chapelle, F.H., 1993. Ground — Water Microbiology and Geochemistry. Wiley, NY, 424 pp.

    Google Scholar 

  • Chester, R., 1990. Marine Geochemistry. Chapman & Hall, London, 698 pp.

    Book  Google Scholar 

  • Christensen, J.P., Nielsen, L.P., Revsbech, N.P. and Sorensen, J., 1989. Microzonation of denitrification activity in stream sediments as studied with a combined oxygen and nitrous oxide microsensor. Appl. Environ. Microbiology, 55: 1234–1241.

    Google Scholar 

  • Devol, A.H., 1991. Direct measurement of nitrogen gas fluxes from continental shelf sediments. Nature, 349: 319–321.

    Article  Google Scholar 

  • Devol, A.H. and Christensen, J.P., 1993. Benthic fluxes and nitrogen cycling in sediments of the continental margin of the eastern North Pacific. Journal of Marine Research, 51: 345–372.

    Article  Google Scholar 

  • Froelich, P.N., Klinkhammer, G.P., Bender, M.L., Luedtke, N.A., Heath, G.R., Cullen, D. and Dauphin, P., 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochimica et Cosmochimica Acta, 43: 1075–1090.

    Article  Google Scholar 

  • Glud, R.N., Gundersen, J.K., Jorgensen, B.B., Revsbech, N.P. and Schulz, H.D., 1994. Diffusive and total oxygen uptake of deep-sea sediments in the eastern South Atlantic Ocean: in situ and laboratory measurements. Deep-Sea Research, 41: 1767–1788.

    Article  Google Scholar 

  • Glud, R.N., Ramsing, N.B., Gunderson, J.K. and Klimant, I., 1996. Planar Optrodes: A new tool for fine scale measurements of two-dimensional 02 distribution in benthic communities. Mar. Ecol. Prog. Ser., 140: 217–226.

    Article  Google Scholar 

  • Goering, G.G. and Pamatmat, M.M., 1970. Denitrification in sediments of the sea of Peru. Invest. Pesq., 35: 233–242.

    Google Scholar 

  • Greeff, O., RieB, W., Wenzhofer, E, Weber, A., Holby, O. and Glud, R.N., submitted. Pathways of carbon oxidation in Gotland Basin, Baltic Sea, measured in situ by use of benethic landers. Continental Shelf Research.

    Google Scholar 

  • Gundersen, J.K. and Jorgensen, B.B., 1990. Microstructure of diffusive boundry layer and the oxygen uptake of the sea floor. Nature, 345: 604–607.

    Article  Google Scholar 

  • Haese, R.R., 1997. Beschreibung und Ouantifizierung friihdiagnetischer Reaktionen des Eisens in Sedimenten des Siidatlantiks. Berichet, Fachbereich Geowissenschaften, Universitat Bremen, 99, 118 pp.

    Google Scholar 

  • Hales, B. and Emerson, S., 1997a. Calcite dissolution in sediments of the Ceara Rise: In situ measurements of porewater 02, pH, and C02(aq). Geochimica et Cosmochimica Acta, 61: 501–514.

    Article  Google Scholar 

  • Hammond, D.E., McManus, J., Berelson, W.M., Kilgore, T.E. and Pope, R.H., 1996. Early diagenesis of organic material in equatorial Pacific sediments: stoichiometry and kinetics. Deep-Sea Research, 43: 1365–1412.

    Article  Google Scholar 

  • Heip, C.H.R., Goosen, N.K., Herman, P.M.J., Kromkamp, J., Middelburg, J.J. and Soetart, K., 1995. Production and Consumption of Biological Particles in Temperate Tidal Estuaries. Oceanography and Marine Biology, 33: 1–149.

    Google Scholar 

  • Henrichs, S.M. and Reeburgh, W.S., 1987. Anaerobic mineralization of marine sediment organic matter: rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiol. Journal, 5: 191–237.

    Article  Google Scholar 

  • Henrichs, S.M., 1992. Early diagenesis of organic matter in marine sediments: progress and perplexity. Marine Chemistry, 39: 119–149.

    Article  Google Scholar 

  • Henriksen, K., Hansen, J.I. and Blackburn, T.H., 1981. Rates of nitrification, distribution of nitriffying bacteria and nitrate fluxes in different types of sediment from Danish waters. Marine Biology, 61: 299–304.

    Article  Google Scholar 

  • Henriksen, K. and Kemp, W.M., 1988. Nitrification in estuarine and coastal marine sediments. In: T.H. Blackburn and J. Sorensen (eds), Nitrogen cycling in coastal marine enviroments. SCOPE Reports, Wiley & Sons, Chichester, pp. 207–249.

    Google Scholar 

  • Hensen, C, Landenberger, H., Zabel, M., Gundersen, J.K., Glud, R.N. and Schulz, H.D., 1997. Simulation of early diagenetic processes in continental slope sediments in Southwest Africa: The computer model CoTAM tested. Marine Geology, 144: 191–210.

    Article  Google Scholar 

  • Hensen, C, Landenberger, H., Zabel, M. and Schulz, H.D., 1998. Quantification of diffusive benthic fluxes of nitrate, phosphate and silicate in the Southern Atlantic Ocean. Global Biogeochemical Cycles, 12: 193–210.

    Article  Google Scholar 

  • Hynes, R.K. and Knowles, R., 1978. Inhibition by acetylene of ammonia oxidation in Nitrosomonas europaea. FEMS Microbiol. Letters, 4: 319–321.

    Google Scholar 

  • Jahnke, R.A. and Christiansen, M.B., 1989. A free-vehicle benthic chamber instrument for sea floor studies. Deep-Sea Research, 36(4): 625–637.

    Article  Google Scholar 

  • Jahnke, R.A., Reimers, C.E. and Craven, D.B., 1990. Intensification of recycling of organic matter at the sea floor near ocean margins. Nature, 348: 50–54.

    Article  Google Scholar 

  • Jahnke, R.A., Craven, D.B., McCorkle, D.C. and Reimers, C.E., 1997. CaC03 dissolution in California continental margin sediments: The influence of organic matter remineralization. Geochimica et Cosmochimica Acta, 61: 3587–3604.

    Article  Google Scholar 

  • Johnson, K.S., Berelson, W.M., Coale, K.H., Coley, T.L., Elrod, V.A., Fairey, W.R., Lams, H.D., Kilgore, T.E. and Nowicki, J.L., 1992. Manganese flux from continental margin sediments in a transect through the oxygen minimum. Science, 257: 1242–1245.

    Article  Google Scholar 

  • Jorgensen, B.B., 1977. Bacterial sulfate reduction within reduced microniches of oxidized marine sediments. Marine Biology, 41: 7–17

    Article  Google Scholar 

  • Jorgensen, K.S., Jensen, H.B. and Sorensen, J., 1984. Nitrouse oxide production from nitrification and denitrification in marine sediment at low oxygen concentrations. Canadian Journal of Microbiology, 30: 1073–1078.

    Article  Google Scholar 

  • Jorgensen, B.B. and Sorensen, J., 1985. Seasonal cycles of •02, N03- and S042- reduction in estuarine sediments: the significance of an N03- reduction maximum in spring. Mar. Ecol. Prog. Ser., 24: 65–74.

    Article  Google Scholar 

  • Kaplan, W.A., 1983. Nitrification. In: Carpenter, J.E. and Capone, D.G. (eds) Nitrogen in the marine environment. Academic Press, NY, pp. 139–190.

    Google Scholar 

  • Kennett, J.P., 1982. Marine Geology. Prentice Hall, New Jersey, 813 pp.

    Google Scholar 

  • Klimant, I., Meyer, V. and Kiihl, M., 1995. Fiber-oxic oxygen microsensors, a new tool in aquatic biology. Limnology and Oceanography, 40: 1159–1165.

    Article  Google Scholar 

  • Koike, I. and Sorensen, J., 1988. Nitrate reduction and denitrification in marine sediments. In: Blackburn, T.H. and Sorensen, J. (eds) Nitrogen cycling in coastal marine environments. Wiley & Sons, pp 251–273.

    Google Scholar 

  • Larsen, L.H., Revsbech, N.P. and Binnerup, S.J., 1996. A microsensor for nitrate based on immobilized denitrifying bacteria. Appl Environm. Microbiol., 62: 1248–1251.

    Google Scholar 

  • Luther, III G.W., Sundby, B., Lewis, B.L., Brendel, P.J. and Silverberg, N., 1997. Interactions of manganese with the nitrogen cycle: Alternative pathways for dinitrogen formation. Geochimica et Cosmochimica Acta, 61: 4043–4052.

    Article  Google Scholar 

  • Luther, III G.W., Brendel, P.J., Lewis, B.L., Sundby, B., Lefrancois, L.. Silverberg, N. and Nuzzio, D.B., 1998. Simultaneous measurement of 02, Mn, Fe, I-, and S(-II) in marine pore waters with a solid-state voltammetric microelectrode. Limnology and Oceanography, 43: 325–333.

    Article  Google Scholar 

  • Martin, J.H., Knauer, G.A., Karl, M. and Broenkow, W.W., 1987. VERTEX: carbon cycling in the northeast Pacific. Deep-Sea Research, 34(2): 267 — 285.

    Google Scholar 

  • Martin, W.R. and Sayles, F.L., 1996. CaCO3 dissolution in sediments of the Ceara Rise, western equatorial Atlantic. Geochimica et Cosmochimica Acta, 60: 243–263.

    Article  Google Scholar 

  • Middelburg, J.J., Vlug, T., Jaco, F. and Van der Nat, W.A., 1993. Organic matter mineralization in marine systems. Glob. Planet. Change, 8: 47–58.

    Article  Google Scholar 

  • Middelburg, J.J., Soetaert, K., Herman, P.J.M. and Heip, C.H.R., 1996a. Denitrification in marine sediments: A model sudy. Global Biogeochemical Cycles, 10: 661–673.

    Article  Google Scholar 

  • Middelburg, J.J., Soetaert, K. and Herman, P.M.J., 1996b. Evaluation of the nitogen isotpe-pairing for measuring benthic denitrification: A simulation analysis. Limnology and Oceanography, 41: 1839–1844.

    Article  Google Scholar 

  • Middelburg, J.J., Soetaert, K. and Herman, P.M.J., 1996c. Reply to the comment by Nielson et al. Limnology Oceanography, 41: 1846–1847.

    Article  Google Scholar 

  • Nielsen, L.P., 1992. Denitrification in sediment determined from nitrogen isotope pairing. FEMS Microbiol. Ecol., 86: 357–362.

    Article  Google Scholar 

  • Nielsen, L.P., Risgaard-Petersen, N., Rysgaard, S. and Blackburn, T. H., 1996. Reply to the note by Midelburg et al. Limnology andceanography, 41: 1845–1846.

    Article  Google Scholar 

  • Painter, H.A., 1970. A review of literature on inorganic nitrogen metabolism in microorganisms. Water Res., 4: 393–450.

    Article  Google Scholar 

  • Pamatmat, M.M., 1971. Oxygen consumption by the seabed IV.shipboard and laboratory experiments. Limnology and Oceanography, 16: 536–550.

    Article  Google Scholar 

  • Redfield, A.C., Ketchum, B.H. and Richards, F.A., 1963. The influence of organisms on the composition of sea-water. In: Hill, N.N. (ed) The sea. Interscience, NY, pp. 26–77.

    Google Scholar 

  • Reid, J.L., 1994. On the total geostrophic circulation of the North Atlantic Ocean: Flow patterns, tracers, and transports. Prog. Oceanogr., 33: 1–92.

    Article  Google Scholar 

  • Reimers, C.E., Jahnke, R.H. and McCorkle, D.C., 1992. Carbon fluxes and burial rates over the continental slope and rise off central California with implications for the global carbon cycle. Global Biogeochemical Cycles, 6: 199–224.

    Article  Google Scholar 

  • Revsbech, N.P., Jorgensen, B.B. and Blackburn, T.H., 1980. Oxygen in the sea bottom measured with a microelektrode. Science, 207: 1355–1356.

    Google Scholar 

  • Revsbech, N.P. and Jorgensen, B.B., 1986. Microelectrodes: Their use in microbial ecology. Adv. Microb. Ecol., 9: 293–352.

    Google Scholar 

  • Revsbech, N.P., 1989. An oxygen electrode with a guard cathode. Limnology and Oceanography, 34: 474–478.

    Article  Google Scholar 

  • Rhoads, D.L. and Morse, J.W., 1971. Evolutionary and ecologic significance of oxygen deficient marine basins. Lethaia, 4: 413–428.

    Article  Google Scholar 

  • Rowe, G.T., Boland, G.S., Phoel, W.C., Anderson, R.F. and Biscaye, RE., 1994. Deep-sea floor respiration as an indication of lateral input of biogenic detritus from continental margins. Deep-Sea Research, 41: 657–668.

    Article  Google Scholar 

  • Rysgaard, S., Risgaard-Petersen, N., Sloth, N.P., Jensen, K. and Nielsen, L.P., 1994. Oxygen regualtion of nitrification and denitification in sediments. Limnology and Oceanography, 39: 1643–1652.

    Article  Google Scholar 

  • Sayles, F.L. and Martin, W.R., 1995. In Situ tracer studies of solute transport across the sediment-water interface at the Bermuda Time Series site. Deep-Sea Research, 42: 31–52.

    Article  Google Scholar 

  • Schlegel, H.G., 1985. Allgemeine Mikrobiologie. Thime, Stuttgard, 571 pp.

    Google Scholar 

  • Schulz, H.D., Dahmke, A., Schinzel, U., Wallmann, K. and Zabel, M., 1994. Early diagenetic processes, fluxes and reaction rates in sediments of the South Atlantic. Geochimica et Cosmochimica Acta, 58: 2041–2060.

    Article  Google Scholar 

  • Seitzinger, S.P., Nixon, S.W. and Pilson, M.E.Q., 1984. Denitification and nitrous oxide production in a coastal marine ecosystem. Limnology and Oceanography, 29: 73–83.

    Article  Google Scholar 

  • Seitzinger, S.P., Nielson, L.P., Caffrey, J. and Christensen, P.B., 1993. Denitrification measurements in aquatic sediments: A comparision of three methods. Biogeochem., 23: 147–167.

    Article  Google Scholar 

  • Seitzinger, S.P., 1998. Denitrification in freshwater and coastal marine environments: Ecological and geochemical significance. Limnology and Oceanography, 33: 702–724.

    Article  Google Scholar 

  • Sloth, N.P., Blackburn, T. H., Hansen, L.S., Risgaard-Petersen, N. and Lomstein, B.A., 1995. Nitrogen cycling in sediments with different organic loading. Mar. Ecol Prog. Serv., 116: 163–170.

    Article  Google Scholar 

  • Smith, K.L.J, and Baldwin, R.J., 1984. Seasonal fluctuations in deep-sea sediment community oxygen consumption: central and eastern North Pacific. Nature, 307: 624–626.

    Article  Google Scholar 

  • Soetaert, K., Herman, P.M.J, and Middelburg, J.J., 1996. A model of early diagenetic processes from the shelf to the sea bottom measured with a microelektrode. Science, 207: 1355–1356.

    Google Scholar 

  • Soetaert, K. et al., 1997. Nematode distribution in ocean margin sediments of the Goban Spur (northeast Altantic) in relation to sediment geochemistry. Deep-Sea Research, 44: 1671–1683.

    Article  Google Scholar 

  • Sorensen, J., 1987. Nitrate reduction in marine sediment: pathways and interactions with iron and sulfur cycling. Geomicrobiol., 5: 401–421.

    Article  Google Scholar 

  • Sorensen, J., Rasmussen, L.K. and Koike, I., 1987. Micromolar sulfide concentrations alleviate blockage of nitous oxide reduction by denitrifying Pseudomonas fluorescens. Canadian Journal of Microbiology, 33: 1001–1005.

    Article  Google Scholar 

  • Stumm, W. and Morgan, J.J., 1996. Aquatic Chemistry. Wiley & Sons, NY, 1022 pp.

    Google Scholar 

  • Sverdrup, H.U., Johnson, M.W. and Fleming, R.H., 1942. The oceans. Prentice Hall, NY.

    Google Scholar 

  • Takahashi, T., Broeker, W.S. and Langer, S., 1985. Redfieldratio based on chemical data from isopycnal surface. J. Geophys. Res., 90: 6907–6924.

    Article  Google Scholar 

  • Tebo, B.M., Rosson, R.A. and Nealson, K.H., 1991. Potential for manganese (II) oxydation and manganese (IV) reduction to co-occur in the suboxic zone of the Black Sea. In: Izdar, E. and Murray, W. (eds) Black Sea Oceanography. Kluwer Academic Publishers, Dordrecht, pp. 173–185.

    Chapter  Google Scholar 

  • Thamdrup, B., Fossing, H. and Jorgensen, B.B., 1994. Manganese, iron, and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochimica et Cosmochimica Acta, 58(23): 5115–5129.

    Article  Google Scholar 

  • Thamdrup, B. and Canfield, D.E., 1996. Pathways of carbon oxidation in continental margin sediments off central Chile. Limnology Oceanography, 41(8): 1629–1650.

    Article  Google Scholar 

  • Tromp, T.K., van Cappellen, P. and Key, R.M., 1995. A global model for the early diagenetisis of organic carbon and organic phosphorus in marine sediments. Geochimica et Cosmochimica Acta, 59(7): 1259–1284.

    Article  Google Scholar 

  • van Cappellen, P., Gaillard, J.-F. and Rabouille, C, 1993. Biogeochemical transformations in sediments: kinetic models of early diagenesis. Interactions of C, N, P and S biogeochemical cycles and global change — NATO ASI Series, 4. Springer-Verlag, Berlin, Heidelberg, 401–445 pp.

    Book  Google Scholar 

  • Wenzhöfer, F., Kohls, O. and Holby, O., Deep oxigen penetration in deep sea sediments measured in situ by optodes. .

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hensen, C., Zabel, M. (2000). Early Diagenesis at the Benthic Boundary Layer: Oxygen and Nitrate in Marine Sediments. In: Schulz, H.D., Zabel, M. (eds) Marine Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04242-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04242-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04244-1

  • Online ISBN: 978-3-662-04242-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics