Skip to main content

Part of the book series: NATO ASI Series ((ASII,volume 4))

Abstract

The diagenesis and preservation of organic matter in marine sediments has received considerable attention in the past several years. Studies have quantified rates of organic carbon oxidation in sediments and how these rates vary among sedimentary environments, representing a range in sedimentation rates, levels of bottom water oxygen (for example, Canfield, 1989b; Emerson, 1985), and other factors. Also explored has been the relative importance of various oxidants (e.g. O2, NO3 , etc.) in total carbon oxidation (see reviews by Henrichs and Reeburgh, 1987; Jørgensen, 1983; Reeburgh, 1983; Smith and Hinga, 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aller R. C. (1990) Bioturbation and manganese cycling in hemipelagic sediments. Phil. Trans. R. Soc. Lond. A 331, 51–68.

    Google Scholar 

  • Aller R. C. and Mackin J. E. (1984) Preservation of reactive organic matter in marine sediments. Earth Planet. Sci. Lett. 70, 260–266.

    Google Scholar 

  • Alperin M. J. (1988) The carbon cycle in an anoxic marine sediment: concentrations, rates, isotope ratios, and diagenetic models. Ph.D. Diss., Univ. Alaska, Fairbanks, 241 p.

    Google Scholar 

  • Balzer W., Pollenhne F. and Erlenkeuser H. (1986). Cycling of organic carbon in a coastal marine system. In: Sediments and water Interactions (ed. P. G. Sly ). Springer-Verlag, New York, pp. 325.

    Google Scholar 

  • Banat I. M. and Nedwell D. B. (1984) Inhibition of sulfate reduction in anoxic marine sediment by group VI anions. Estuar. Shelf Res. 18, 361–366.

    Google Scholar 

  • Bender M., Jahnke R., Weiss R., Martin W., Heggie D. T., Orchardo J. and Sowers T. (1989) Organic carbon oxidation and benthic nitrogen and silica dynamics in San Clemente Basin, a continental borderland site. Geochim. Cosmochim. Acta 53, 685–697

    Google Scholar 

  • Bender M. L. and Heggie D. T. (1984) Fate of organic carbon reaching the deep sea floor: a status report. Geochim. Cosmochim. Acta 48, 977–986.

    Google Scholar 

  • Berelson W. M., Hammond D. E. and Johnson K. S. (1987) Benthic fluxes and the cycling of biogenic silica and carbon in two southern California borderland basins. Geochim. Cosmochim. Acta 51, 1345–1364.

    Google Scholar 

  • Berger W. H., Fischer K., Lai C. and Wu G. (1987) Ocean productivity and organic carbon flux, Part I. overview and maps of primary production and export production. SIO Reference Series 87–30, 67 p.

    Google Scholar 

  • Berner R. A. (1964) An idealized model of dissolved sulfate distribution in recent sediments. Geochim. Cosmochim. Acta 28, 1497–1503.

    Google Scholar 

  • Berner R. A. (1978) Sulfate reduction and the rate of deposition of marine sediments. Amer. Jour. Sci. 37, 492–498.

    Google Scholar 

  • Berner R. A. (1980) Early Diagenesis: A Theoretical Approach. Princiton Univ. Press, Princeton, N. J., 241 p.

    Google Scholar 

  • Berner R. A. and Canfield D. E. (1989) A new model for atmospheric oxygen over Phanerozoic time. Amer. Jour. Sci. 289, 333–361.

    Google Scholar 

  • Brons H. J. and Zehnder A. J. B. (1990) Aerobic nitrate and nitrite reduction in continuous cultures of Eschericia coli M. Arch. Microbiol. 153, 531–536.

    Google Scholar 

  • Broomfield S. M. (1954) Reduction of ferric compounds by soil bacteria. J. Gen. Microbiol. 10, 1–6.

    Google Scholar 

  • Burdige D. J. and Nealson K. H. (1986) Chemical and microbiological studies of sulfide-mediated manganese reduction. Geomicrobiol. J. 4, 361–387.

    Google Scholar 

  • Calvert S. E. (1987) Oceanographic controls on the accumulation of organic matter in marine sediments. In: Marine Petroleum Source Rocks (eds. J. Brooks and A. L. Fleet). vol. 26, Geological Society Special Publication, pp. 137–151.

    Google Scholar 

  • Calvert S. E. and Pedersen T. F. (1992) Organic carbon accumulation and preservation in marine sediments: how important is anoxia. In: Productivity, Accumulation and Preservation of Organic Matter in Recent and Ancient Sediments (eds. J. K. Whelan and J. W. Farrington). Columbia University Press, New York. (in press)

    Google Scholar 

  • Canfield D. E. and Green W. J. (1985) The cycling of nutrients in a closed-basin antarctic lake: Lake Vanda. Biogeochem. 1, 233–256.

    Google Scholar 

  • Canfield D. E., Raiswell R., Westrich J. T., Reaves C. M. and Berner R. A. (1986) The use of chromium reduction in the analysis of reduced sulfur in sediments and shales. Chem. Geol. 54, 149–155.

    Google Scholar 

  • Canfield D. E. (1989a) Reactive iron in marine sediments. Geochim. Cosmochim. Acta. 53, 619–632.

    Google Scholar 

  • Canfield D. E. (1989b) Sulfate reduction and oxic respiration in marine sediments: implications for organic carbon preservation in euxinic environments. Deep-Sea Research 36, 121–138.

    Google Scholar 

  • Canfield D. E. (1991) Sulfate reduction in deep-sea sediments. Amer. Jour. Sci. 291, 177–188.

    Google Scholar 

  • Canfield D. E. and Des Marais DJ (1991) Aerobic sulfate reduction in microbial mats. Science 251, 1471–1473.

    Google Scholar 

  • Christensen J. P. and Rowe GT (1984) Nitrification and oxygen consumption in northwest Atlantic deep-sea sediments. Jour. Marine Res. 42, 1099–1116.

    Google Scholar 

  • Christensen J. P., Murray J. W., Devol A. H. and Codispoti L. A. (1987) Denitrification in continental shelf sediments has major impact on the oceanic nitrogen budget. Global Biogeochemical Cycles 1, 97–116.

    Google Scholar 

  • Claypool G. E. and Kaplan I. R. (1974) The origin and distribution of methane in marine sediments. In: Natural Gases in Marine Sediments (ed. I. R. Kaplan ). Plenum, New York, pp. 99–139.

    Google Scholar 

  • Claypool G. E. and Threlkeld C. N. (1984) Anoxic diagenesis and methane generation in sediments of the Blake Outer Ridge. In: Initial Reports of The Deep-Sea Drilling Project (eds. R. E. Sheridan, F. M. Gralstein, et al.). vol. 76, U.S. Govt. Printing Office, Washington D.C., pp. 391–402.

    Google Scholar 

  • Crill P. M. and Martens C. S. (1986) Methane production from bicarbonate and acetate in an anoxic marine sediment. Geochim. Cosmochim. Acta 50, 2089–2097.

    Google Scholar 

  • DeMaison G. L., Moore G. T. (1980) Anoxic marine environments and oil source bed genesis. AAPG Bull. 64, 1179–1209.

    Google Scholar 

  • Devol A. H. (1978) Bacterial oxygen uptake kinetics as related to biological process in oxygen deficient zones of the oceans. Deep-Sea Res. 25, 137–146.

    Google Scholar 

  • Devol A. H. (1983) Methane oxidation rates in the anaerobic sediments of Saanich Inlet. Limnol. Oceanogr. 28, 738–742.

    Google Scholar 

  • Devol A. H. (1991) Direct measurement of nitrogen gas fluxes from continental shelf sediments. Nature 349, 319–321.

    Google Scholar 

  • Devol A. H. and Ahmed S. I. (1981) Are high rates of sulfate reduction associated with anaerobic oxidation of methane? Nature 291, 407–408.

    Google Scholar 

  • Emerson S. (1985) Organic carbon preservation in marine sediments. In: The Carbon Cycle and Atmospheric CO 2 : Natural Variations Archean to Present (eds. E. T. Sundquist and W. S. Broecker ). American Geophysical Union, Washington D.C., pp. 78–87.

    Google Scholar 

  • Emerson S. and Hedges J. I. (1988) Processes controlling the organic carbon content of open ocean sediments. Paleoceanography 3, 621–634.

    Google Scholar 

  • Emery K. O. and Hoggan D. (1958) Gases in marine sediments. AAPG Bull. 42, 2174.

    Google Scholar 

  • Foree E. G. and McCarty P. L. (1970) Anaerobic decomposition of algae. Environ. Sci. Tech. 4, 842–849.

    Google Scholar 

  • Fossing H. (1990) Sulfate reduction in shelf sediments in the upwelling region off Central Peru. Continental Shelf Res. 10, 355–367.

    Google Scholar 

  • Froelich P. N., Klinkhammer G. P., Bender M. L., Luedtke N. A., Heath G. R., Cullen D., Dauphin P., Hammond D., Hartman B. and Maynard V. (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim. Acta 43, 1075–1090.

    Google Scholar 

  • Gersberg R., Krohn K., Peek N. and Goldman C. R. (1976) Denitrification studies with 13N-labeled nitrate. Science 192, 1229–1231.

    Google Scholar 

  • Hart L. T., Larson P. D. and McCleskey C. S. (1965) Denitrification by Corynebacterium nephridii. J. Bacteriol. 89, 1104–1108.

    Google Scholar 

  • Heggie D., Maris C., Hudson A., Dymond J., Beach R., Cullen J. (1987) Organic carbon oxidation and preservation in NW Atlantic continental margin sediments. In: Geology and Geochemistry of Abyssal Plains (eds. P. P. E. Weaver and J. Thomson). vol. 31, Geological Society Special Publication, pp. 215–236.

    Google Scholar 

  • Henrichs S. M. and Reeburgh W. S. (1987) Anaerobic mineralization of marine sediment organic matter: rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiol. J. 5, 191–237.

    Google Scholar 

  • Holland H. D. (1978) The Chemistry of the Atmosphere and Oceans. Wiley, New York.

    Google Scholar 

  • Howarth R. W. (1979) Pyrite: its rapid formation in a salt marsh and its importance to ecosystem metabolism. Science 203, 49–51.

    Google Scholar 

  • Howarth R. W. and Jorgensen B. B. (1984) Formation of 35S-labelled elemental sulfur and pyrite in coastal marine sediments (Limfjorden and Kysing Fjord, Denmark) during short term 35S-SO4 2- reduction measurements. Geochim. Cosmochim. Acta 48, 1807–1818.

    Google Scholar 

  • Iversen N. and Jorgensen B. B. (1985) Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnol. Oceanogr. 30, 944–955.

    Google Scholar 

  • Jahnke R. A. (1990) Early diagenesis and recycling of biogenic debris at the seafloor, Santa Monica Basin, California. Jour. Mar. Res. 48, 413–436.

    Google Scholar 

  • Jahnke R. A., Emerson S. R. and Murray J. M. (1982) A model of oxygen reduction, denitrification, and organic matter mineralization in marine sediments. Limnol. Oceanogr. 27, 610–623.

    Google Scholar 

  • Jahnke RA, Reimers CE, Craven DB (1990) Intensification of recycling of organic matter at the sea floor near ocean margins. Nature 348, 50–54.

    Google Scholar 

  • Jones J. G., Gardner S. and Simon B. M. (1983) Bacterial reduction of ferric iron in a stratified eutrophic lake. J. Gen. Microbiol. 129, 131–139.

    Google Scholar 

  • Jorgensen B. B. (1977) The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnol. Oceanogr. 5, 814–832.

    Google Scholar 

  • Jorgensen B. B. (1978) A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments. I Measurement with radiotracer techniques. Geomicrobiol. J. 1, 11–27.

    Google Scholar 

  • Jorgensen B. B. (1982) Mineralization of organic matter in the sea bed-the role of sulfate reduction. Nature 296, 643–645.

    Google Scholar 

  • Jorgensen B. B. (1983) Processes at the sediment-water interface. In: The Major Biogeochemical Cycles and their Interactions (eds. B. Bolin and R. B. Cook). SCOPE 21, Wiley, New York, pp. 477–509.

    Google Scholar 

  • Jogensen B. B. and Sorensen J. (1985) Seasonal cycles of O2, NO3 - and SO4 2- reduction in estuarine sediments: the significance of an NO3“ reduction maximum in the spring. Mar. Ecol Prog. Ser. 24, 65–74.

    Google Scholar 

  • Jorgensen B. B. (1989) Sulfate reduction in marine sediments from the Baltic Sea-North Sea transition. Ophelia 31, 1–15.

    Google Scholar 

  • Jorgensen B. B. and Revsbech N. P. (1989) Oxygen uptake, bacterial distribution, and carbon-nitrogen-sulfur cycling in sediments from the Baltic Sea-North Sea transition. Ophelia 31, 29–49.

    Google Scholar 

  • Jorgensen B. B., Bang M. and Blackburn T. H. (1990) Anaerobic mineralization in marine sediments from the Baltic Sea-North Sea transition. Mar. Ecol. Prog. Ser. 59, 39–54.

    Google Scholar 

  • Jorgensen B. B. and Bak F. (1991) Pathways and microbiology of thiosulfate transformations and sulfate reduction in a marine sediment (Kattegat, Denmark). Appl. Envir. Microbiol. 57, 847–856.

    Google Scholar 

  • Koike I. and Hattori A. (1978) Denitrification and ammonia formation in anaerobic coastal sediments. Appl. Environ. Microbiol. 35, 278–282.

    Google Scholar 

  • Koop K., Boynton W. R., Wulff F. and Carmen R. (1990) Sediment-water oxygen and nutrient exchanges along a depth gradient in the Baltic Sea. Mar. Ecol Prog. Ser. 63, 65–77.

    Google Scholar 

  • Kristensen E. and Blackburn T. H. (1987). The fate of carbon and nitrogen in experimental marine systems: influence of bioturbation and anoxia. Jour. Marine Res. 45, 231–257.

    Google Scholar 

  • Kuivila K. M., Murray J. W. and Devol A. H. (1990) Methane production in the sulfate-depleted sediments of two marine basins. Geochim. Cosmochim. Acta 54, 403–411.

    Google Scholar 

  • Kump L. R. and Garrels R. M. (1986) Modeling atmospheric 02 in the global sedimentary redox cycle. Amer. Jour. Sci. 286, 337–360.

    Google Scholar 

  • Lin S. and Morse J. W. (1991) Sulfate reduction and iron sulfide mineral formation in Gulf of Mexico anoxic sediments. Amer. Jour. Sci. 291, 55–89.

    Google Scholar 

  • Lord C. J., III (1980) The chemistry and cycling of iron, manganese, and sulfur in salt marsh sediments. Ph.D. diss., Univ. Delaware, Newark, 177 p.

    Google Scholar 

  • Lovley D. R. and Klug M. J. (1983) Sulfate reducers can outcompete methanogens at freshwater sulfate concentrations. Appl. Environ. Microbiol. 45, 187–192.

    Google Scholar 

  • Lovley D. R. and Phillips E. J. P. (1986) Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomic River. Appl. Environ. Microbiol. 52, 751–757.

    Google Scholar 

  • Lovley D. R. and Phillips E. J. P. (1987) Competitive mechanisms for Inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments. Appl. Environ. Microbiol. 53, 2636–2641.

    Google Scholar 

  • Lovley D. R. and Phillips E. J. P. (1988a) Manganese inhibition of microbial iron reduction in anaerobic sediments. Geomicrobiol. J. 6, 145–155.

    Google Scholar 

  • Lovley D. R. and Phillips E. J. P. (1988b) Novel mode of microbial metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron and manganese. Appl. Environ. Microbiol. 54, 1472–1480.

    Google Scholar 

  • Mackin J. E. and Swider K. T. (1989) Organic matter decomposition pathways and oxygen consumption in coastal marine sediments. Jour. Mar. Res. 47, 681–716.

    Google Scholar 

  • Martens C. S. and Berner R. A. (1974) Methane production in the interstitial waters of sulfate-depleted marine sediments. Science 185, 1167–1169.

    Google Scholar 

  • Martens C. S. and Berner R. A. (1977) Interstitial water chemistry of anoxic Long Island Sound sediments 1. Dissolved gases. Limnol. Oceanogr. 22, 10–25.

    Google Scholar 

  • Martens C. S. and Val Klump J. (1984) Biogeochemical cycling in an organic-rich coastal marine basin 4. An organic carbon budget for sediments dominated by sulfate reduction and methanogenesis. Geochim. Cosmochim. Acta 48, 1987–2004.

    Google Scholar 

  • Martin J. H., Knauer G. A., Karl D. M. and Broenkow W. W. (1987) VERTEX: carbon cycling in the northeast Pacific. Deep-Sea Res. 34, 267–285.

    Google Scholar 

  • Meyers C. R. and Nealson K. H. (1988) Microbial reduction of manganese oxides: interactions with iron and sulfur. Geochim. Cosmochim. Acta 52, 2727–2732.

    Google Scholar 

  • Müller P. J. and Suess E. (1979) Productivity, sedimentation rate, and sedimentary organic matter in the oceans-I. Organic carbon preservation. Deep-Sea Res. 26A, 1347–1362.

    Google Scholar 

  • Müller P. J. and Mangini A. (1980) Organic carbon decomposition rates in sediments of the Pacific manganese nodule belt dated by 230Th and 231Pa. Earth. Planet. Sci. Lett. 51: 94–114.

    Google Scholar 

  • Murray J. W. and Grundmanis V. (1980) Oxygen consumption in pelagic marine sediments. Science 209, 1527–1529.

    Google Scholar 

  • Murray J. W., Spell B. and Paul B. (1983) The contrasting geochemistry of manganese and chromium in the eastern tropical Pacific Ocean. In: Trace Metals in Sea Water (eds. C. S. Wong, E. Boyle, et al.) Plenum Press, New York, pp. 643–669.

    Google Scholar 

  • Murray J. W. and Kuivila K. M. (1990) Organic matter diagenesis in the northeast Pacific: transition from aerobic red clay to suboxic hemipelagic sediments. Deep-Sea Res. 37, 59–80.

    Google Scholar 

  • Oremland R. S. and Taylor B. F. (1978) Sulfate reduction and methanogenesis in marine sediments. Geochim. Cosmochim. Acta 42, 209–214.

    Google Scholar 

  • Oren A. and Blackburn T. H. (1979) Estimation of sediment denitrification rates at in situ nitrate concentrations. Appl. Environ. Microbiol. 37, 174–176.

    Google Scholar 

  • Otsuki A. and Hinga T. (1972a) Production of dissolved organic matter from dead alga cells. II Anaerobic microbial decomposition. Limnol. Oceanogr. 17, 258–264.

    Google Scholar 

  • Otsuki A. and Hinga T. (1972b) Production of dissolved organic matter from dead green alga cells I. Aerobic microbial decomposition. Limnol. Oceanogr. 17, 248–257.

    Google Scholar 

  • Pamatmat M. M. and Banse K. (1969) Oxygen consumption by the seabed. II. In situ measurements up to a depth of 180 m. Limnol. Oceanogr. 14, 250–259.

    Google Scholar 

  • Payne W. J. (1981) The status of nitric oxide and nitrous oxide as intermediates in denitrification. In: Denitrification, Nitrification, and atmospheric nitrous oxide (ed. C. C. Delwiche ). John Wiley and Sons, New York, pp. 85–103.

    Google Scholar 

  • Pederson T. F. and Calvert S. E. (1990) Anoxia vs. productivity: what controls the formation of organic-carbon-rich sediments and sedimentary rocks. AAPG. 74, 454–466.

    Google Scholar 

  • Postma D. (1985) Concentration of Mn and separation from Fe in sediments. I. Kinetics and stoichiometry of the reaction between birnessite and dissolved Fe(II) at 10°C. Geochim. Cosmochim. Acta 49, 1023–1033.

    Google Scholar 

  • Pratt L. M. (1984) Influence of paleoenvironmental factors on preservation of organic matter in Middle Cretaceous Greenhorn Formation, Pueblo, Co. AAPG Bull. 68, 1146–1159.

    Google Scholar 

  • Pyzik A. J. and Sommer S. E. (1981) Sedimentary iron monosulfides: kinetics and mechanism of formation. Geochim. Cosmochim. Acta 45, 687–698.

    Google Scholar 

  • Reeburgh W. S. (1976) Methane consumption in Cariaco Trench waters and sediments. Earth Planet. Sci. Lett. 28, 337–344.

    Google Scholar 

  • Reeburgh W. S. (1980) Anaerobic methane oxidation: rate depth distributions in Skan Bay sediments. Earth Planet. Sci. Lett. 47, 345–352.

    Google Scholar 

  • Reeburgh W. S. (1983) Rates of biogeochemical processes in anoxic sediments. Ann. Rev. Earth Planet. Sci. 11, 269–298.

    Google Scholar 

  • Reimers C. E. and Suess E. (1983) The partitioning of organic carbon fluxes and sedimentary organic matter decomposition rates in the ocean. Mar. Chem. 13, 141–168.

    Google Scholar 

  • Reimers C. E., Fischer K. M., Merewether R., Smith K. L. and Jahnke R. A. (1986) Oxygen microprofiles measured in situ in deep ocean sediments. Nature 320, 741–744.

    Google Scholar 

  • Reimers C. E., Kalhom E., Emerson S. and Nealson K. H. (1984) Oxygen consumption rates in pelagic sediments measured with a microelectrode. Geochim. Cosmochim. Acta 48, 903–910.

    Google Scholar 

  • Revsbech N. P., Sorensen J., Blackburn T. H. and Lomholt J. P. (1980) Distribution of oxygen in marine sediments measured with a microelectrode. Limnol. Oceanogr. 25, 403–411.

    Google Scholar 

  • Richards F. A., Cline J. D., Broenkow W. W. and Atkinson L. P. (1965) Some consequences of the decomposition of organic matter in Lake Nitinat, and anoxic Fjord. Limnol. Oceanogr. 10, R185 - R200.

    Google Scholar 

  • Robertson L. A. and Kuenen J. G. (1984) Aerobic denitrification: a controversy revived. Arch. Microbiol. 139, 351–354.

    Google Scholar 

  • Robertson L. A., Cornelisse R., De Vos P., Hadioetomo R. and Kuenen J. G. (1989) Aerobic denitrification in various heterotrophic nitrifiers. Antonie van Leeuwenhoek 56, 289–299.

    Google Scholar 

  • Seitzinger S. P. (1988) Denitrification in freshwater and coastal marine ecosystems: ecological and geochemical significance. Limnol. Oceanogr. 33, 702–724.

    Google Scholar 

  • Seitzinger S. P., Nixon S. W. and Pilson M. E. Q. (1984) Denitrification and nitrous oxide production in a coastal marine ecosystem. Limnol. Oceanogr. 29, 73–83.

    Google Scholar 

  • Smith K. L. Jr. and Hinga K. R. (1983) Sediment community respiration in the deep sea. In: The Sea (ed. G. T. Rowe). vol 8. Wiley Interscience, New York, pp. 331–379.

    Google Scholar 

  • Smith K. L. Jr., Carlucci A. F., Jahnke R. A. and Craven D. B. (1987) Organic carbon mineralization in the Santa Catalina Basin: benthic boundary layer metabolism. Deep-Sea Res. 34, 185–211.

    Google Scholar 

  • Smith K. L. Jr., Baldwin R. J. and Edelman J. L. (1989) Supply and demand for organic matter by sediment communities on two central North Pacific seamounts. Deep-Sea Res. 36, 1917–1932.

    Google Scholar 

  • Sorensen J. (1978) Denitrification rates in a marine sediment as measured by the acetylene inhibition technique. Appl. Environ. Microbiol. 36, 139–143.

    Google Scholar 

  • Sorensen J. (1982) Reduction of ferric iron in anaerobic. marine sediment and interaction with reduction of nitrate and sulfate. Appl. Environ. Microbiol. 43, 319–324.

    Google Scholar 

  • Sorensen J., Jorgensen K. S., Colley S., Hydes D. J., Thomson J. and Wilson T. R. S. (1984) Depth localization of denitrification in a deep-sea sediment from the Madeira Abyssal Plain. Limnol. Oceanogr. 32, 758–762.

    Google Scholar 

  • Sorensen J., Rasmussen L. K. and Koike I. (1987) Micromolar sulfide concentrations alleviate blockage of nitrous oxide reduction by denitrifying Pseudomonas fluorescens. Can. J. Microbiol. 33, 1001–1005.

    Google Scholar 

  • Sorensen J., Tiedje J. M. and Firestone R. B. (1980) Inhibition by sulfide of nitric oxide and nitrous oxide reduction by denitrifying Pseudomonas flourescens. Appl. Environ. Microbiol. 39, 105–108.

    Google Scholar 

  • Sorokin Y. I. (1962) Experimental investigation of bacterial sulfate reduction in the Black Sea using 35S. Mikrobiologiya 31, 402–410.

    Google Scholar 

  • Stein R. (1986) Surface-water paleo-productivity as inferred from sediments deposited in oxic and anoxic deep-water. SCOPE/UNEP Sonderband 60, 55–70.

    Google Scholar 

  • Stumm W. and Morgan J. J. (1970) Aquatic Chemistry. Wiley Interscience, New York, 780 p.

    Google Scholar 

  • Suess E (1980) Particulate organic carbon flux in the oceans-surface productivity and oxygen utilization. Nature 288, 260–263.

    Google Scholar 

  • Thode-Andersen S. and Jorgensen B. B. (1989) Sulfate reduction and the formation of 35S-labeled FeS, FeS2, and So in coastal marine sediments. Limnol. Oceanogr. 34, 793–806.

    Google Scholar 

  • Toth D. J. and Lerman A. (1977) Organic matter reactivity and sedimentation rates in the ocean. Amer. Jour. Sci. 277, 265–285.

    Google Scholar 

  • Vuchev V. T. (1974) Black Sea studies in Bulgaria-a brief survey. In: The Black Sea-Geology, Chemistry, and Biology (eds. E. T. Degens and D. A. Ross). vol. 20, American Association of Petroleum Geologists, Tulsa, Oklahoma, pp. 90–96.

    Google Scholar 

  • Walsh J., Rowe G. T., Iverson R. L. and McRoy C. P. (1981) Biological export of shelf carbon: a neglected sink of the global CO2 cycle. Nature 291, 196–201.

    Google Scholar 

  • Westrich J. T. (1983) The consequences and controls of bacterial sulfate reduction in marine sediments. Ph.D. diss., Yale University, New Haven, Connecticut, 530 p.

    Google Scholar 

  • Westrich J. T. and Berner R. A. (1984) The role of sedimentary organic matter in bacterial sulfate reduction: the G model tested. Limnol. Oceanogr. 29, 236–249.

    Google Scholar 

  • Zhabina N. N. and Volkov I. I. (1978) A method of determination of various sulfur compounds in sea sediments and rocks. In: Environmental Biogeochemistry; Methods, Metals and Assessment (ed. W. E. Krumbein). vol 3, Ann Arbor Science Publishers, Ann Arbor, Michigan, pp. 735–745.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Canfield, D.E. (1993). Organic Matter Oxidation in Marine Sediments. In: Wollast, R., Mackenzie, F.T., Chou, L. (eds) Interactions of C, N, P and S Biogeochemical Cycles and Global Change. NATO ASI Series, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76064-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76064-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76066-2

  • Online ISBN: 978-3-642-76064-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics