Skip to main content

Bacteria and Marine Biogeochemistry

  • Chapter
Marine Geochemistry

Abstract

Geochemical cycles on Earth follow the basic laws of thermodynamics and proceed towards a state of maximal entropy and the most stable mineral phases. Redox reactions between oxidants such as atmospheric oxygen or manganese oxide and reductants such as ammonium or sulfide may proceed by chemical reaction, but they are most often accelerated by many orders of magnitude through enzymatic catalysis in living organisms. Throughout Earth’s history, prokaryotic physiology has evolved towards a versatile use of chemical energy available from this multitude of potential reactions. Biology, thereby, to a large extent regulates the rate at which the elements are cycled in the environment and affects where and in which chemical form the elements accumulate. By coupling very specifically certain reactions through their energy metabolism, the organisms also direct the pathways of transformation and the ways in which the element cycles are coupled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alperin, M.J. and Reeburgh, W.S., 1985. Inhibition Experiments on Anaerobic Methane Oxidation. Applied and Environmental Microbiology, 50: 940–945.

    Google Scholar 

  • Arnosti, C, 1996. A new method for measuring polysaccharide hydrolysis rates in marine environments. Organic Geochemistry, 25: 105–115.

    Article  Google Scholar 

  • Bak, F. and Cypionka, H., 1987. A novel type of energy metabolism involving fermentation of inorganic sulphur compounds. Nature, 326: 891–892.

    Article  Google Scholar 

  • Benz, M., Brune, A. and Schink, B., 1998. Anaerobic and aerobic oxidation of ferrous iron and neutral pH by chemoheterotrophic nitrate-reduction bacteria. Arch. Microbiology, 169: 159–165.

    Article  Google Scholar 

  • Berelson, W.M., Hammond, D.E., Smith, K.L. Jr; Jahnke, R.A., Devol, A.H., Hinge, K.R., Rowe, G.T. and Sayles, F. (eds), 1987. In situ benthic flux measurement devices: bottom lander technology. MTS Journal, 21: 26–32.

    Google Scholar 

  • Berner, R.A., 1980. Early diagenesis: A theoretical approach. Princton Univ. Press, Princton, NY, 241 pp.

    Google Scholar 

  • Boetius, A. and Lochte, K., 1996. Effect of organic enrichments on hydrolytic potentials and growth of bacteria in deep-sea sediments. Marine Ecology Progress Series, 140: 239–250.

    Article  Google Scholar 

  • Boetius, A. and Damm, E., 1998. Benthic oxygen uptake, hydrolytic potentials and microbial biomass at the Arctic continental slope. Deep-Sea Research I, 45: 239–275.

    Google Scholar 

  • Borowski, W.S., Paull, C.K. and Ussier, W., 1996. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate. Geology, 24: 655–658.

    Article  Google Scholar 

  • Boudreau, B.P., 1988. Mass-transport constraints on the growth of discoidal ferromanganese nodules. American Journal of Science, 288: 777–797.

    Article  Google Scholar 

  • Boudreau, B.P., 1997. Diagenetic models and their impletation: modelling transport and reactions in aquatic sediments. Springer, Berlin, Heidelberg, NY, 414 pp.

    Book  Google Scholar 

  • Canfield, D.E., 1993. Organic matter oxidation in marine sediments. In: Wollast, R., Mackenzie, F.T. and Chou, L. (eds), Interactions of C, N, P and S biogeochemical cycles. NATO ASI Series, 14. Springer, Berlin, Heidelberg, NY, pp. 333–363.

    Chapter  Google Scholar 

  • Canfield, D.E., Jorgensen B.B., Fossing, H., Glud, R.N., Gundersen, J., Ramsing, N.B., Thamdrup, B., Hansen, J.W., Nielsen, L.P. and Hall, P.O.J., 1993b. Pathways of organic carbon oxidation in three continental margin sediments. Marine Geology, 113: 27–40.

    Article  Google Scholar 

  • Canfield, D.E. and Teske, A., 1996. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature, 382: 127–132.

    Article  Google Scholar 

  • Christensen, D., 1984. Determination of substrates oxidized by sulfate reduction in intact cores of marine sediments. Limnology and Oceanography, 29: 189–192.

    Article  Google Scholar 

  • Chrost, R.J., 1991. Microbial enzymes in aquatic environments. Springer, Berlin, Heidelberg, NY, 317 pp.

    Book  Google Scholar 

  • Coleman, M.L., Hedrick, D.B., Lovley, D.R., White, D.C. and Pye, K., 1993. Reduction of Fe(III) in sediments by sulphate-reducing bacteria. Nature, 361: 436–438.

    Article  Google Scholar 

  • Conrad, R., Schink, B. and Phelps, T.J., 1986. Thermodynamics of H2-consuming and H2-producing metabolic reactions in diverse methanogenic environments under in situ conditions. FEMS Microbiology Ecology, 38: 353–360.

    Article  Google Scholar 

  • Cypionka, H., 1994. Novel matabolic capacities of sulfate-reducing bacteria, and their activities in microbial mats. In: Stal, L.J. and Caumette, P.(eds), Microbial mats, NATO ASI Series, 35, Springer, Berlin, Heidelberg, NY, pp. 367–376.

    Chapter  Google Scholar 

  • Dannenberg, S., Kroder, M., Dilling, W. and Cypionka, H., 1992. Oxidation of H2, organic compounds and inorganic sulfur compounds coupled to reduction of 02 or nitrate by sulfate-reducing bacteria. Archives of Microbiology, 158: 93–99.

    Article  Google Scholar 

  • Ehrenreich, A. and Widdel, F., 1994. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of prototrophic metabolism. Applied and Environmental Microbiology, 60: 4517–4526.

    Google Scholar 

  • Ehrlich, H.L., 1996. Geomicrobiology. Marcel Dekker, NY, 719 pp.

    Google Scholar 

  • Fenchel, T.M. and Jorgensen, B.B., 1977. Detritus food chains of aquatic ecosystems: The role of bacteria. In: Alexander, M. (ed), Advances in Microbial Ecology, 1, Plenum Press, NY, pp. 1–58.

    Chapter  Google Scholar 

  • Fenchel, T., King, G.M. and Blackburn, T.H., 1998. Bacterial biogeochemistry: The ecophysiology of mineral cycling. Academic Press, London, 307 pp.

    Google Scholar 

  • Fossing, H. and Jorgensen, B.B., 1989. Measurement of bacterial sulfate reduction in sediments: evaluation of a single-step chromium reduction method. Biogeochemistry, 8: 205–222.

    Article  Google Scholar 

  • Fossing, H. and Jorgensen, B.B., 1990. Isotope exchange reactions with radiolabeled sulfur compounds in anoxic seawater. Biogeochemistry, 9: 223–245.

    Article  Google Scholar 

  • Fossing, H., Thode-Andersen, S. and Jorgensen, B.B., 1992. Sulfur isotope exchange between 35S-labeled inorganic sulfur compounds in anoxic marine sediments. Marine Chemistry, 38: 117–132.

    Article  Google Scholar 

  • Fossing, H., Gallardo, V.A., Jorgensen, B.B., Hiittel, M., Nielsen, L.P., Schulz, H., Canfield, D.E., Forster, S., Glud, R.N., Gundersen, J.K., Kiifer, J., Ramsing, N.B., Teske, A., Thamdrup, B. and Ulloa, O., 1995. Concentration and transport of nitrate by the mat-forming sulphur bacterium Thioploca. Nature, 374: 713–715.

    Article  Google Scholar 

  • Fossing, H., 1995. 35S-radiolabeling to probe biogeochemical cycling of sulfur. In:. Vairavamurthy, M.A and. Schoonen, M.A.A (eds), Geochemical transformations of sedimentary sulfur. ACS Symposium Series, 612, American Chemical Society, Washington, DC, pp. 348–364.

    Chapter  Google Scholar 

  • Froelich, P.N., Klinkhammer, G.P., Bender, M.L., Luedtke, N.A., Heath, G.R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B. and Maynard, V., 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochimica et Cosmochimica Acta, 43: 1075–1088.

    Article  Google Scholar 

  • Glud, R.N., Gundersen, J.K., Jorgensen, B.B., Revsbech, N.P. and Schulz, H.D., 1994. Diffusive and total oxygen uptake of deep-sea sediments in the eastern South Atlantic Ocean: in situ and laboratory measurements. Deep-Sea Research, 41: 1767–1788.

    Article  Google Scholar 

  • Greeff, O., Glud, R.N., Gundersen, J., Holby, O. and Jorgensen, B.B., in press. A benthic lander for tracer studies in the sea bed: in situ measurements of sulfate reduction. Continental Shelf Research.

    Google Scholar 

  • Gundersen, J.K. and Jorgensen, B.B., 1990. Microstructure of diffusive boundary layer and the oxygen uptake of the sea floor. Nature, 345: 604–607.

    Article  Google Scholar 

  • Gundersen, J.K., Glud, R.N. and Jorgensen, B.B., 1995. Oxygen turnover of the sea floor (in Danish). Marine research from the danisch environmental agency, 57, Danish Ministry of Environment and Energy, Copenhagen, 155 pp.

    Google Scholar 

  • Hedges, J.I., 1978. The formation and clay mineral reactions of melanoidins. Geochimica Cosmochimica Acta, 42: 69–76.

    Article  Google Scholar 

  • Henrichs, S.M. and Reeburgh, W.S., 1987. Anaerobic mineralization of marine sediment organic matter: rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiological Journal, 5: 191–237.

    Article  Google Scholar 

  • Henrichs, S.M., 1992. Early diagenesis of organic matter in marine sediments: progress and perplexity. Marine Chemistry, 39: 119–149.

    Article  Google Scholar 

  • Henriksen, K., 1980. Measurement of in situ rates of nitrification in sediment. Microbial Ecology, 6: 329–337.

    Article  Google Scholar 

  • Hoehler, T.M., Alperin, M.J., Albert, D.B. and Martens, C.S., 1994. Field and laboratory studies of methane oxidation in an anoxic marine sediment: Evidence for a methanogen-sulfate reducer consortium. Global Biogeochemical Cycles, 8: 451–463.

    Article  Google Scholar 

  • Hoehler, T.M., Alperin, M.J., Albert, D.B. and Martens, C.S., 1998. Thermodynamic control on hydrogen concentrations in anoxic sediments. Geochimic et Cosmochimica Acta, 62: 1745–1756.

    Article  Google Scholar 

  • Huettel, M., Ziebis, W., Forster, S. and Luther, G.W., 1998.Advective transport affecting metal and nutrient distributions and interfacial fluxes in permeable sediments. Geochimica et Cosmochimica Acta, 62: 613–631.

    Article  Google Scholar 

  • Isaksen, M.F. and Jorgensen, B.B., 1996. Adaptation of psychrophilic and psychrotrophic sulfate-reducing bacteria to permanently cold marine environments. Applied and Environmental Microbiology, 62: 408–414.

    Google Scholar 

  • Iversen, N. and Jorgensen, B.B., 1985. Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnology and Oceanography, 30: 944–955.

    Article  Google Scholar 

  • Jorgensen, B.B., 1978. A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments. I. Measurement with radiotracer techniques. Geomicrobiology Journal, 1: 11–27.

    Article  Google Scholar 

  • Jorgensen, B.B., 1982. Mineralization of organic matter in the sea bed-the role of sulphate reduction. Nature, 296: 643–645.

    Article  Google Scholar 

  • Jorgensen, B.B., 1987. Ecology of the sulphur cycle: Oxidative pathways in sediments. In: Cole, J.A. and Ferguson, S. (eds), The nitrogen and sulphur cycles. Society for General Microbiology Symposium, 42, Cambridge University Press, pp. 31–63.

    Google Scholar 

  • Jorgensen, B.B., 1990. A thiosulfate shunt in the sulfur cycle of marine sediments. Science, 249: 152–154.

    Article  Google Scholar 

  • Jorgensen, B.B. and Bak, R, 1991. Pathways and microbiology of thiosulfate transformation and sulfate reduction in a marine sediment (Kattegat, Denmark). Applied and Environmental Microbiology, 57: 847–856.

    Google Scholar 

  • Jorgensen, B.B., Isaksen, M.F. and Jannasch, H.W., 1992. Bacterial sulfate reduction above 100°C in deep-sea hy-drothermal vent sediments. Science, 258: 1756–1757.

    Article  Google Scholar 

  • Jorgensen, B.B., 1996. The micro-world of marine bacteria (in German). Naturwissenschaften, 82: 269–278.

    Article  Google Scholar 

  • Jorgensen, B.B., in press. Microbial life in the diffusive boundery layer. In: Boudreau, B.P. and Jorgensen, B.B. (eds), The benethic boundary layer: transport processes and biogeochemistry. Oxford University Press, Oxford.

    Google Scholar 

  • Karp-Boss, L., Boss, E. and Jumars, P.A., 1996. Nutrient fluxes to planktonic osmotrophs in the presence of fluid motion. Oceanographic Marine Biology Annual Reviews, 34: 71–107.

    Google Scholar 

  • Keil, R.G., Montlucon, Prahl, EG. and Hedges, J.I., 1994b. Sorptive preperation of labile organic matter in marine sediments. Nature, 370: 549–552.

    Article  Google Scholar 

  • Kelly, D.P., 1982. Biochemistry of the chemolithotrophic oxidation of inorganic sulphur. Philosophic Transactions of the Royal Society of London, 298: 499–528.

    Article  Google Scholar 

  • King, G.M., 1983. Sulfate reduction in Georgia salt marsh soils: An evaluation of pyrite formation by use of 35S and 55Fe tracers. Limnology and Oceanography, 28: 987–995.

    Article  Google Scholar 

  • Klinkhammer, G.P., 1980. Early diagenesis in sediments from the eastern equatorial Pacific, II. Pore water metal results. Earth and Planetary Science Letters, 49: 81–101.

    Article  Google Scholar 

  • Koch, A.L., 1990. Diffusion, the crucial process in many aspects of the biology of bacteria. In: Marshall, K.C. (ed), Advances in microbial ecology, 11, Plenum, NY, pp. 37–70.

    Chapter  Google Scholar 

  • Koch, A.L., 1996. What size should a bacterium be? A question of scale. Annual Reviews of Microbiology, 50: 317–348.

    Article  Google Scholar 

  • Krekeler, D. and Cypionka, H., 1995. The preferred electron acceptor of Desulfovibrio desulfuricans CSN. FEMS Microbiology Ecology, 17: 271–278.

    Article  Google Scholar 

  • Kiihl, M. and Revsbech, N.P., in press. Microsensors for studies of interfacial biogeochemical processes. In: Boudreau, B.P. and Jorgensen, B.B. (eds), The benthic boundary layer: transport processes and biogeochemistry. Oxford University Press, Oxford.

    Google Scholar 

  • Llobet-Brossa, E., Rosello-Mora, R. and Ammann, R., 1998. Microbial community composition of Wadden Sea sediments as revealed by fluorescent in situ hybridization. Applied and Environmental Microbiology, 64: 2691–2696.

    Google Scholar 

  • Lochte, K. and Turley, CM., 1988. Bacteria and cyanobacteria associated with phytodetritus in the deep sea. Nature, 333: 67–69.

    Article  Google Scholar 

  • Madigan, M.T., Martinko, J.M. and Parker, J., 1997. Biology of microorganisms. Prentice Hall, London, 986 pp.

    Google Scholar 

  • Nielsen, L.P., 1992. Denitrification in sediment determined from nitrogen isotope pairing. FEMS Microbiology Ecology, 86: 357–362.

    Article  Google Scholar 

  • Niewohner, C, Hensen, C, Kasten, S., Zabel, M. and Schulz, H.D., 1998. Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia. Geochimica et Cosmochimica Acta, 62: 455–464.

    Article  Google Scholar 

  • Oremland, R.S. and Polcin, S., 1982. Methanogenesis and sulfate reduction: Competitive and noncompetetive substrates in estuarine sediments. Applied and Environmental Microbiology, 44: 1270–1276.

    Google Scholar 

  • Oremland, R.S., Marsh, L.M. and Polcin, S., 1982. Methane production and simultaneous sulphate reduction in anoxic saltmarsh sediments. Nature, 296: 143–145.

    Article  Google Scholar 

  • Oremland, R.S. and Capone, D.G., 1988. Use of „specific“ inhibitors in biogeochemistry and microbial ecology. In: Marshall, K.C. (ed), Advances in microbial ecology, 10, Plenum Press, NY, pp. 285–383.

    Chapter  Google Scholar 

  • Parkes, J.R., Cragg, B.A., Bale, S.J., Getliff, J.M., Goodman, K., Rochell, P.A., Fry, J.C., Weightman, A.J. and Harvey, S.M., 1994. Deep bacterial biosphere in Pacific Ocean sediments. Nature, 371: 410–413.

    Article  Google Scholar 

  • Postgate, J.R., 1979. The sulfate-reduction bacteria. Cambridge University Press, Cambridge, 208 pp.

    Google Scholar 

  • Rabus, F., Fukui, M., Wilkes, H. and Widdel, R, 1996. Degradative capacities and 16S rRNA-targeted whole-cell hybridization of sulfate-reducing bacteria in an anaerobic enrichment culture utilizing alkylbenzenes from crude oil. Applied and Environmental Microbiology, 62: 3605–3613.

    Google Scholar 

  • Redfield, A.C., 1958. The biological control of chemical factors in the environment. Am. Scientist, 46: 206–222.

    Google Scholar 

  • Reeburgh, W.S., 1969. Observations of gases in Chesapeake Bay sediments. Limnology and Oceanography, 14: 368–375.

    Article  Google Scholar 

  • Reimers, C.E., 1987. An in situ microprofiling instrument for measuring interfacial pore water gradients: methods and oxygen profiles from the North Pacific Ocean. Deep-Sea Research, 34: 2019–2035.

    Article  Google Scholar 

  • Revsbech, N.R, Nielsen, L.R, Christensen, RB. and Sorensen, J., 1988. Combined oxygen and nitrous oxide microsensor for denitrification studies. Applied and Environmental Microbiology, 54: 2245–2249.

    Google Scholar 

  • Roden, E.E. and Lovley, D.R., 1993. Evaluation of 55Fe as a tracer of Fe(III) reduction in aquatic sediments. Geomicrobiological Journal, 11: 49–56.

    Article  Google Scholar 

  • Rueter, P., Rabus, R., Wilkes, H., Aeckersberg, F., Rainey, F.A., Jannasch, H.W. and Widdel, F., 1994. Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature, 372: 455–458.

    Article  Google Scholar 

  • Sagemann, J., Jorgensen, B.B. and Greeff, O., 1998. Temperature dependence and rates of sulfate reduction in cold sediments of Svalbard, Arctic Ocean. Geomicrobiological Journal, 15: 83–98.

    Article  Google Scholar 

  • Sansone, F.J., Andrews, C.C. and Okamoto, M.Y., 1987. Adsorption of short-chain organic acids onto nearshore marine sediments. Geochimica et Cosmochimica Acta, 51: 1889–1896.

    Article  Google Scholar 

  • Santschi, PH., Anderson R.F., Fleisher, M.Q. and Bowles, W., 1991. Measurements of diffusive sublayer thicknesses in the ocean by alabaster dissolution, and their implications for the measurements of benthic fluxes. Journal of Geophysical Research, 96: 10.641–10.657.

    Article  Google Scholar 

  • Schopf, J.W. and Klein, C. (eds), 1992. The proterozoic biosphere. Cambridge University Press, Cambridge, 1348 pp.

    Google Scholar 

  • Schulz, H.D., Dahmke, A., Schinzel, U., Wallmann, K. and Zabel, M., 1994. Early diagenetic processes, fluxes and reaction rates in sediments of the South Atlantic. Geochimica et Cosmochimica Acta, 58: 2041–2060.

    Article  Google Scholar 

  • Smith, K.L.Jr., Clifford, C.H. Eliason, A.h., Walden, B., Rowe, G.T. and Teal, J.M., 1976. A free vehicle for measuring benthic community metabolism. Limnology and Oceanography, 21: 164–170.

    Article  Google Scholar 

  • Sorensen, J., 1978. Denitrification rates in a marine sediment as measured by the acetylene inhibition technique. Applied and Environmental Microbiology, 35: 301–305.

    Google Scholar 

  • Sorensen, J., Christensen, D. and Jorgensen, B.B., 1981. Volatile fatty acids and hydrogen as substrates for sulfate-reducing bacteria in anaerobic marine sediment. Applied and Environmental Microbiology, 42: 5–11.

    Google Scholar 

  • Stetter, K.O., Huber, R., Blochl, E., Knurr, M., Eden, R.D., Fielder, M., Cash, H. and Vance, I., 1993. Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature, 365: 743–745.

    Article  Google Scholar 

  • Stetter, K.O., 1996. Hyperthermophilic procaryotes. FEMS Microbiology Revue, 18: 149–158.

    Article  Google Scholar 

  • Straub, K.L., Benz, M., Schink, B. and Widdel, F., 1996. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Applied and Environmental Microbiology, 62: 1458–1460.

    Google Scholar 

  • Straub, K.L. and Buchholz-Cleven, B.E.E., 1998. Enumeration and detection of anaerobic ferrous iron-oxidizing, nitrate-reducing bacteria from diverse European sediments. Applied and Environmental Microbiology, 64: 4846–4856.

    Google Scholar 

  • Suess, E., 1980. Particulate organic carbon flux in the oceans-surface productivity and oxygen utilization. Nature, 288: 260–263.

    Article  Google Scholar 

  • Tegelaar, E.W., de Leeuw, J.W., Derenne, S. and Largeau, C, 1989. A reappraisal of kerogen formation. Geochimica et Cosmochimica Acta, 53: 3103–3106.

    Article  Google Scholar 

  • Tengberg, A., de Bovee, F., Hall, P, Berelson, W., Chadwick, D., Ciceri, G., Crassous, P., Devol, A., Emerson, s., Gage, J., Glud, R., Graziottin, F., Gundersen, J., Hammond, D., Helder, W., Hinga, K., Holby, O., Jahnke, R., Khripounoff, A., Lieberman, S., Nuppenau, V., Pfannkuche, O., Reimers, C, Rowe, G., Sahami, A., Sayles, F., Schurter, M., Smallman, D., Wehrli, B. and de Wilde, P., 1995. Benthic chamber and profiling landers in oceanography — A review of design, technical solutions and function. Progress in Oceanography, 35: 253–292.

    Article  Google Scholar 

  • Thamdrup, B., Finster, K., Hansen, J.W. and Bak, E, 1993. Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese. Applied and Environmental Microbiology, 59: 101–108.

    Google Scholar 

  • Thamdrup, B., Fossing, H. and Jorgensen, B.B., 1994. Manganese, iron, and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochimica et Cosmochimica Acta, 58: 5115–5129.

    Article  Google Scholar 

  • Thauer, R.K., Jungermann, K. and Decker, K., 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacterial Reviews, 41: 100–180.

    Google Scholar 

  • Thomsen, L., Jahmlich, S., Graf, G., Friedrichs, M., Wanner, S. and Springer, B., 1996. An instrument for aggregate studies in the benthic boundary layer. Marine Geology, 135: 153–157.

    Article  Google Scholar 

  • Vetter, Y.A., Deming, J.W., Jumars, P.A. and Kriegerbrockett, B.B., 1998. A predictive model of bacterial foraging by means of freely released extracellular enzymes. Microbiology Ecology, 36: 75–92.

    Article  Google Scholar 

  • Weiss, M.S., Abele, U., Weckesser, J., Welte, W. und Schulz, G.E., 1991. Molecular architecture and electrostatic properties of a bacterial porin. Science, 254: 1627–1630.

    Article  Google Scholar 

  • Wellsbury, P., Goodman, K., Barth, T., Cragg, B.A., Barnes, S.P. and Parkes R.J., 1997. Deep marine biosphere fuelled by increasing organic matter availability during burial and heating. Nature, 388: 573–576.

    Article  Google Scholar 

  • Westrich, J.T. and Berner, R.A., 1984. The role of sedimentary organic matter in bacterial sulfate reduction: The Gmodel tested. Limnology and Oceanography, 29: 236–249.

    Article  Google Scholar 

  • Widdel, E, 1988. Microbiology and ecology of sulfate-and sulfur-reduction bacteria. In: Zehnder, A.J.B. (ed). Biology of anaerobic microorganisms. Wiley & Sons, NY, 469–585 pp.

    Google Scholar 

  • Widdel, F., Schnell, S., Heising, S., Ehrenreich, A., Assmus, B. and Schink, B., 1993. Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature, 362: 834–836.

    Article  Google Scholar 

  • Yayanos, A.A., 1986. Evolutional and ecological implications of the properties of deep-sea barophilic bacteria. Proc. Natl. Acad. Sci., 83: 9542–9546.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jørgensen, B.B. (2000). Bacteria and Marine Biogeochemistry. In: Schulz, H.D., Zabel, M. (eds) Marine Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04242-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04242-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04244-1

  • Online ISBN: 978-3-662-04242-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics