Skip to main content

Detritus Food Chains of Aquatic Ecosystems: The Role of Bacteria

  • Chapter
Advances in Microbial Ecology

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 1))

Abstract

The purpose of this review is to present and discuss current knowledge on the role played by bacteria in the carbon cycle of ecosystems. The ecological experience of the authors explains why our examples are mainly derived from aquatic systems; many of the discussed principles, however, apply equally well to terrestrial systems. In fact the one environmental requirement common to all microorganisms is the presence of free water, and in a sense all microorganisms are aquatic organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, M., 1971, Microbial Ecology, John Wiley and Sons, New York.

    Google Scholar 

  • Allen, H. L., 1971, Dissolved organic carbon utilization in size fractionated algal and bacterial communities, Int. Rev. Gesamten Hydrobiol. 56: 731.

    CAS  Google Scholar 

  • Atkinson, L. P., Richards, F. A., 1967, The occurrence and distribution of methane in the marine environment, Deep-Sea Res. 14: 673.

    CAS  Google Scholar 

  • Baalsrud, K., Baalsrud, K. S., 1954, Studies on Thiobacillus denitrificans, Arch. Mikrobiol. 20: 34.

    PubMed  CAS  Google Scholar 

  • Barsdate, R. S., Fenchel, T., Prentki, R. T., 1974, Phosphorus cycle of model ecosystems: Significance for decomposer food chains and effect of bacterial grazers, Oikos 25: 239.

    CAS  Google Scholar 

  • Bernard, F. R., 1970, Occurrence of the spirochaete genus Cristispira in western Canadian marine bivalves, Veliger 13: 33.

    Google Scholar 

  • Berner, R. A., 1964, An idealized model of dissolved sulfate distribution in recent sediments, Geochim. Cosmochim. Acta 28: 1497.

    CAS  Google Scholar 

  • Berner, R. A., 1970, Sedimentary pyrite formation, Amer. J. Sci. 268: 1.

    CAS  Google Scholar 

  • Bertram, G. C. L., Bertram, C. K. R., 1968, Bionomics of dugongs and manatees, Nature (London) 218: 423.

    CAS  Google Scholar 

  • Bick, H., 1964, Die Sukzession der Organismen bei der Selbstreinigung von organisch verunreinigtem Wasser unter verschiedenen Milieubedingungen, Min. ELF des Landes Nordrhein/Westfalen, Düsseldorf, p. 139.

    Google Scholar 

  • Bordovskiy, O. K., 1965, Accumulation and transformation of organic substances in marine sediments, Mar. Geol. 3: 3.

    Google Scholar 

  • Boysen-Jensen, P., 1914, Studies concerning the organic matter of the sea bottom, Rep.

    Google Scholar 

  • Danish Biol Sta. 22: 1.

    Google Scholar 

  • Brezonik, P. L., Lee, G. F., 1968, Denitrification as a nitrogen sink in Lake Mendota,

    Google Scholar 

  • Wisconsin, Environ. Sci. Technol. 2: 120.

    Google Scholar 

  • Brinkhurst, R. O., Chua, K. E., Kaushik, N. K., 1972, Interspecific interactions and

    Google Scholar 

  • selective feeding by tubificid oligochaetes, Limnol. Oceanogr. 17: 122.

    Google Scholar 

  • Bryant, M. P., Tzeng, S. F., Robinson, I. M., Joyner, Jr., A. E., 1971, Nutrient requirements of methanogenic bacteria, in: Anaerobic Biological Treatment Processes ( F. G. Pohland, ed.), pp. 23–40, American Chemical Society, Washington.

    Google Scholar 

  • Burbanck, W. D., 1942, Physiology of the ciliate Colpidium colpoda. I. The effect of various bacteria as food on the division rate of Colpidium colpoda, Physiol. Zool. 15: 342.

    Google Scholar 

  • Burbanck, W. D., Eisen, J. D., 1960, The inadequacy of monobacterially fed Para mecium aurelia as food for Didinium nasutum, J. Protozool. 7: 201.

    Google Scholar 

  • Burnison, B. K., Morita, R. Y., 1974, Heterotrophic potential for amino acid uptake in a naturally eutrophic lake, Appl. Microbiol 27: 488.

    PubMed  CAS  Google Scholar 

  • Cairns, J. (ed.), 1971, The structure and function of fresh-water microbial communities, Research Division Monograph 3, Virginia Polytechnic Institute and State University, Blacksbury, Virginia.

    Google Scholar 

  • Cappenberg, T. E., 1974a, Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. I. Field observations, Antonie van Leeuwenhoek J. Microbiol. Serol. 40: 285.

    CAS  Google Scholar 

  • Cappenberg, T. E., 1974b, Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. II. Inhibition experiments, Antonie van Leeuwenhoek J. Microbiol. Serol. 40: 297.

    CAS  Google Scholar 

  • Cappenberg, T. E., Prins, R. A., 1974, Interrelations between sulfate-reducing and

    Google Scholar 

  • methane-producing bacteria in bottom deposits of a fresh-water lake. III. Experiments

    Google Scholar 

  • with 14C-labelled substrates, Antonie van Leeuwenhoek J. Microbiol. Serol. 40: 457.

    Google Scholar 

  • Chen, K. Y., Morris, J. C., 1972, Oxidation of sulfide by O2-catalysis and inhibition, J. Sanit. Eng. 98: 215.

    Google Scholar 

  • Chynoweth, D. P., Mah, R. A., 1971, Volatile acid formation in sludge digestion, in: Anaerobic Biological Treatment Processes (F. G. Pohland, ed.), pp. 41–54, American Chemical Society, Washington.

    Google Scholar 

  • Claypool, G. E., Kaplan, I. R., 1974, The origin and distribution of methane in marine sediments, in: Natural Gases in Marine Sediments ( I. R. Kaplan, ed.), pp. 99–140, Plenum Press, New York.

    Google Scholar 

  • Cline, J. D., Richards, F. A., 1969, Oxygenation of hydrogen sulfide in sea water at constant salinity, temperature, and pH, Environ. Sci. Technol. 3: 838.

    CAS  Google Scholar 

  • Cohen, Y., Jørgensen, B. B., Padan, E., Shilo, M., 1975, Sulphide-dependent anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica, Nature (London) 257: 489.

    CAS  Google Scholar 

  • Colwell, R. R., Liston, J., 1962, The natural bacterial flora of certain marine invertebrates, J. Insect Pathol. 4: 23.

    Google Scholar 

  • Colwell, R. R., Morita, R. Y., 1974, Effect of the Ocean Environment on Microbial Activities, University Park Press, Baltimore.

    Google Scholar 

  • Crawford, C. C, Hobbie, J. E., and Webb, K. L., 1974, The utilization of dissolved free amino acids by estuarine microorganisms, Ecology 55: 551.

    CAS  Google Scholar 

  • Culver, D. A., and Brunskill, G. J., 1969, Fayetteville, Green Lake, New York. V. Studies of primary production and zooplankton in a meromictic marl lake, Limnol. Oceanogr. 14: 862.

    CAS  Google Scholar 

  • Dale, N. G., 1974, Bacteria in intertidal sediments: Factors related to their distribution, Limnol Oceanogr. 19: 509.

    Google Scholar 

  • Duncan, A., Schiemer, F., Klekowski, R. Z., 1974, A preliminary study of feeding rates on bacterial food by adult females of a benthic nematode, Plectus palustris de Man 1880, Pol. Arch. Hydrobiol. 21: 249.

    Google Scholar 

  • Edwards, A. C., Heath, W. G., 1963, The role of soil animals in breakdown of leaf material in: Soil Organisms (J. Docksenm J. van der Drift, eds.), pp. 27–34, North Holland, Amsterdam.

    Google Scholar 

  • Egglishaw, H. J., 1972, An experimental study of the breakdown of cellulose in fast-flowing streams, Mem. 1st. Ital. Idrobiol, Suppl. 29: 405.

    CAS  Google Scholar 

  • Fell, J. W., Master, I. M., 1973, Fungi associated with the degradation of mangrove Rhizophora mangle L.) leaves in South Florida, in: Estuarine Microbial Ecology (L. H. Stevenson, R. R. Colwell, eds.), pp. 455–465, University of South Carolina Press, Columbia, S.C.

    Google Scholar 

  • Fenchel, T., 1968, The ecology of marine microbenthos. II. The food of marine benthic ciliates, Ophelia 5: 73.

    Google Scholar 

  • Fenchel, T., 1969, The ecology of marine microbenthos. IV. Structure and function of the benthic ecosystem, its chemical and physical factors and the microfauna communities with special reference to the ciliated protozoa, Ophelia 6: 1.

    Google Scholar 

  • Fenchel, T., 1970, Studies on the decomposition of organic detritus derived from the turtle grass Thalassia testudinum, Limnol. Oceanogr. 15: 14.

    Google Scholar 

  • Fenchel, T., 1972, Aspects of decomposer food chains in marine benthos, Verh. Dtsch. Zool. Ges. 65 Jahresversamml. 14: 14.

    Google Scholar 

  • Fenchel, T., 1973, Aspects of the decomposition of sea-grasses, International Seagrass Workshop, Leiden, Netherlands.

    Google Scholar 

  • Fenchel, T., 1975, The quantitative importance of the benthic microflora of an arctic tundra pond, Hydrobiologia 46: 445.

    Google Scholar 

  • Fenchel, T., 1977, The significance of bacterivorous protozoa in the microbial community of detrital particles, in: Freshwater Microbial Communities, 2nd Ed. ( J. Cairns, ed.), Garland Publishing, Inc., New York.

    Google Scholar 

  • Fenchel, T., Harrison, P., 1976, The significance of bacterial grazing and mineral cycling for the decomposition of particulate detritus, in The Role of Terrestrial and Aquatic Organisms in Decomposition Processes ( J. M. Anderson, ed.), pp. 285–299, Blackwell Scientific, Oxford.

    Google Scholar 

  • Fenchel, T. M., Riedl, R. J., 1970, The sulfide system: A new biotic community underneath the oxidized layer of marine sand bottoms, Mar. Biol. 7: 255.

    CAS  Google Scholar 

  • Fenchel, T., Kofoed, L. H., Lappalainen, A., 1975, Particle size-selection of two deposit feeders: The amphipod Corophium volutator and the prosobranch Hydrobia ulvae, Mar.

    Google Scholar 

  • feeders: The amphipod Corophium volutator and the prosobranch Hydrobia ulvae, Mar. Biol. 30: 119.

    Google Scholar 

  • Field, J. G., 1972, Some observations on the release of dissolved organic carbon by the sea urchin Strongylocentrotus droebachiensis, Limnol. Oceanogr. 17: 759.

    Google Scholar 

  • Fjerdingstad, E. J., 1961, Ultrastructure of the collar of the choanoflagellate Codonosiga botrytis (Ehrenb.), Z. Zellforsch. Mikrosk. Anat. 54: 499.

    PubMed  CAS  Google Scholar 

  • Frankenberg, D., Smith Jr., K. L., 1967, Coprophagy in marine animals, Limnol. Oceanogr. 12: 443.

    Google Scholar 

  • Freeden, F. J. H., 1960, Bacteria as a source of food for black-fly larvae, Nature (London) 187: 963.

    Google Scholar 

  • Giere, O., 1975, Population structure, food relations and ecological role of marine oligochaetes, with special references to meiobenthic species, Mar. Biol. 31: 139.

    Google Scholar 

  • Goering, J. J., 1968, Denitrification in the oxygen minimum layer of the eastern tropical Pacific Ocean, Deep-Sea Res. 15: 157.

    Google Scholar 

  • Goering, J. J., Dugdale, R. C, 1966a, Denitrification rates in an island bay in the equatorial Pacific Ocean, Science 154: 505.

    PubMed  CAS  Google Scholar 

  • Goering, J. J., Dugdale, V. A., 1966b, Estimates of the rates of denitrification in a subarctic lake, Limnol. Oceanogr. 11: 113.

    CAS  Google Scholar 

  • Goering, J. J., Pamatmat, M. M., 1971, Denitrification in sediments of the sea off Peru, Invest. Pesq. 35: 233.

    CAS  Google Scholar 

  • Goldhaber, M. B., and Kaplan, I. R., 1974, The sulfur cycle, in: The Sea ( E. D. Goldberg, ed.), pp. 569–655, John Wiley and Sons, New York.

    Google Scholar 

  • Golterman, H. L., 1972, The role of phytoplankton in detritus formation, Mem. Ist. Ital. Idrobiol., Suppl. 29: 89.

    CAS  Google Scholar 

  • Gordon, G. C., Robinson, G. G. C., Hendzel, L. L., and Gillespie, D. C., 1973, A relationship between heterotrophic utilization of organic acids and bacterial populations in West Blue Lake, Manitoba, Limnol. Oceanogr. 18: 264.

    Google Scholar 

  • Gosselink, J. G., and Kirby, C. J., 1974, Decomposition of salt marsh grass, Spartina alterniflora Loisel, Limnol. Oceanogr. 19: 825.

    Google Scholar 

  • Gray, C. T., and Gest, H., 1965, Biological formation of molecular hydrogen, Science 148: 186.

    PubMed  CAS  Google Scholar 

  • Hall, K. S., Kleiber, P. M., and Yesaki, I., 1972, Heterotrophic uptake of organic solutes by microorganisms in the sediment, Mem. 1st. Ital. Idrobiol., Suppl. 29: 441.

    CAS  Google Scholar 

  • Hargrave, B. T., 1970a, The utilization of benthic microflora by Hyalella azteca (Amphipoda), J. Anim. Ecol. 9: 427.

    Google Scholar 

  • Hargrave, B. T., 1970b, The effect of a deposit-feeding amphipod on the metabolism of benthic microflora, Limnol. Oceanogr. 15: 21.

    Google Scholar 

  • Hargrave, B. T., 1971, An energy budget for a deposit-feeding amphipod, Limnol. Oceanogr. 16: 99.

    Google Scholar 

  • Hargrave, B. T., 1972, Aerobic decomposition of sediment and detritus as a function of particle surface area and organic content, Limnol. Oceanogr. 7: 583.

    Google Scholar 

  • Harrison, P. G., and Mann, K. H., 1975a, Chemical changes during the seasonal cycle of growth and decay in eelgrass (Zostera marina) on the Atlantic coast of Canada, J. Fish. Res. Board Can. 32: 615.

    CAS  Google Scholar 

  • Harrison, P. G., and Mann, K. H., 1975b, Detritus formation from eelgrass (Zostera marina L.): The relative effects of fragmentation, leaching, and decay, Limnol. Oceanogr. 20: 924.

    CAS  Google Scholar 

  • Hemmingsen, A. M., 1960, Energy metabolism as related to body size and respiratory surfaces, and its evolution, Rep. Steno. Hosp., Copenhagen 9: 1.

    Google Scholar 

  • Hobbie, J. E., 1967, Glucose and acetate in freshwater: Concentrations and turnover rates, in: Chemical Environment in the Aquatic Habitat ( H. L. Golterman and R. S. Clymo, eds.), pp. 245–251, N. V. Noord-Hollandsche Uitgevers Maatschappij, Amsterdam.

    Google Scholar 

  • Hobbie, J. E., 1971, Heterotrophic bacteria in aquatic ecosystems; some results of studies with organic radioisotopes, in: The Structure and Function of Freshwater Microbial Communities (J. Cairns Jr., ed.), pp. 181–194, Research Division Monograph 3, Virgina Polytechnic Institute and State University, Blacksbury, Virginia.

    Google Scholar 

  • Hobbie, J. E., and Crawford, C. C., 1969, Respiration corrections for bacterial uptake of dissolved organic compounds in natural water, Limnol. Oceanogr. 14: 528.

    CAS  Google Scholar 

  • Hobble, J. E., and Wright, R. T., 1965, Competition between planktonic bacteria and algae for organic solutes, Mem. 1st. Ital. Idrobiol., Suppl. 18: 175.

    Google Scholar 

  • Hobbie, J. E., Holm-Hansen, O., Packard, T. T., Pomeroy, L. R., Sheldon, R. W., Thomas, J. P., and Wiebe, W. J., 1972, A study of the distribution and activity of microorganisms in ocean water, Limnol Oceanogr. 17: 544.

    Google Scholar 

  • Hungate, R. E., 1966, The Rumen and its Microbes, Academic Press, New York.

    Google Scholar 

  • Hutchinson, G. E., 1957, A Treatise on Limnology, Vol. I, Geography, Physics and Chemistry, John Wiley and Sons, New York.

    Google Scholar 

  • Hylleberg Kristensen, J., 1972, Carbohydrases of some marine invertebrates with notes on their food and on the natural occurrence of the carbohydrates studied, Mar. Biol. 14: 130.

    Google Scholar 

  • Hylleberg, J., 1975, Selective feeding by Abarenicola pacifica with notes on Abarenicola vagabunda and a concept of gardening in lugworms, Ophelia 14: 113.

    Google Scholar 

  • Hylleberg, J., Gallucci, V. F., 1975, Selectivity in feeding by the deposit-feeding bivalve Macoma nasuta, Mar. Biol. 32: 167.

    Google Scholar 

  • Hynes, H. B. N., and Kaushik, N. K., 1969, The relationship between dissolved nutrient salts and protein production in submerged autumnal leaves, Verh. Int. Verein. Limnol. 17: 95.

    Google Scholar 

  • Ivanov, M. V., 1968, Microbiological Processes in the Formation of Sulfur Deposits, Israel Program for Scientific Translations, Jerusalem.

    Google Scholar 

  • Jannasch, H. W., Pritchard, P. H., 1972, The role of inert particulate matter in the activity of aquatic microorganisms, Mem. Ist. Ital. IdrobioL, Suppl. 29: 289.

    CAS  Google Scholar 

  • Javornický, P., Prokesová, V., 1963, The influence of protozoa and bacteria upon the oxidation of organic substances in water, Int. Rev. Gesamter Hydrobiol. 48: 335.

    Google Scholar 

  • Jeris, J. S., and McCarty, P. L., 1965, The biochemistry of methane fermentation using 14C tracers, J. Wat. Pollut. Control Fed. 37: 178.

    CAS  Google Scholar 

  • Johannes, R. E., 1965, Influence of marine protozoa on nutrient regeneration, Limnol Oceanogr. 10: 434.

    Google Scholar 

  • Johannes, R. E., 1968, Nutrient regeneration in lakes and oceans, Adv. Microbiol. Sea 1: 203.

    CAS  Google Scholar 

  • Johannes, R. E., Satomi, M., 1967, Measuring organic matter retained by aquatic invertebrates, J. Fish. Res. Board Can. 24: 2467.

    CAS  Google Scholar 

  • Jørgensen, B. B., Cohen, Y., 1977, Solar Lake ( Sinai). V. The sulfur cycle of the benthic mats, Limnol. Oceanogr. (in press).

    Google Scholar 

  • Jørgensen, B. B., Fenchel, T., 1974, The sulfur cycle of a marine sediment model system, Mar. Biol. 24: 189.

    Google Scholar 

  • Jørgensen, C. B., 1966, Biology of Suspension Feeding, Pergamon Press, Oxford.

    Google Scholar 

  • Jørgensen, C. B., 1976, August Pütter, August Krogh, and modern ideas on the use of dissolved organic matter in aquatic environments, Biol. Rev. 51: 291.

    Google Scholar 

  • Kaplan, I. R. (ed.), 1974, Natural Gases in Marine Sediments, Plenum Press, New York.

    Google Scholar 

  • Kaushik, N. K., Hynes, H. B. N., 1968, Experimental study of the role of autumn-shed leaves in aquatic environments, J. Ecol. 56: 229.

    Google Scholar 

  • Kaushik, N. K., Hynes, H. B. N., 1971, The fate of the dead leaves that fall into streams. Arch. Hydrobiol. 68: 465.

    Google Scholar 

  • Keeney, D. R., 1972, The fate of nitrogen in aquatic ecosystems, Eutrophication Information Program, University of Wisconsin, Literature Review No. 3.

    Google Scholar 

  • Kofoed, L. H., 1975a, The feeding biology of Hydrobia ventrosa (Montagu). I. The assimilation of different components of the food, J. Exp. Mar. Biol. Ecol. 19: 233.

    Google Scholar 

  • Kofoed, L. H., 1975b, The feeding biology of Hydrobia ventrosa (Montagu). II. Allocation of the components of the carbon-budget and the significance of the secretion of dissolved organic material, J. Exp. Mar. Biol. Ecol. 19: 243.

    CAS  Google Scholar 

  • Kondratjeva, E. N., 1965, Photosynthetic Bacteria, Israel Program for Scientific Translations, Jerusalem.

    Google Scholar 

  • Krause, H. R., 1964, Zur Chemie und Biochemie der Zersetzung von Süsswasserorganismen, unter besonderer Berücksichtigung des Abbaues der organischen Phosphorkomponenten, Verh. Int. Verein. Limnol 15: 549.

    CAS  Google Scholar 

  • Kuenen, J. G., 1975, Colourless sulfur bacteria and their role in the sulfur cycle, Plant Soil 43: 49.

    CAS  Google Scholar 

  • Lasker, R., Giese, A. C, 1954, Nutrition of the sea urchin, Strongylocentrotus purpuratus, Biol. Bull. 106: 328.

    CAS  Google Scholar 

  • Lee, J. J., McEnery, M. Pierce, S., Freudenthal, H. D., Muller, W. A., 1966, Tracer experiments in feeding littoral foraminifera, J. Protozool 13: 659.

    Google Scholar 

  • LeGall, J., Postgate, J. R., 1973, The physiology of sulphate-reducing bacteria, Adv. Microb. Physiol. 10: 81.

    Google Scholar 

  • Lewin, J. C., Lewin, R. A., 1960, Culture and nutrition of some apochloritic diatoms of the genus Pitzschia, J. Gen. Microbiol. 6: 127.

    CAS  Google Scholar 

  • Litchfield, C. D., 1973, Interactions of amino acids and marine bacteria, in: Estuarine Microbial Ecology (L. H. Stevenson, R. R. Colwell, eds.), pp. 145–168, University of South Carolina Press, Columbia, S.C.

    Google Scholar 

  • Mann, K. H., 1972, Macrophyte production and detritus food chains in coastal waters, Mem. 1st. Ital. IdrobioL, Suppl. 29: 353.

    Google Scholar 

  • Manuvilova, E. F., 1958, The question of the role of bacterial numbers in the development of Cladocera in natural conditions, Dokl Biol Sci. Sect. 120: 438.

    Google Scholar 

  • Martens, C. S., Berner, R. A., 1974, Methane production in the interstitial waters of sulfate depleted marine sediments, Science 185: 1167.

    PubMed  CAS  Google Scholar 

  • McCarty, P. L., 1971, Energetics and kinetics of anaerobic treatment, in: Anaerobic Biological Treatment Processes ( F. G. Pohland, ed.), pp. 91–107, American Chemical Society, Washington.

    Google Scholar 

  • McKinney, R. E., 1971, Microbial relationships in biological wastewater treatment systems, in: The Structure and Function of Freshwater Microbial Communities (J. Cairns Jr., ed.), pp. 165–179, Research Division Monograph 3, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.

    Google Scholar 

  • McRoy, C. P., 1970, Standing stocks and other features of eelgrass (Zostera marina) populations on the coast of Alaska, J. Fish. Res. Board Can. 27: 1811.

    Google Scholar 

  • Mechalas, B. J., 1974, Biogenic gas production, in: Natural Gases in Marine Sediments ( I. R. Kaplan, ed.), pp. 11–25, Plenum Press, New York.

    Google Scholar 

  • Melchiorri- Santolini, U., Hopton, J. W. (eds.), 1972, Detritus and its Role in Aquatic Ecosystems, Proceedings of an IBP-UNESCO symposium, Pallanza, 1972, Mem. Ist. Ital. Idrobiol., Suppl. 29.

    Google Scholar 

  • Menzies, R. J., Zaneveld, J. S., Pratt, R. M., 1967, Transported turtle grass as a source of organic enrichment of abyssal sediments off North Carolina, Deep-Sea Res. 14: 111.

    Google Scholar 

  • Meyers, S. P., and Hopper, B. E., 1973, Nematological-microbial interrelationships and estuarine biodegradative processes, in: Estuarine Microbial Ecology (L. H. Stevenson and R. R. Colwell, eds.), pp. 483–489, University of South Carolina Press, Columbia, S.C.

    Google Scholar 

  • Newell, R., 1965, The role of detritus in the nutrition of two marine deposit feeders, the prosobranch Hydrobia ulvae and the bivalve Macoma balthica prosobranch Hydrobia ulvae and the bivalve Macoma balthica, Proc. Zool. Soc. London 144: 25.

    Google Scholar 

  • Newell, S. Y., 1973, Succession and role of fungi in the degradation of red mangrove seedlings in: Estuarine Microbial Ecology (L. H. Stevenson, R. R. Colwell, eds.), pp. 467–480, University of South Carolina Press, Columbia, S.C.

    Google Scholar 

  • Nielsen, B. O., 1966, Carbohydrases of some wrack invertebrates, Natura Jutl. 12: 141.

    Google Scholar 

  • Odum, E. P., and de la Cruz, A. A., 1967, Particulate detritus in a Georgia salt marsh-estuarine ecosystem, in: Estuaries (G. H. Lauff, ed.), pp. 383–388, Amer. Assoc. Adv. Sci.

    Google Scholar 

  • estuarine ecosystem, in: Estuaries (G. H. Lauff, ed.), pp. 383–388, Amer. Assoc. Adv. Sci. Publ, 83.

    Google Scholar 

  • Odum, H. T., 1957, Trophic structure and productivity of Silver Springs, Florida, Ecol. Monogr.. 27: 55.

    Google Scholar 

  • Odum, W. E., 1970, Utilization of the direct grazing and plant detritus food chains by the striped mullet Mugil cephalus, in: Marine Food Chains (J. H. Steele, ed.), pp. 222–240, Oliver and Boyd, Edinburgh.

    Google Scholar 

  • Ogura, N., 1975, Further studies on decomposition of dissolved organic matter in coastal seawater Mar. Biol. 31: 101.

    CAS  Google Scholar 

  • Ohle, W., 1958, Die Stoffwechseldynamik der Seen in Abhängigkeit von der Gasausscheiding ihres Schlammes, Vom Wasser 25: 127.

    CAS  Google Scholar 

  • Oláb, J., 1972, Leaching, colonization and stabilization during detritus formation, Mem. 1st. Ital IdrobioL, Suppl. 29: 105.

    Google Scholar 

  • Oppenheimer, C. H. (ed.), 1963, Symposium on Marine Microbiology, Charles C. Thomas, Springfield, Ill.

    Google Scholar 

  • Otsuki, A., Hanya, T., 1972, Production of dissolved organic matter from dead green algal cells. I. Aerobic microbial decomposition, Limnol. Oceanogr. 17: 248.

    CAS  Google Scholar 

  • Otsuki, A., Wetzel, R. G., 1974, Release of dissolved organic matter by autolysis of a submerged macrophyte submerged macrophyte, Scirpus subterminalis, Limnol. Oceanogr. 19: 842.

    Google Scholar 

  • Overbeck, J., 1972, Eksperimentelle Untersuchungen zur Bestimmung der bakteriellen Produktion im See, Verh. Int. Ver. Limnol. 18: 176.

    Google Scholar 

  • Overbeck, J., Daley, R. J., 1973, Some precautionary comments on the Romanenko technique for estimating heterotrophic bacterial production, Bull. Ecol. Res. Comm. Stockholm) 17: 342.

    Google Scholar 

  • Packard, T. T., Healy, M. L., and Richards, F. A., 1971, Vertical distribution of the activity of the respiratory electron transport system in marine plankton, Limnol. Oceanogr. 16: 60.

    Google Scholar 

  • Paerl, H. W., 1974, Bacterial uptake of dissolved organic matter in relation to detrital aggregation in marine and freshwater systems, Limnol. Oceanogr. 19: 966.

    Google Scholar 

  • Pamatmat, M. M., Bhagwat, A. M., 1973, Anaerobic metabolism in Lake Washington sediments, Limnol. Oceanogr. 18: 611.

    CAS  Google Scholar 

  • Parsons, T. R., 1963, Suspended organic matter in sea water, in: Progress in Oceanography (M. Sears, ed.), pp. 205–239, Vol. 1, Pergamon Press, New York.

    Google Scholar 

  • Payne, W. J., 1973, Gas chromatographic analysis of denitrification by marine organisms, in: Estuarine Microbial Ecology (L. H. Stevenson, R. R. Colwell, eds.), pp. 53–71, University of South Carolina Press, Columbia, S.C.

    Google Scholar 

  • Perkins, E. J., 1958, The food relationships of the microbenthos, with particular reference to that found at Whitstable, Kent, Ann. Mag. Nat. Hist., Ser. 13: 64.

    Google Scholar 

  • Petersen, R. C., Cummins, K. W., 1974, Leaf processing in a woodland stream, Freshwater Biol. 4: 343.

    Google Scholar 

  • Pfennig, N., 1967, Photosynthetic bacteria, Annu. Rev. Microbiol. 21: 285.

    PubMed  CAS  Google Scholar 

  • Pfennig, N., 1975, The phototrophic bacteria and their role in the sulfur cycle, Plant Soil 43: 1.

    CAS  Google Scholar 

  • Pomeroy, L. R., 1970, The strategy of mineral cycling, Annu. Rev. Ecol. Syst. 1: 171.

    Google Scholar 

  • Prim, P., Lawrence, J. M., 1975, Utilization of marine plants and their constituents by bacteria isolated from the gut of echinoids (Echinodermata), Mar. Biol. 33: 167.

    Google Scholar 

  • Randall, J. E., 1965, Grazing effect on sea grasses by herbivorous reef fishes in the West Indies, Ecology 46: 255.

    Google Scholar 

  • Reeburgh, W. S., 1969, Observations of gases in Chesapeake Bay sediments, Limnol. Oceanogr. 14: 368.

    CAS  Google Scholar 

  • Reichardt, W., Simon, M., 1972, Die Mettma-ein Gebirgsbach als Brauereivorfluter. Mikrobiologische Untersuchungen entlang eines Abwasser-Substratgradienten, Arch Hydrobiol., Suppl. 42: 125.

    Google Scholar 

  • Reilly, S. M., 1964, Importance of adsorbents in the nutrition of Paramecium caudatum, J. Protozool 11: 109.

    CAS  Google Scholar 

  • Rhee, G. -Y., 1972, Competition between an alga and an aquatic bacterium for phosphate, Limnol. Oceanogr. 17: 505.

    CAS  Google Scholar 

  • Richards, F. A., 1965, Anoxic basins and fjords, in: Chemical Oceanography ( J. P. Riley and G. Skirrow, eds.), pp. 611–645, Academic Press, New York.

    Google Scholar 

  • Riley, G. A., 1970, Particulate organic matter in sea water, Adv. Mar. Biol 8: 1.

    Google Scholar 

  • Rodina, A. G., 1972, Methods in Aquatic Microbiology, Butterworths, London.

    Google Scholar 

  • Rosswall, T. (ed.), 1973, Modern Methods in the Study of Microbial Ecology, Bull Ecol. Res. Comm. (Stockholm) 17.

    Google Scholar 

  • Rudd, J. W. M., Hamilton, R. D., and Campbell, N. E. R., 1974, Measurement of microbial oxidation of methane in lake water, Limnol. Oceanogr. 19: 519.

    CAS  Google Scholar 

  • Russell-Hunter, W. D., 1970, Aquatic Productivity: An Introduction to Some Basic Aspects of Biological Oceanography and Limnology, Macmillan, London.

    Google Scholar 

  • Saunders, G. W., 1972, The transformation of artificial detritus in lake water, Mem. Ist. Ital. Idrobiol, Suppl. 29: 261.

    Google Scholar 

  • Seki, H., 1972, The role of microorganisms in the marine food chain with reference to organic aggregate, Mem. Ist. Ital. Idrobiol, Suppl. 29: 245.

    Google Scholar 

  • Selwyn, S. C, Postgate, J. R., 1959, A search for the rubentschikii group of Desulphovibrio, Antonie van Leeuwenhoek J. Microbiol Serol 25: 465.

    CAS  Google Scholar 

  • Sleigh, M., 1973, The Biology of Protozoa, Arnold, London.

    Google Scholar 

  • Smith, P. H., Mah, R. A., 1966, Kinetics of acetate metabolism during sludge digestion, Appl. Microbiol. 14: 368.

    PubMed  CAS  Google Scholar 

  • Sorokin, Yu. I., 1962, Experimental investigation of bacterial sulfate reduction in the Black Sea using 35S, Mikrobiologiya 31: 329.

    Google Scholar 

  • Sorokin, Yu. L, 1964, On the trophic role of chemosynthesis in water bodies, Int. Rev. Gesamter Hydrobiol. 49: 307.

    Google Scholar 

  • Sorokin, Yu. I., 1965, On the trophic role of chemosynthesis and bacterial biosynthesis in water bodies, Mem. Ist. Ital. Idrobiol. 18: 187.

    Google Scholar 

  • Sorokin, Yu. I., 1972, The bacterial population and the process of hydrogen sulphide oxidation in the Black Sea, J. Cons. Cons. Int. Explor. Mer. 34: 423.

    CAS  Google Scholar 

  • Sorokin, Yu. I., Kadota, H., 1972, Microbial Production and Decomposition in Fresh Waters, IBP Handbook No. 23, Blackwell, Oxford.

    Google Scholar 

  • Specter, W. S. (ed.), 1956, Handbook of Biological Data, Saunders, Philadelphia.

    Google Scholar 

  • Steele, J. H., Baird, I. E., 1972, Sedimentation of organic matter in a Scottish sea loch, Mem. Ist. Ital. Idrobiol., Suppl. 29: 73.

    CAS  Google Scholar 

  • Steemann Nielsen, E., 1952, The use of radioactive carbon (14C) for measuring organic production in the sea, J. Cons. Cons. Int. Explor. Mer. 18: 117.

    Google Scholar 

  • Stephens, G. O., 1975, Uptake of naturally occuring primary amines by marine annelids, Biol. Bull. 149: 397.

    PubMed  CAS  Google Scholar 

  • Straarup, B. J., 1970, On the ecology of turbellarians in a sheltered brackish shallow-water bay, Ophelia 7: 185.

    Google Scholar 

  • Stuiver, M. 1967, The sulfur cycle in lake waters during thermal stratification, Geochim. Cosmochim. Acta 31: 2151.

    CAS  Google Scholar 

  • Takahashi, M., Ichimura, S., 1968, Vertical distribution and organic matter production of photosynthetic sulfur bacteria in Japanese lakes, Limnol. Oceanogr. 13: 644.

    Google Scholar 

  • Teal, J. M., 1962, Energy flow in the salt marsh ecosystem of Georgia, Ecology 43: 614.

    Google Scholar 

  • Teal, T. M., Kanwisher, J., 1961, Gas exchange in a Georgia salt marsh, Limnol. Oceanogr. 6: 388.

    Google Scholar 

  • Thane-Fenchel, A., 1968, Distribution and ecology of nonplanktonic brackish water rotifers from Scandinavian waters, Ophelia 5: 273.

    Google Scholar 

  • Tietjen, J. H., Lee, J. J., Rullman, J., Greengart, A., Trompeter, J., 1970, Gnotobiotic culture and physiological ecology of the marine nematode Rhabditis marina Bastian, Limnol. Oceanogr. 15: 535.

    Google Scholar 

  • Toerien, D. F., Hattingh, W. H. J., 1969, Anaerobic digestion. I. The microbiology of anaerobic digestion, Water Res. 3: 385.

    CAS  Google Scholar 

  • Trudinger, P. A., Lambert, I. B., Skyring, G. W., 1972, Biogenic sulfide ores: A feasibility study, Econ. Geol. 67: 1114.

    CAS  Google Scholar 

  • Vaccaro, R. F., Hicks, S. E., Jannasch, H. W., Carey, F. G., 1968, The occurrence and role of glucose in sea water, Limnol. Oceanogr. 13: 356.

    CAS  Google Scholar 

  • Vinogradov, A. P., 1953, The Elementary Composition of Marine Organisms, Sears Foundation for Marine Research, Memoir two, New Haven.

    Google Scholar 

  • Wavre, M., Brinkhurst, R. O., 1971, Interaction between some tubificid oligochaetes and bacteria found in the sediments of Toronto harbour, Ontario, J. Fish. Res. Board Can. 28: 335.

    Google Scholar 

  • Webb, K. L., Johannes, R. E., 1967, Studies of the release of dissolved free amino acids by marine zooplankton, Limnol. Oceanogr. 12: 376.

    CAS  Google Scholar 

  • Wetzel, R. G., Rich, P. H., Miller, M. C, Allen, H. L., 1972, Metabolism of dissolved and particulate detrital carbon in a temperate hard-water lake, Mem. Ist. Ital. Idrobiol., Suppl. 29: 185.

    Google Scholar 

  • Wiegert, R. G., Owen, D. F., 1971, Trophic structure, available resources and population density in terrestrial vs. aquatic ecosystems density in terrestrial vs. aquatic ecosystems, J. Theor. Biol. 30: 69.

    PubMed  CAS  Google Scholar 

  • Williams, P. J. le B., 1970, Heterotrophic utilization of dissolved organic compounds in the sea. I. Size distribution of population and relationship between respiration and incorporation of growth substrates, J. Mar. Biol. Assoc. U.K. 50: 859.

    CAS  Google Scholar 

  • Williams, P. J. le B., 1973, The validity of the application of simple kinetic analysis to heterogeneous microbial populations, Limnol. Oceanogr. 18: 159.

    Google Scholar 

  • Wood, E. J. F., 1965, Marine Microbial Ecology, Chapman and Hall, London.

    Google Scholar 

  • Wood, E. J. F., 1967, Microbiology of Oceans and Estuaries, Elsevier, Amsterdam.

    Google Scholar 

  • Wood, E. J. F., Odum, W. E., Zierman, J. C., 1969, Influence of sea grasses on the productivity of coastal lagoons, in: Lagunas Costeras, un Simposio. Mem. Simp. Intern. productivity of coastal lagoons, in: Lagunas Costeras, un Simposio. Mem. Simp. Intern. Lagunas Costeras UNAM-UNESCO, Mexico, D.F., pp. 495–502.

    Google Scholar 

  • Wood, L. W., 1973, Monosaccharide and disaccharide interactions on uptake and catabolism of carbohydrates by mixed microbial communities, in: Estuarine Microbial Ecology ( L. H. Stevenson, R. R. Colwell, eds.), pp. 181–197, University of South Carolina Press, Columbia, S.C.

    Google Scholar 

  • Wright, R. T., 1973, Some difficulties in using 14C-organic solutes to measure heterotrophic bacterial activity, in: Estuarine Microbial Ecology (L. H. Stevenson, R. R. Colwell, eds.), pp. 199–217, University of South Carolina Press, Columbia, S.C.

    Google Scholar 

  • Wright, R. T., Hobbie, J. E., 1965, Uptake of organic solutes in lake water, Limnol Oceanogr. 10: 22.

    CAS  Google Scholar 

  • Wright, R. T., Hobbie, J. E., 1966, Use of glucose and acetate by bacteria and algae in aquatic ecosystems, Ecology 47: 447.

    CAS  Google Scholar 

  • Wright, R. T., Shah, N. M., 1975, The trophic role of glycolic acid in coastal seawater. I. Heterotrophic metabolism in seawater and bacterial cultures, Mar. Biol. 33: 175.

    CAS  Google Scholar 

  • Zeikus, J. G., Weimer, P. J., Nelson, D. R., Daniels, L., 1975, Bacterial methanogenesis: Acetate as a methane precursor in pure culture, Arch. Microbiol. 104: 129.

    CAS  Google Scholar 

  • ZoBell, C. E., 1943, The effect of solid surfaces upon bacterial activity, J. Bacteriol. 46: 39.

    PubMed  CAS  Google Scholar 

  • ZoBell, C. E., and Feltham, C. B., 1937–38, Bacteria as food for certain marine invertebrates, J. Mar. Res. 1: 312.

    Google Scholar 

  • ZoBell, C. E., and Feltham, C. B., 1942, The bacterial flora of a marine mud flat as an ecological factor, Ecology 23: 69.

    Google Scholar 

  • ZoBell, C. E., Grant, C. W., 1943, Bacterial utilization of low concentrations of organic matter, J. Bacteriol. 45: 555.

    PubMed  CAS  Google Scholar 

  • ZoBell, C. E., Landon, W. A., 1937, The bacterial nutrition of the California mussel, Proc. Soc. Exp. Biol Med. N.Y. 36: 607.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Fenchel, T.M., Jørgensen, B.B. (1977). Detritus Food Chains of Aquatic Ecosystems: The Role of Bacteria. In: Alexander, M. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8219-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8219-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8221-2

  • Online ISBN: 978-1-4615-8219-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics