Skip to main content

Root Observations and Measurements at (Transparent) Interfaces with Soil

  • Chapter
Root Methods

Abstract

Glass windows are often installed in rhizotron facilities to observe root growth. The same principle has been applied under field conditions, using “root windows” and “minirhizotrons” (transparent glass or plastic tubes pushed into the soil: Bates 1937), through which roots are observed non-destructively in situ at the interface between the glass and the soil. The possible observations include recording root growth and decay — processes which are difficult to measure otherwise — by still photography or videos, thereby providing time series that reveal the dynamics of root growth. Root researchers also use transparent interfaces when estimating the rooting characteristics of the surrounding bulk soil, such as root length intensity (Lv) and root mass per unit volume of soil (Wv), although this often necessitates a (cumbersome) conversion from 2-D to 3-D. All these methods and tools used to view roots are reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  • Minirhizotron observation tubes: methods and applications for measuring rhizosphere dynamics. ASA Spec Publ 50: 99–108

    Google Scholar 

  • Plant Soil 185: 225–258. Selected papers of the minirhizotron workshop, Sweden 17–20 Sept, 1995

    Google Scholar 

References

  • Andren O, Hansson AC, Vegh K (1993) Barley nutrient uptake, root growth and depth distribution in two soil types in a rhizotron with vertical and horizontal minirhizotrons. Swed J Agric Res 23 (3): 115–126

    CAS  Google Scholar 

  • Bates GH (1937) A device for the observation of root growth in the soil. Nature (Lond) 139: 966–967

    Article  Google Scholar 

  • Belford RK, Henderson FKG (1985) Measurement of the growth of wheat roots using a TV camera system in the field. NATO Adv Study Inst Ser Ser A Life Sci 86: 99–105

    Google Scholar 

  • Belgrand M, Dreyer E, Joannes H, Velter C, Scuiller I (1987) A semi-automated data processing system for root growth analysis: application to a growing oak seedling. Tree Physiol 3: 393–404

    Article  PubMed  Google Scholar 

  • Beyrouty CA, Wells BR, Norman RJ, Marvel JN, Pillow JA Jr (1987) Characterization of rice roots using a minirhizotron technique. Minirhizotron observation tubes: Methods and applications for measuring rhizosphere dynamics. ASA Spec Publ 50: 99–108

    Google Scholar 

  • Blaker NS, MacDonald JD (1986) The role of salinity in the development of Phytophthora root rot of citrus. Phytopathology 76: 970–975

    Article  Google Scholar 

  • Bland WL (1993) Cotton and soybean root system growth in 3 soil temperature regimes. Agron J 85: 906–911

    Article  Google Scholar 

  • Bland WL, Dugas WA (1988) Root length density from minirhizotron observations. Agron J 80: 2, 271–275

    Article  Google Scholar 

  • Böhm, W (1979) Methods of studying root systems. Ecological Studies 33. Springer, Berlin Heidelberg New York, 188 pp

    Google Scholar 

  • Box JE, Smucker AJM, Ritchie JT (1989) Minirhizotron installation techniques for investigating root responses to drought and oxygen stresses. Soil Sci Soc Am J 53: 115–118

    Article  Google Scholar 

  • Bragg PL, Govi G, Cannell RQ (1983) A comparison of methods, included angled and vertical minirhizotrons, for studying root growth and distribution in a spring oat crop. Plant Soil 73: 435–440

    Article  Google Scholar 

  • Brown DA (1984) Characterization of soybean root distribution. Arkansas Farm Res 33: 3

    Google Scholar 

  • Brown DA, Upchurch DR (1987) Minirhizotrons: a summary of methods and instruments in current use. Minirhizotron observation tubes: Methods and applications for measuring rhizosphere dynamics. ASA Spec Publ 50: 15–30

    Google Scholar 

  • Bruns TD (1995) Thoughts on the processes that maintain local species diversity of ectomycorrhizal fungi. Plant Soil 170: 63–73

    Article  CAS  Google Scholar 

  • Buckland ST, Campbell CD, Mackie-Dawson LA, Horgan GW, Duff EI (1993) A method for counting roots observed in minirhizotrons and their theoretical conversion to root length density. Plant Soil 153 (1): 1–9

    Article  Google Scholar 

  • Campbell CD, Mackie-Dawson LA, Reid EJ, Pratt SM, Duff EI, Buckland ST (1994) Manual recording of minirhizotron data and its application to study the effect of herbicide and nitrogen fertiliser on tree and pasture root growth in a silvopastoral system. Agrofor Syst 26 (2): 75–87

    Article  Google Scholar 

  • Cheng W, Coleman DC, Box JE Jr (1990) Root dynamics, production and distribution in agroecosystems on the Georgia Piedmont using minirhizotrons. J Appl Ecol 27: 2, 592–604

    Article  Google Scholar 

  • Cheng W, Coleman DC, Box JE Jr (1991) Measuring root turnover using the minirhizotron technique. Agricult Ecosyst Environ 34: 261–267

    Article  Google Scholar 

  • Christakos G (1992) Random field models in earth sciences. Academic Press, New York

    Google Scholar 

  • Colin-Belgrand M, Joannes H, Dreyer E, Pages L (1989) A new data processing system for root growth and ramification analysis: description of methods. Ann Sci For 46 Suppl 305–309

    Google Scholar 

  • De Ruijter F, Veen B, Van Oijen M (1996) A comparison of soil core sampling and minirhizotrons to quantify root development of field-grown potatoes. Plant Soil 182 (2): 301–312

    Google Scholar 

  • Dinkelaker B, Marschner H (1992) In vivo demonstration of acid phosphatase activity in the rhizosphere of soil-grown plants. Plant Soil 144: 199–205

    Article  CAS  Google Scholar 

  • Dinkelaker B, Hahn G, Marschner H (1993) Non-destructive methods for demonstrating chemical changes in the rhizosphere. II. Application of methods. Plant Soil 155 /156: 71–74

    Article  Google Scholar 

  • Dubach M, Russelle MP (1995) Reducing the cost of estimating root turnover with horizontally installed minirhizotrons. Agron J 87 (2): 258–263

    Article  Google Scholar 

  • Durrant MJ, Love BJG, Messern AB, Draycott AP (1973) Growth of crop roots in relation to soil moisture extraction. Ann Appl Biol 74: 387–394

    Article  Google Scholar 

  • Dyer D, Brown DA (1983) Relationship of fluorescent intensity on ion uptake and elongation rate of soybean roots. Plant Soil 72: 127–134

    Article  CAS  Google Scholar 

  • Egli S, Kälin I (1991) Root window technique for in vivo observation of ectomycorrhiza on forest trees. In: Norris JR, Read DJ, Varma AK (eds) Techniques for the study of mycorrhiza. Methods in microbiology, vol 23. Academic Press, London, pp 423–433

    Chapter  Google Scholar 

  • Enslin WR, Pregitzer KS, Hendrick RL (1994) MSU ROOTs: a PC-based program to quantify plant roots. Center for Remote Sensing, Michigan State Univerity, East Lansing

    Google Scholar 

  • Fahey TJ, Hughes JW (1994) Fine root dynamics in a northern hardwood forest ecosystem, Hubbard Brook Experimental Forest, NH. J Ecol 82: 533–548

    Google Scholar 

  • Ferguson JC, Smucker AJM (1989) Modifications of the minirhizotron video camera system for measuring spatial and temporal root dynamics. Soil Sci Soc Am J 53: 1601–1605

    Article  Google Scholar 

  • Fernandez OA, Caldwell MM (1975) Phenology and dynamics of root growth of three cool semi-desert shrubs under field conditions. J Ecol 63: 703–714

    Article  Google Scholar 

  • Fordham R (1972) Observations on the growth of roots and shoots of tea (Camellia sinensis, L.) in southern Malawi. J Hortic Sci 47: 221–229

    Google Scholar 

  • Gijsman AJ, Floris J, Van Noordwijk M, Brouwer M (1991) An inflatable minirhizotron system for root observations with improved soil/tube contact. Plant Soil 134 (2): 261–270

    Article  Google Scholar 

  • Glinski DS, Karnok KJ, Carrow RN (1993) Comparison of reporting methods for root growth data from transparent-interface measurements. Crop Sci 33: 310–314

    Article  Google Scholar 

  • Göttlein A, Hell U, Blasek R (1996) A system for microscale tensiometry and lysimetry. Geo-derma 69: 147–156

    Article  Google Scholar 

  • Goulard M (1989) Inference in a coregionalization model. In: Armstrong M (ed) Geostatistics, vol 1. Kluwer, Dordrecht, pp 397–408

    Google Scholar 

  • Goulard M, Voltz M (1992) Linear coregionalization model: tools for estimation and choice of cross-variogram matrix. Math Geol 24 (3): 269–286

    Article  Google Scholar 

  • Gregory PJ (1979) A periscope method for observing root growth and distribution in field soil. J Exp Bot 30: 205–214

    Article  Google Scholar 

  • Hahn G, Marschner H (1998) Effect of acid irrigation and liming on root growth of Norway spruce. Plant Soil 199: 11–22

    Article  CAS  Google Scholar 

  • Hansson AC, Andren O (1987) Root dynamics in barley, lucerne and meadow fescue investigated with a minirhizotron technique. Plant Soil 103: 33–38

    Article  Google Scholar 

  • Hansson AC, Steen E, Andren O (1992) Root growth of daily irrigated and fertilized barley. Investigation with ingrowth cores, soil cores and minirhizotrons. Swed J Agric Res 22 (4): 141–152

    Google Scholar 

  • Häussling M, Leisen E, Marschner H, Römheld V (1985) An improved method for nondestructive measurements of the pH at the root-soil interface (rhizosphere). J Plant Physiol 117: 371–375

    Article  PubMed  Google Scholar 

  • Häussling M, George E, Lorenz K, Kreutzer K, Marschner H (1991) Einfluss von saurer Beregnung auf Wachstum von Langwurzeln and pH-Werte in der Rhizosphäre von Fichten im Versuch Höglwald. In: Kreutzer K, Göttlein A (eds) Ökosystem-forschung Höglwald: Beiträge zur Wirkung von saurer Beregnung and Kalkung in einem Fichtenbestand. Forstwissenschaftliche Forschungen, Heft 39. Parey, Hamburg, pp 44–48

    Google Scholar 

  • Hayes DC, Seastedt TR (1987) Root dynamics of tallgrass prairie in wet and dry years. Can J Bot 65: 787–791

    Article  Google Scholar 

  • Head GC (1966) Estimating seasonal changes in the quantity of white unsuberized root on fruit trees. J Hortic Sci 41: 197–206

    Google Scholar 

  • Heeraman DA, Juma NG (1993) A comparison of minirhizotron, core and monolith methods for quantifying barley (Hordeum vulgare L.) and faba bean (Vicia faba L.) root distribution. Plant Soil 148: 29–41

    Article  Google Scholar 

  • Hendrick RL, Pregitzer KS (1992a) Spatial variation in tree root distribution and growth associated with minirhizotrons. Plant Soil 143 (2): 283–288

    Article  Google Scholar 

  • Hendrick RL, Pregitzer KS (1992b) The demography of fine roots in a northern hardwood forest. Ecology 73 (3): 1094–1104

    Article  Google Scholar 

  • Hendrick RL, Pregitzer KS (1993) Patterns of fine root mortality in two sugar maple forests. Nature 361: 59–61

    Article  Google Scholar 

  • Horgan GW, Buckland ST, Mackie-Dawson LA (1993) Estimating three-dimensional line process densities from tube counts. Biometrics 49 (3): 899–906

    Article  Google Scholar 

  • Huck MG, Taylor HM (1980) The rhizotron as a tool for root research. Adv Agron 35: 1–35

    Article  Google Scholar 

  • Hummel JW, Levan MA, Sudduth KA (1989) Minirhizotron installation in heavy soils. Trans ASAE 32: 3, 770–776; Presented as ASAE Paper No 87–1524

    Google Scholar 

  • Itoh S (1985) In situ measurement of rooting density by micro-rhizotron. Soil Sci Plant Nutr 31 (4): 653–656

    Article  Google Scholar 

  • Keyes MR, Grier CC (1981) Above-and below-ground net production in 40-year-old Douglas fir stands on low and high productivity sites. Can J For Res 11: 599–605

    Article  Google Scholar 

  • Klepper B, Kaspar TC (1994) Rhizotrons: their development and use in agricultural research. Agron J 86: 745–753

    Article  Google Scholar 

  • Kloeppel BD, Gower ST (1995) Construction and installation of acrylic minirhizotron tubes in forest ecosystems. Soil Sci Soc Am J 59 (1): 241–243

    Article  CAS  Google Scholar 

  • Kolesnikov VA (1971) The root system of fruit plants. Mir Publishers, Moscow, 269 pp

    Google Scholar 

  • Kosola KR, Eissenstat DM (1994) The fate of surface roots of citrus seedlings in dry soil. J Exp Bot 45: 1639–1645

    Article  CAS  Google Scholar 

  • Larigauderie A, Richards JH (1994) Root proliferation characteristics of seven perennial arid-land grasses in nutrient-enriched microsites. Oecologia 99: 102–111

    Article  Google Scholar 

  • LeNoble ME, Blevins DG, Miles RJ (1996) Prevention of aluminium toxicity with supplemental boron. II. Stimulation of root growth in an acidic, high-aluminium subsoil. Plant Cell Environ 19: 1143–1148

    Google Scholar 

  • Levan MA,Ycas JW, Hummel JW, Taylor HM (1987) Light leak effects on near-surface soyabean rooting observed with minirhizotrons. Minirhizotron observation tubes: Methods and applications for measuring rhizosphere dynamics. ASA Spec Publ 50: 89–98

    Google Scholar 

  • Mackie-Dawson LA, Atkinson D (1991) Methodology for the study of roots in field experiments and the interpretation of results. In: Atkinson D (ed) Plant root growth: an ecological perspective. Blackwell, Oxford, pp 25–47

    Google Scholar 

  • Mackie-Dawson LA, Buckland ST, Duff EI, Pratt SM, Reid EJ, Millard P (1989) The use of in situ techniques for the investigation of root growth. Asp Appl Biol 22: 349–356

    Google Scholar 

  • Majdi H, Nylund JE (1996) Does liquid fertilization affect fine root dynamics and life span of mycorrhizal short roots? Plant Soil 185: 305–309

    Article  CAS  Google Scholar 

  • Majdi H, Smucker AJM, Persson H (1992) A comparison between minirhizotron and monolith sampling methods for measuring root growth of maize (Zea mays L.). Plant Soil 147: 127–134

    Article  Google Scholar 

  • McDougall WB (1916) The growth of forest tree roots. Am J Bot 3: 384–392

    Article  Google Scholar 

  • McMichael BL, Taylor HM (1987) Applications and limitations of rhizotrons and minirhizotrons. In: Minirhizotron Observation Tubes: Methods and applications for measuring rhizosphere dynamics. ASA Spec Publ 50: 1–13

    Google Scholar 

  • McMichael BL, Upchurch DR, Taylor HM (1992) Transparent wall techniques for studying root growth and function in soil. J Plant Nutr 15: 753–762

    Article  Google Scholar 

  • Meisner CA (1991) Peanut roots, shoot, and yield under water stress. Diss Abstr Int B Sci Eng 52: 1, 3B–4B; Abstr Thesis, University of Georgia, USA, 1990, 125 pp

    Google Scholar 

  • Melhuish FM, Lang ARG (1968) Quantitative studies of roots in soil. I. Length and diameters of cotton roots in a clay-loam soil by analysis of surface-ground blocks of resin-impregnated soil. Soil Sci 106: 16–22

    Google Scholar 

  • Merrill SD (1992) Pressurized-wall minirhizotron for field observation of root growth dynamics. Agron J 84 (4): 755–758

    Article  Google Scholar 

  • Merrill SD, Upchurch DR (1994) Converting root numbers observed at minirhizotrons to equivalent root length density. Soil Sci Soc Am J 58: 1061–1067

    Article  Google Scholar 

  • Merrill SD, Doering EJ, Reichman GA (1987) Application of a minirhizotron with flexible, pressurized walls to a study of corn root growth. Minirhizotron observation tubes: Methods and applications for measuring rhizosphere dynamics. ASA Spec Publ 50: 131–143

    Google Scholar 

  • Merrill SD, Upchurch DR, Black AL, Bauer A (1994) Theory of minirhizotron root directional- ity observation and application to wheat and corn. Soil Sci Soc Am J 58 (3): 664–671

    Article  Google Scholar 

  • Meyer WS, Barrs HD (1985) Non-destructive measurement of wheat roots in large undisturbed and repacked clay soil cores. Plant Soil 86: 237–247

    Article  Google Scholar 

  • Murphy JA, Hendricks MG, Rieke PE, Smucker AJM, Branham BE (1994) Turfgrass root systems evaluated using the minirhizotron and video recording methods. Agron J 86 (2): 247–250

    Article  Google Scholar 

  • Neufeld HS, Durall DM, Rich PM, Tingey DT (1989) A rootbox for quantitative observations on intact entire root systems. Plant Soil 117: 295–298

    Article  Google Scholar 

  • Pagès L, Serra V (1994) Growth and branching of the taproot of young oak trees–a dynamic study. J Exp Bot 45: 1327–1334

    Article  Google Scholar 

  • Pan WL, Bolton RP, Lundquist EJ, Hiller LK (1998) Portable rhizotron and color scanner system for monitoring root development. Plant Soil 200: 107–112

    Article  CAS  Google Scholar 

  • Parker CJ, Carr MKV, Jarvis NJ, Puplampu BO, Lee VH (1991) An evaluation of the minirhizotron technique for estimating root distribution in potatoes. J Agric Sci 116 (3): 341–350

    Article  Google Scholar 

  • Parsons WFJ, Miller SL, Knight DH (1994) Root-gap dynamics in a lodgepole pine forest: ectomycorrhizal and nonmycorrhizal fine root activity after experimental gap formation. Can J For Res 24: 1531–1538

    Article  Google Scholar 

  • Pearson RW, Lund ZF (1968) Direct observation of cotton root growth under field conditions. Agron J 60: 442–443

    Article  Google Scholar 

  • Poelman G, Van De Koppel J, Brouwer G (1996) A telescopic method for photographing within 8 x 8 cm minirhizotrons. Plant Soil 185: 163–167

    Article  CAS  Google Scholar 

  • Reid JB, Winfield D, Sorenson I, Petrie RA (1992) Test of the reliability of acrylic plastic windows for studies of kiwifruit roots. N Z J Crop Hortic Sci 20: 463–466

    Article  Google Scholar 

  • Rutherford MC, Curran B (1981) A root observation chamber for replicated use in a natural plant community. Plant Soil 63: 123–129

    Article  Google Scholar 

  • Rygiewicz PT, Johnson MG, Ganio LM, Tingey DT, Storm M (1997) Lifetime and temporal occurrence of ectomycorrhizae on ponderosa pine (Pinus ponderosa Laws.) seedlings grown under varied atmospheric CO2 and nitrogen levels. Plant Soil 189: 275–287

    Article  CAS  Google Scholar 

  • Samson BK, Sinclair TR (1994) Soil core and minirhizotron comparison for the determination of root length density. Plant Soil 161 (2): 225–232

    Article  Google Scholar 

  • Schuurman JJ, Goedewaagen MAJ (1971) Methods for the examination of root systems and roots, 2nd edn. Centre for Agricultural Publishing and Documentation (PUDOC ), Wageningen, the Netherlands

    Google Scholar 

  • Smit AL, Zuin A (1996) Root growth dynamics of Brussels sprouts (Brassica olearacea var gemmifera) and leeks (Allium porrum L.) as reflected by root length, root colour and UV-fluorescence. Plant Soil 185: 271–280

    Article  CAS  Google Scholar 

  • Smit AL, Groenwold J, Vos J (1994) The Wageningen Rhizolab–a facility to study soil-rootshoot-atmosphere interactions in crops 2. Methods of root observations. Plant Soil 161 (2): 289–298

    Article  Google Scholar 

  • Smit AL, Booij R, Van der Werf A (1996) The spatial and temporal rooting pattern of Brussels sprouts and leeks. Neth J Agric Sci 44: 57–72

    Google Scholar 

  • Speidel B, Weiss A (1974) Untersuchungen zur Wurzelaktivität unter einer Goldhaferwiese. Angew Bot 48: 137–154

    Google Scholar 

  • Sword MA (1998) Seasonal development of loblolly pine lateral roots in response to stand density and fertilization. Plant Soil 200: 21–25

    Article  CAS  Google Scholar 

  • Taylor HM, Böhm W (1976) Use of acrylic plastic as rhizotron windows. Agron J 68: 693–694

    Article  Google Scholar 

  • Taylor HM, Upchurch DR, McMichael BL (1990) Applications and limitations of rhizotrons and minirhizotrons for root studies. Plant Soil 129: 29–35

    Article  Google Scholar 

  • Tennant D (1976) A test of a modified line intersect method of estimating root length. J Ecol 63: 995–1001

    Google Scholar 

  • Teskey RO, Hinckley TM (1981) Influence of temperature and water potential on root growth of white oak. Physiol Plant 52: 363–369

    Article  Google Scholar 

  • Tscherning K, Leihner DE, Hilger TH, Müller-Sämann KM, El Sharkawy MA (1995) Grass barriers in cassava hillside cultivation: rooting patterns and root growth dynamics. Field Crops Res 43: 131–140

    Article  Google Scholar 

  • Upchurch DR (1985) Relationship between observations in minirhizotrons and true root length density. PhD Diss Texas Tech Univ, Lubbock (Diss Abstr 85–28594

    Google Scholar 

  • Upchurch DR (1987) Conversion of minirhizotron-root intersections to root length density. Minirhizotron observation tubes: Methods and applications for measuring rhizosphere dynamics. ASA Spec Publ 50: 51–65

    Google Scholar 

  • Upchurch DR, Ritchie J (1983) Root observations using a video recording system in minirhizotrons. Agron J 75: 1009–1015

    Article  Google Scholar 

  • Upchurch DR, JT Ritchie (1984) Battery-operated color video camera for root observations in minirhizotrons. Agron J 76: 1015–1017

    Article  Google Scholar 

  • Upchurch DR, McMichael BL, Taylor HM (1988) Use of minirhizotrons to characterize root system orientation. Soil Sci Soc Am J 52: 319–323

    Article  Google Scholar 

  • Van Noordwijk M (1987) Methods for quantification of root distribution pattern and root dynamics in the field. In: Proc 20th Colloq Int Potash Institute held in Baden bei Wien, pp 263–281

    Google Scholar 

  • Van Noordwijk M, De Jager A, Floris J (1985) A new dimension to observations in minirhizotrons: a stereoscopic view on root photographs. Plant Soil 86: 447–453

    Article  Google Scholar 

  • Van Noordwijk M, Brouwer G, Koning H, Meijboom FW, Grzebisz W (1994) Production and decay of structural root material of winter wheat and sugar beet in conventional and integrated cropping systems. Agric Ecosyst Environ 51 (1–2): 99–113

    Article  Google Scholar 

  • Vogt KA, Grier CC, Gower ST, Sprugel DG, Vogt DJ (1986) Overestimation of net root production: a real or imaginary problem? Ecology 67: 577–579

    Article  Google Scholar 

  • Volkmar KM (1993) A comparison of minirhizotron techniques for estimating root length density in soils of different bulk densities. Plant Soil 157 (2): 239–245

    Article  Google Scholar 

  • Voorhees WB (1976) Root elongation along a soil-plastic container interface. Agron J 68: 143

    Article  Google Scholar 

  • Vos J, Groenwold J (1983) Estimation of root densities by observation tubes and endoscope. Plant Soil 74: 295–300

    Article  Google Scholar 

  • Vos J, Groenwold J (1987) The relation between root growth along observation tubes and in bulk soil. Minirhizotron observation tubes: Methods and Applications for Measuring Rhizosphere Dynamics. ASA Spec Publ 50: 4, pp 39–49

    Google Scholar 

  • Wang ZQ, Burch WH, Mou P, Jones RH, Mitchell RJ (1995) Accuracy of visible and ultra violet light for estimating live root proportions with minirhizotrons. Ecology 76 (7): 2330–2334

    Article  Google Scholar 

  • Wiesler F, Horst WJ (1994) Root growth of maize cultivars under field conditions as studied by the core and minirhizotron method and relationships to shoot growth. Z Pflanzenernähr Bodenkd 157 (5): 351–358

    Article  Google Scholar 

  • Wilson K, Gunn A, Cherrett JM (1995) The application of a rhizotron to study the subterranean effects of pesticides. Pedobiologia 39: 132–143

    Google Scholar 

  • Zillmann K-H (1956) Beobachtung des Wurzelwachstums in Feldbeständen. Dtsch Landwirtsch 7: 394–400

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Smit, A.L., George, E., Groenwold, J. (2000). Root Observations and Measurements at (Transparent) Interfaces with Soil. In: Smit, A.L., Bengough, A.G., Engels, C., van Noordwijk, M., Pellerin, S., van de Geijn, S.C. (eds) Root Methods. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04188-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04188-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08602-1

  • Online ISBN: 978-3-662-04188-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics