Skip to main content

Carbon Isotopes and Microbial Sediments

  • Chapter
Microbial Sediments

Abstract

Microbial sediments of the biolaminated type, generated by the matting behavior of preferentially prokaryotic microbenthos, commonly carry the isotopic signatures of both the primary microbial biomass and of the carbonate of the surrounding sediment matrix. This is true for present-day stromatolites as well as for their fossil counterparts, which can preserve these signatures with a minor diagenetic overprint for billions of years. While the isotopic composition of the organic (kerogenous) carbon fraction may reflect the intrinsic fractionations of the microbial primary producers as well as several other parameters (productivity, temperature, salinity), the δ13C and δ18O labels, specifically of sub-Recent laminated stromatolitic carbonates, have encoded a wealth of palaeohydrological and palaeotemperature information which makes them important stores of palaeoclimatological data. Altogether, the stromatolitic carbon isotope record constitutes an exuberant archive of biogeochemical and palaeoenvironmental evolution that still awaits further evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aizenshtat Z, Lipiner G, Cohen Y (1984) Biogeochemistry of carbon and sulfur cycle in the microbial mats of the Solar Lake (Sinai). In: Cohen Y, Castenholz RW, Halvorson HO (eds) Microbial mats: stromatolites (MBL Lectures in Biology 3 ). A R Liss, New York, pp 281–312

    Google Scholar 

  • Andrews, JE (1986) Microfacies and geochemistry of middle Jurassic algal limestones from Scotland. Sedimentology 33: 499–320

    Article  Google Scholar 

  • Andrews JE, Riding R, Dennis PF (1993) Stable isotopic composition of Recent freshwater cyanobacterial carbonates from the British Isles: local and regional environmental controls. Sedimentology 40: 303–314

    Article  Google Scholar 

  • Andrews JE, Riding R, Dennis PF (1997) The stable isotope record of environmental and climatic signals in modern terrestrial microbial carbonates from Europe. Palaeogeogr Palaeoclimatol Palaeoecol 129: 171–189

    Article  Google Scholar 

  • Arenas C, Pardo G, Casanova J (1993) Bacterial stromatolites in lacustrine Miocene deposits of the Ebro Basin (Aragon, Spain). In: Barattolo F, de Castro P, Parente M (eds) Studies on fossil benthic algae. Boll Soc Paleont Ital. Spec Vol 1. Mucchi Editore, Modena, pp 9–22

    Google Scholar 

  • Arenas C, Casanova J, Pardo G (1997) Stable isotope characterization of the Miocene lacustrine systems of Los Monegros (Ebro Basin, Spain): palaeogeographic and palaeoclimatic implications. Palaeogeogr Palaeoclimatol Palaeoecol 128: 133–155

    Article  Google Scholar 

  • Badger MR (1987) The CO2-concentrating mechanism in aquatic phototrophs. Biochem Plants 10: 219–274

    Google Scholar 

  • Banerjee DM, Schidlowski M, Arneth JD (1986) Genesis of upper Proterozoic-Cambrian phosphorite deposits of India: isotopic inferences from carbonate fluorapatite, carbonate and organic carbon. Precambrian Res 33239–253

    Google Scholar 

  • Barghoorn ES, Knoll AH, Dembicki H, Meinschein WG (1977) Variation in stable carbon isotopes in organic matter from the Gunflint iron formation. Geochim Cosmochim Acta 41425–430

    Google Scholar 

  • Behrens EW, Frishman SA (1971) Stable carbon isotopes in blue-green algae mats. J Geol 79: 94–100

    Article  Google Scholar 

  • Belyaev SS, Wolkin R, Kenealy WR, De Niro MJ, Epstein S, Zeikus JG (1983) Methanogenic bacteria from the Bondyuzhskoe oil field: general characterization and analysis of stable carbon isotopic fractionation. Appl Environ Microbiol 45: 691–697

    Google Scholar 

  • Benedict CR, Wong WWL, Wong JHH (1980) Fractionation of the stable isotopes of inorganic carbon by seagrasses. Plant Physiol 65: 512–517

    Article  Google Scholar 

  • Böttger T, Schidlowski M, Wand U (1993) Stable carbon isotope fractionation in lower plants from the Schirmacher and Untersee oases ( Central Dronning Maud Land, East Antarctica). Isotopen-praxis Env Health Stud 29: 21–25

    Google Scholar 

  • Calder JA, Parker PL (1973) Geochemical implications of induced changes in i3C fractionation by blue-green algae. Geochim Cosmochim Acta 37x33–140

    Google Scholar 

  • Casanova J, Hillaire-Marcel C (1992) Late Holocene hydrological history of Lake Tanganyika, East Africa, from isotopic data on fossil stromatolites. Palaeogeogr Palaeoclimatol Palaeocecol 91: 35–48

    Google Scholar 

  • Casanova J, Hillaire-Marcel C (1993) Carbon and oxygen isotopes in African lacustrine stromatolites: palaeohydrological interpretation. In: Swart PK, Lohmann KC, McKenzie J, Savin S (eds) Climate change in continental isotopic records (Geophys Monogr 78 ). American Geophysical Union, Washington, DC, pp 123–133

    Chapter  Google Scholar 

  • Cohen Y, Aizenshtat Z, Stoler A, Jorgensen BB (1980) The microbial geochemistry of Solar Lake, Sinai. In: Ralph JB, Trudinger PA, Walter MR (eds) Biogeochemistry of ancient and modern environments. Springer, Berlin Heidelberg New York, pp 167–172

    Chapter  Google Scholar 

  • Des Marais DJ, Cohen Y, Nguyen H, Cheatham M, Cheatham T, Munoz E (1989) Carbon isotopic trends in the hypersaline ponds and microbial mats at Guerrero Negro, Baja California Sur, Mexico: implications for Precambrian stromatolites. In: Cohen Y, Rosenberg E (eds) Microbial mats: physiological ecology of benthic microbial communities. Am Soc Microbiol, Washington, pp 191–203

    Google Scholar 

  • Dor I, Carl N, Schidlowski M (1992) Experimental hypersaline ponds as model environments for stromatolite formation 1. Microbenthos composition and biomass accumulation. In: Schidlowski M, Golubic S, Kimberley MM, McKirdy DM, Trudinger PA (eds) Early organic evolution: implications for mineral and energy resources. Springer, Berlin Heidelberg New York, pp 483–493

    Chapter  Google Scholar 

  • Durand B (ed) (198o) Kerogen - insoluble organic matter from sedimentary rocks. Editions Technip, Paris, 519 pp

    Google Scholar 

  • Ehrlich A, Dor I (1985) Photosynthetic microorganisms of the Gavish Sabkha. In: Friedman GM, Krumbein WE (eds) Hypersaline ecosystems: the Gavish sabkha. Ecological studies 53. Springer, Berlin Heidelberg New York, pp 381–401

    Chapter  Google Scholar 

  • Eichmann R, Schidlowski M (1975) Isotopic fractionation between coexisting organic carbon–carbonate pairs in Precambrian sediments. Geochim Cosmochim Acta 39585–595

    Google Scholar 

  • Estep MF (1984) Carbon and hydrogen isotopic compositions of algae and bacteria from hydrothermal environments, Yellowstone National Park. Geochim Cosmochim Acta 48: 591–599

    Article  Google Scholar 

  • Estep MF, Tabita FR, Van Baalen C (1978a) Purification of ribuloses.5-bisphosphate carboxylase and carbon isotope fractionation by whole cells and carboxylase from Cylindrotheca sp. ( Bacillariophyceae ). J Phycol 14: 183–188

    Google Scholar 

  • Estep MF, Tabita FR, Parker PL, Van Baalen C (1978b) Carbon isotope fractionation by ribulose-1.5-bisphosphate carboxylase from various organisms. Plant Physiol 61: 680–687

    Article  Google Scholar 

  • Freeman KH, Hayes JM, Trendel JM, Albrecht P (1990) Evidence from isotope measurements for diverse origins of sedimentary hydrocarbons. Nature 343: 254–256

    Article  Google Scholar 

  • Friedman GM, Krumbein WE (eds) (1985) Hypersaline ecosystems: the Gavish sabkha. Ecological studies 53. Springer, Berlin Heidelberg New York, X + 484 PP

    Google Scholar 

  • Fuchs G, Thauer R, Ziegler H, Stichler W (1979) Carbon isotope fractionation by Methanobacterium thermoautotrophicum. Arch Microbiol 120: 35–139

    Article  Google Scholar 

  • Fuchs G, Stupperich E (1981) Wege der autotrophen CO2-Fixierung in Bakterien. Forum Mikrobiol 4x98–201

    Google Scholar 

  • Glaessner M (1984) The dawn of animal life. Cambridge University Press, Cambridge, XI + 244 pp

    Google Scholar 

  • Hayes JM, Kaplan IR, Wedeking KW (1983) Precambrian organic geochemistry: preservation of the record. In: Schopf JW (ed) Earth’s earliest biosphere: its origin and evolution. Princeton University Press, Princeton, pp 93–134

    Google Scholar 

  • Hoering TC (1967) The organic geochemistry of Precambrian rocks. In: Abelson PH (ed) Researches in geochemistry. Wiley, New York, pp 89–111

    Google Scholar 

  • Höhn A (1989) Stable isotopes of lacustrine stromatolites from the Permo-Carboniferous Saar- Nahe Basin (SW-Germany): preliminary results. In: Kennard JM, Burne RV (eds) Stromatolite Newsletter 14. Bureau of Mineral Resources, Geology and Geophysics, Canberra, Australia, pp 36–39

    Google Scholar 

  • Kirkland DW, Bradbury JP, Dean WE (1983) The heliothermic lake - a direct method of collecting and storing solar energy. Arch Hydrobiol Suppl 65 (1)a - 6o

    Google Scholar 

  • Krumbein WE, Cohen Y (1977) Primary production, mat formation and lithification chances of oxygenic and facultative anoxygenic cyanophytes (cyanobacteria). In: Flügel E (ed) Fossil algae. Springer, Berlin Heidelberg New York, pp 37–56

    Chapter  Google Scholar 

  • Macgregor AM (1940) A Precambrian algal limestone in southern Rhodesia. Trans Geol Soc S Afr 43: 9–15

    Google Scholar 

  • Mizutani H, Wada E (1982) Effect of high atmospheric CO, concentration on 813C of algae. Origins Life 12: 377–390

    Article  Google Scholar 

  • O’Leary MH (1981) Carbon isotope fractionation in plants. Phytochemistry 20: 553–567

    Article  Google Scholar 

  • Pardue JW, Scalan RS, Van Baalen C, Parker PL (1976) Maximum carbon isotope fractionation in photosynthesis by blue-green algae and a green alga. Geochim Cosmochim Acta 40: 309–312

    Article  Google Scholar 

  • Park R, Epstein S (1960) Carbon isotope fractionation during photosynthesis. Geochim Cosmochim Acta 21: 110–126

    Article  Google Scholar 

  • Quandt L, Gottschalk G, Ziegler H, Stichler W (1977) Isotope discrimination by photosynthetic bacteria. FEMS Microbiol Lett 1: 25–128

    Article  Google Scholar 

  • Roeske CA, O’Leary MH (1984) Carbon isotope effects on the enzyme-catalyzed carboxylation of ribulose bisphosphate. Biochemistry 23: 6275–6284

    Article  Google Scholar 

  • Sackett WM, Eckelmann WR, Bender ML, Bé AWH (1965) Temperature dependence of carbon isotope composition in marine plankton and sediments. Science 148235–237

    Google Scholar 

  • Sathyanarayan S, Arneth JD, Schidlowski M (1987) Stable isotope geochemistry of sedimentary carbonates from the Proterozoic Kaladgi, Badami and Bhima Groups, Karnataka, India. Precambrian Res 37x47–156

    Google Scholar 

  • Schidlowski M, Eichmann, R, Junge CE (1975) Precambrian sedimentary carbonates: carbon and oxygen isotope geochemistry and implications for the terrestrial oxygen budget. Precambrian Res 2: 1–69

    Article  Google Scholar 

  • Schidlowski M, Gorzawski H, Dor I (1988) Experimental solar ponds 2. Isotopic composition of microbial biomass as a func-tion of productivity rates and salinity. Terra Cognita 8: 229

    Google Scholar 

  • Schidlowski M, Gorzawski H, Dor I (1989) Isotopically heavy bio-mass from microbial mats: predictor variables from experimental hypersaline ponds. Abstr 28th Int Geol Congr Wash 3: 45–46

    Google Scholar 

  • Schidlowski M, Gorzawski H, Dor I (1992) Experimental hypersaline ponds as model environments for stromatolite formation 2. Isotopic biogeochemistry. In: Schidlowski M, Golubic S, Kimberley MM, McKirdy DM, Trudinger PA (eds) Early organic evolution: Implications for mineral and energy resources. Springer, Berlin Heidelberg New York, pp 494–508

    Chapter  Google Scholar 

  • Schidlowski M, Gorzawski H, Dor I (1994) Carbon isotope variations in a solar pond microbial mat: role of environmental gradients as steering variables. Geochim Cosmochim Acta 58: 2289–2298

    Article  Google Scholar 

  • Schidlowski M, Hayes JM, Kaplan IR (1983) Isotopic inferences of ancient biochemistries: carbon, sulfur, hydrogen and nitrogen. In: Schopf JW (ed) Earth’s earliest biosphere: its origin and evolution. Princeton University Press, Princeton, pp 149–186

    Google Scholar 

  • Schidlowski M, Matzigkeit U, Krumbein WE (1984) Superheavy organic carbon from hypersaline microbial mats: assimilatory pathway and geochemical implications. Naturwissenschaften 71: 303–308

    Article  Google Scholar 

  • Schidlowski M, Matzigkeit U, Mook WG, Krumbein WE (1985) Carbon isotope geochemistry and 14C ages of microbial mats from the Gavish Sabkha and the Solar Lake. In: Friedman GM, Krumbein WE (eds) Hypersaline ecosystems: the Gavish sabkha. Ecological studies 53. Springer, Berlin Heidelberg New York, pp 381–401

    Chapter  Google Scholar 

  • Schoell M, Wellmer FW (1981) Anomalous 13C depletion in Early Precambrian graphites from Superior Province, Canada. Nature 290: 696–699

    Google Scholar 

  • Schopf JW, Oehler DZ, Horodyski RJ, Kvenvolden KA (1971) Biogenicity and significance of the oldest known stromatolites. J Paleontol 45: 477–485

    Google Scholar 

  • Seckbach J, Kaplan IR (1973) Growth pattern and 13C /12C isotope fractionation of Cyanidium caldarium and hot spring algal mats. Chem Geol 12: 161–169

    Article  Google Scholar 

  • Sireväg R, Buchanan BB, Berry JA, Troughton JH (1977) Mechanisms of CO2 fixation in bacterial photosynthesis studied by the carbon isotope fractionation technique. Arch Microbiol 112: 35–38

    Article  Google Scholar 

  • Smith BN, Epstein S (1971) Two categories of 13C /12C ratios for higher plants. Plant Physiol 47: 380–384

    Article  Google Scholar 

  • Summons RE, Jahnke LL, Roksandic Z (1994) Carbon isotope fractionation in lipids from methanotrophic bacteria: relevance for interpretation of the geochemical record of biomarkers. Geochim Cosmochim Acta 58: 2853–2863

    Article  Google Scholar 

  • Tabor H (1981) Solar ponds. Solar Energy 27: 181–194

    Article  Google Scholar 

  • Travé A (1992) Sedimentologia, petrologia i geoquimica (elements traca i isotopes) dels estromatblits de la conca Eocene sudpirinenca. PhD Thesis, Univ de Barcelona, 386 pp

    Google Scholar 

  • Vogel JC (1980) Fractionation of the carbon isotopes during photosynthesis. Sitzungsber Heidelb Akad Wiss, Math-Nat Kl 1980 (3): 111–135

    Google Scholar 

  • Wand U, Mühle K (1990) Extremely 13C-enriched biomass in a freshwater environment: examples from Antarctic lakes. Geodät Geophys Veröff (Berlin), Reihe 1,16: 361–366

    Google Scholar 

  • Walter MR (1983) Archean stromatolites: evidence of the Earth’s earliest benthos. In: Schopf JW (ed) Earth’s earliest biosphere: its origin and evolution. Princeton University Press, Princeton, pp 187–213

    Google Scholar 

  • Winkler FJ, Kexel H, Kranz C, Schmidt HL (1982) Parameters affecting the 13CO2/12CO2 isotope discrimination of the ribulose-l.5bisphosphate carboxylase reaction. In: Schmidt HL, Förstel H, Heinzinger K (eds), Stable isotopes. Anal Chem Symp Ser 11. Elsevier, Amsterdam, pp 83–89

    Google Scholar 

  • Wong WW, Sackett WM, Benedict CR (1975) Isotope fractionation in photosynthetic bacteria during carbon dioxide assimilation. Plant Physiol 55: 475–479

    Article  Google Scholar 

  • Wong WW, Sackett WM (1978) Fractionation of stable carbon isotopes by marine phytoplankton. Geochim Cosmochim Acta 42: 1809–1815

    Article  Google Scholar 

  • Wright DT (1993) Carbon isotope geochemistry of Cambrian stromatolites, NW Scotland. In: Barattolo F, De Castro P, Parente M (eds) Studies on fossil benthic algae. Boll Soc Paleont Ital, Spec Vol 1. Mucchi Editore, Modena, pp 415–420

    Google Scholar 

  • Zamarreno L, Anadon P, Utrilla R (1997) Sedimentology and isotopic composition of upper Paleocene to Eocene non-marine stromatolites, eastern Ebro Basin, NE Spain. Sedimentology 44: 159–166

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schidlowski, M. (2000). Carbon Isotopes and Microbial Sediments. In: Riding, R.E., Awramik, S.M. (eds) Microbial Sediments. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04036-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04036-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08275-7

  • Online ISBN: 978-3-662-04036-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics