Skip to main content
Log in

Mechanisms of CO2 fixation in bacterial photosynthesis studied by the carbon isotope fractionation technique

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

1. The carbon isotope discrimination properties of a representative of each of the three types of photosynthetic bacteria Chlorobium thiosulfatophilum, Rhodospirillum rubrum and Chromatium and of the C3-alga Chlamydomonas reinhardii were determined by measuring the ratio of 13CO2 to 12CO2 incorporated during photoautotrophic growth. 2. Chromatium and R. rubrum had isotope selection properties similar to those of C3-plants, whereas Chlorobium was significantly different. 3. The results suggest that Chromatium and R. rubrum assimilate CO2 mainly via ribulose 1,5-diphosphate carboxylase and the associated reactions of the reductive pentose phosphate cycle, whereas Chlorobium utilizes other mechanisms. Such mechanisms would include the ferredoxin-linked carboxylation enzymes and associated reactions of the reductive carboxylic acid cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

RuDP:

ribulose 1,5-disphosphate

PEP:

phosphoenolpyruvate

References

  • Anderson, L., Fuller, R. C.: Photosynthesis in Rhodospirillum rubrum. I. Autotrophic carbon dioxide fixation. Plant Physiol 42, 487–490 (1976)

    Google Scholar 

  • Berry, J. A., Throughton, J., Bjørkman, O. E.: Carbon isotope fractionation in open and closed systems. Carnegie Inst. Year Book 73, 785–790 (1974)

    Google Scholar 

  • Buchanan, B. B.: Ferredoxin-linked carboxylation reactions. In: The enzymes, 3rd ed. Vol. 6 (P. D. Boyer, ed.), pp. 193–216. New York: Academic Press 1972

    Google Scholar 

  • Buchanan, B. B., Bachofen, R., Arnon, D. I.: Role of ferredoxin in the reductive assimilation of CO2 and acetate by extracts of the photosynthetic bacterium, Chromatium. Proc. nat. Acad. Sci. (Wash.) 52, 839–847 (1964)

    Google Scholar 

  • Buchanan, B. B., Evans, M. C. W.: The synthesis of a α-ketoglutarate from succinate and carbon dioxide by a subcellular preparation of a photosynthetic bacterium. Proc. nat. Acad. Sci. (Wash.) 54, 1212–1218 (1965)

    Google Scholar 

  • Buchanan, B. B., Evans, M. C. W., Arnon, D. I.: Ferredoxin dependent carbon assimilation in Rhodospirillum rubrum. Arch. Mikrobiol. 59, 32–40 (1967)

    Google Scholar 

  • Buchanan, B. B., Schürmann, P., Shanmugam, K. T.: Role of the reductive carboxylic acid cycle in a photosynthetic bacterium lacking ribulose 1,5-diphosphate carboxylase. Biochim. biophys. Acta (Amst.) 283, 136–145 (1972)

    Google Scholar 

  • Buchanan, T. G., Sirevåg, R.: Ribulose 1,5-diphosphate carboxylase and Chlorobium thiosulfatophilum. Arch. Microbiol. 109, 15–19 (1976)

    Google Scholar 

  • Cooper, T. G., Filmer, D., Wishnick, M., Lane, M. D.: The active species of “CO2” utilized by ribulose diphosphate carboxylase. J. biol. Chem. 244, 1081–1083 (1969)

    Google Scholar 

  • Cooper, T. G., Wood, H. G.: The carboxylation of phosphoenolpyruvate and pyruvate. II. The active species of “CO2” utilized by phosphoenolpyruvate carboxylase and pyruvate carboxylase. J. biol. Chem. 246, 5488–5490 (1971)

    Google Scholar 

  • Craig, H. H.: Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis of carbon dioxide. Geochim. Cosmochim. Acta 12, 133–149 (1957)

    Google Scholar 

  • Deuser, W. G., Degens, E. T.: Carbon isotope fractionation in the system CO2 (gas)-CO2 (aqueous)-HCO 3 (aqueous). Nature (Lond.) 215, 1033–1035 (1967)

    Google Scholar 

  • Evans, M. C. W., Buchanan, B. B., Arnon, D. I.: A new ferredoxin dependent carbon reduction cycle in a photosynthetic bacterium. Proc. nat. Acad. Sci. (Wash.) 55, 928–934 (1966)

    Google Scholar 

  • Fuller, R. C., Smillie, R. M., Sisler, E. C., Kornberg, H. L.: Carbon metabolism in Chromatium. J. biol. Chem. 236, 2140–2149 (1961)

    Google Scholar 

  • Hatch, M. D., Slack, R. C.: Photosynthetic CO2 fixation pathways. Ann. Rev. Plant Physiol. 21, 141–162 (1970)

    Google Scholar 

  • Ohad, I., Siekevitz, P., Palade, G. E.: Biogenesis of chloroplast membranes. J. Cell Biol. 35, 521–552 (1967)

    Google Scholar 

  • Ormerod, J. G., Gest, H.: Symposium on metabolism of inorganic compounds. IV. Hydrogen photosynthesis and alternative metabolic pathways in photosynthetic bacteria. Bact. Rev. 26, 51–66 (1962)

    Google Scholar 

  • Park, R., Epstein, S.: Carbon isotope fractionation during photosynthesis. Geochim. Cosmochim. Acta 21, 110–126 (1960)

    Google Scholar 

  • Pfennig, N.: Eine vollsynthetische Nährlösung zur selektiven Anreicherung einiger Schwefelpurpurbakterien. Naturwissenschaften 48, 136 (1961)

    Google Scholar 

  • Pfennig, N.: Beobachtungen über das Schwärmen von Chromatium okenii. Arch. Mikrobiol. 42, 90–95 (1962)

    Google Scholar 

  • Sirevåg, R.: Further studies on carbon dioxide fixation in Chlorobium. Arch. Microbiol. 98, 3–18 (1974)

    Google Scholar 

  • Sirevåg, R.: Photoassimilation of acetate and metabolism of carbohydrate in Chlorobium thiosulfatophilum. Arch. Microbiol. 104, 105–111 (1975)

    Google Scholar 

  • Sirevåg, R., Ormerod, J. G.: Carbon dioxide fixation in green sulfur bacteria. Biochem. J. 120, 399–408 (1970a)

    Google Scholar 

  • Sirevåg, R., Ormerod, J. G.: Carbon dioxide fixation in photosynthetic green sulphur bacteria. Science 169, 186–188 (1970b)

    Google Scholar 

  • Tabita, R. F., McFadden, B., Pfennig, N.: d-Ribulose 1,5-biphosphate carboxylase in Chlorobium thiosulfatophilum Tassajara. Biochim. biophys. Acta (Amst.) 341, 187–194 (1974)

    Google Scholar 

  • Thauer, R. F., Käufer, B., Scherer, P.: The active species of “CO2” utilized in ferredoxin-linked carboxylation reactions. Arch. Microbiol. 104, 234–240 (1975)

    Google Scholar 

  • Troughton, J. H., Card, K. A., Hendy, C. H.: Photosynthetic pathway and carbon isotope discrimination by plants. Carnegie Inst. Year Book 73, 768–780 (1974)

    Google Scholar 

  • Waygood, E. R., Mache, R., Tan, C. K.: Carbon dioxide is the substrate for phosphoenol-pyruvate carboxylase from leaves of maize. Canad. J. Bot. 47, 1455–1458 (1969)

    Google Scholar 

  • Whelan, T., Sackett, W. M., Benedict, C. R.: Enzymatic fractionation of carbon isotopes by phosphoenolpyruvate carboxylase from C4 plants. Plant Physiol. 51, 1051–1054 (1973)

    Google Scholar 

  • Wong, W., Sackett, W. M., Benedict, C. R.: Isotope fractionation of photosynthetic bacteria during carbon dioxide assimilation. Plant Physiol. 55, 475–479 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sirevåg, R., Buchanan, B.B., Berry, J.A. et al. Mechanisms of CO2 fixation in bacterial photosynthesis studied by the carbon isotope fractionation technique. Arch. Microbiol. 112, 35–38 (1977). https://doi.org/10.1007/BF00446651

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00446651

Key words

Navigation