Skip to main content

Spike Train Correlations on Slow Time Scales in Monkey Visual Cortex

  • Chapter
Neuronal Cooperativity

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 49))

Abstract

The brain is usually viewed as an organ in which neurons respond to signals from the environment, and other neurons control muscles acting upon the environment. The link between the two is formed by an enormous neuronal network within which a complex signal processing goes on, involving memory storage and retrieval. This view implicitly presupposes the knowledge of the notion of “environment”, together with some of its fundamental properties, such as containing objects. The role of neuronal activity is then to generate a representation of individual situations occurring in that environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles, M. (1982): “Local cortical circuits”. In Studies of brain function. Vol 6, ed. by V. Braitenberg (Springer, Berlin, Heidelberg )

    Google Scholar 

  • Aertsen, A.M.H.J., Gerstein G.L. (1985): Evaluation of neuronal connectivity: Sensitivity of cross correlation. Brain Res. 340, 341–354

    Article  Google Scholar 

  • Aiple, F., Krüger, J. (1988): Neuronal synchrony in monkey striate cortex: interocular signal flow and dependency on spike rates. Exp. Brain Res. 72, 141–149

    Article  Google Scholar 

  • Bach, M. (1982): Untersuchungen zur Wechselwirkung zwischen Nervenzellen im visuellen Cortex mit Vielfach-Mikroelektroden. Thesis, Freiburg

    Google Scholar 

  • Bach, M., Krüger, J. (1986): Correlated neuronal variability in the monkey’s visual cortex revealed by a multi-microelectrode. Exp. Brain Res. 61, 451–456

    Article  Google Scholar 

  • Boch, R. (1986): Behavioral modulation of neuronal activity in monkey striate cortex: excitation in the absence of active central fixation. Exp. Brain Res. 64, 610–614

    Article  Google Scholar 

  • Bolz, J., Rosner, G., Wässle, H. (1982): Response latency of brisk-sustained (X) and brisk-transient (Y) cells in the cat retina. J. Physiol. London 328, 171–190

    Google Scholar 

  • Braitenberg, V. (1978): “Cortical architectonics: general and areal”. In: Architectonics of the cerebral cortex, ed by M.A.B. Brazier, H. Petsche ( Raven Press, New York ) pp. 443–465

    Google Scholar 

  • Burns, B.D. (1968): The Uncertain Nervous System (E. Arnold, London )

    Google Scholar 

  • Doty, R.W. (1980): Non geniculate afferents to striate cortex in macaques. Exp. Brain Res. 41, A10–11

    Google Scholar 

  • Eckhorn, R., Pöpel B. (1975): Rigorous and extended application of information theory to the afferent visual system of the cat. II. Experimental results. Biol. Cybern. 17, 7–17

    Article  Google Scholar 

  • Eckhorn, R., Pöpel B. (1975): Rigorous and extended application of information theory to the afferent visual system of the cat. II. Experimental results. Kybernetik 17, 7–17

    Google Scholar 

  • Fischer, B., Boch R. (1990): “Cerebral Cortex”. In: Vision and visual dysfunction, ed. by R. Carpenter Eye movements Vol. 9 ( Macmillan, London )

    Google Scholar 

  • Goldman-Rakic P.S. (1988): Topography of cognition: Parallel distributed networks in primate association cortex. Ann. Rev. Neurosci. 11, 137–156

    Article  Google Scholar 

  • Hebb, D.O. (1949): The organization of behavior ( Wiley, New York )

    Google Scholar 

  • Hubel, D.H., Wiesel, T.N. (1974): Uniformity of monkey striate cortex: A parallel relationship between field size, scatter, and magnification factor. J. Comp. Neurol. 158, 295–306

    Article  Google Scholar 

  • Hubel, D.H., Wiesel, T.N. (1977): Functional architecture of macaque monkey visual cortex. Proc. R. Soc. Lond. B. 198, 1–59

    Article  ADS  Google Scholar 

  • Krüger, J. (1983): Simultaneous individual recordings from many cerebral neurons: techniques and results. Rev. Physiol. Biochem. Pharmacol. 98, 177–233

    Article  Google Scholar 

  • Krüger, J., Aiple, F. (1988): Multi-microelectrode investigation of monkey striate cortex: spike train correlations in the infragranular layers. J. Neurophysiol. 60, 798–828

    Google Scholar 

  • Krüger, J., Aiple, F. (1989): The connectivity underlying the orientation selectivity in monkey striate cortex. Brain Res. 477, 57–65

    Article  Google Scholar 

  • Livingstone, M.S., Hubel, D.H. (1987): Psychophysical evidence for separate channels for the perception of form, color, movement and depth. J. Neurosci. 7, 3416–3468

    Google Scholar 

  • Mastronarde, D.N. (1983): Correlated firing of cat retinal ganglion cells. I. Spontaneously active inputs to X- and Y-cells. J. Neurophysiol. 49, 303–324

    Google Scholar 

  • Optican, L.M., Richmond B. (1987): Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. III. Information-theoretic analysis. J. Neurophysiol. 57, 162–178

    Google Scholar 

  • Perkel, D.H., Gerstein, G.L., Moore, G.P. (1967a): Neuronal spike trains and stochastic point processes. I. The single spike train. Biophys. J. 7, 391–418

    Article  Google Scholar 

  • Perkel, D.H., Gerstein, G.L., Moore. G.P. (1967b): Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains. Biophys. J. 7, 419–440

    Article  ADS  Google Scholar 

  • Raiguel, S.E., Lagae, L., Gulyàs, B., Orban, G.A. (1989): Response latencies of visual cells in macaque areas V1, V2 and V5. Brain Res. 493, 155–159

    Article  Google Scholar 

  • Sestokas, A.K., Lehmkuhle, S. (1986): Visual response latency of X- and Y-cells in the dorsal lateral geniculate nucleus of the cat. Vision Res. 26, 1041–1054

    Article  Google Scholar 

  • Shaw, G.L., Silverman, D.J., Pearson, J.C. (1986): “Trion model of cortical organization: Toward a theory of information processing and memory”. In: Brain Theory, ed. by G. Palm, A. Aertsen ( Springer, Berlin, Heidelberg ) pp. 177–191

    Chapter  Google Scholar 

  • Sherman, S.M., Koch, C. (1986): The control of retinogeniculate transmission in the mammalian lateral geniculate nucleus. Exp. Brain Res. 63, 1–20

    Article  Google Scholar 

  • Steriade, M., Deschênes (1984): The thalamus as a neuronal oscillator. Brain Res. Reviews 8, 1–63

    Google Scholar 

  • Vogels, R., Spileers, W., Orban, G.A. (1989): The response variability of striate cortical neurons in the behaving monkey. Exp. Brain Res. 77, 432–436

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krüger, J. (1991). Spike Train Correlations on Slow Time Scales in Monkey Visual Cortex. In: Krüger, J. (eds) Neuronal Cooperativity. Springer Series in Synergetics, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84301-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84301-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84303-7

  • Online ISBN: 978-3-642-84301-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics