Skip to main content

Simultaneous individual recordings from many cerebral neurons: Techniques and results

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Volume 98

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 98))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles M (1982) Local cortical circuits. In: Braitenberg V (ed) Studies of brain function, vol 6. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Abeles M (1983) The quantification and graphic display of correlations among three spike trains. IEEE Trans Biomed Eng 30:235–238

    PubMed  Google Scholar 

  • Abeles M, Goldstein MH Jr (1977) Multispike train analysis. Proc IEEE 65:762–773

    Google Scholar 

  • Adrian ED, Matthews BHC (1934) The interpretation of potential waves in the cortex. J Physiol (Lond) 81:440–471

    Google Scholar 

  • Allum JHJ, Hepp-Reymond MC, Gysin R (1982) Cross-correlation analysis of interneuronal connectivity in the motor cortex of the monkey. Brain Res 231:325–334

    Article  PubMed  Google Scholar 

  • Amari S, Arbib MA (eds) (1982) Competition and cooperation in neural nets. Springer, Berlin Heidelberg New York (Lect notes in biomath, vol 45)

    Google Scholar 

  • Amassian VE, Berlin L, Macy J Jr, Waller HJ (1959) II. Simultaneous recording of the activity of several individual cortical neurons. Trans NY Acad Sci 21:395–405

    Google Scholar 

  • Arnett DW (1975) Correlation analysis of units recorded in the cat dorsal lateral geniculate nucleus. Exp Brain Res 24:111–130

    Article  PubMed  Google Scholar 

  • Arvanitaki A (1942) Interactions électriques entre deux cellules nerveuses contiguës. Arch Int Physiol 52:381–407

    Google Scholar 

  • Bach M (1981) Untersuchungen zur Wechselwirkungzwischen Nervenzellen im visuellen Cortex mit Vielfach-Mikroelektroden. Thesis, University of Freiburg

    Google Scholar 

  • Bach M, Krüger J (1980) Monkey visual cortex: Discharge patterns revealed by simultaneous recording with a thirtyfold multi-microelectrode. Pfluegers Arch [Suppl] 384:R24

    Google Scholar 

  • Bantli H (1972) Multi-electrode analysis of field potentials in the turtle cerebellum: an electrophysiological method for monitoring continuous spatial parameters. Brain Res 44:676–679

    Article  PubMed  Google Scholar 

  • Barna JS, Arezzo JC, Vaughan HJ Jr (1981) A new multielectrode array for the simultaneous recording of field potentials and unit activity. Electroencephalogr Clin Neurophysiol 52:494–496

    Article  PubMed  Google Scholar 

  • Baumgarten R von, Schaefer KP (1957) Kopplungsvorgänge an benachbarten Nervenzellen im Hirnstamm und im motorischen Cortex der Katze. Pfluegers Arch 265:264–275

    Article  Google Scholar 

  • Békésy G von (1974) Introduction. In: Keidel WD, Neff WD (eds) Auditory system. Anatomy, physiology (ear). Springer, Berlin Heidelberg New York, pp 1–8 (Handbook of sensory physiology, vol 5/1)

    Google Scholar 

  • Blum B, Feldman B (1965) A micro-drive for the independent manipulation of four microelectrodes. IEEE Trans Biomed Eng 12:121–122

    PubMed  Google Scholar 

  • Bogdanov AV, Galashina AG (1981) Comparative study of interneuronal relations in neighbouring microareas of the cerebral cortex in untrained alert cats. Zh Vyssh Nerv Deiat 31:121–128

    PubMed  Google Scholar 

  • Braitenberg V (1978) Cortical architectonics: general and areal. In: Brazier MAB, Petsche H (eds) Architectonics of the cerebral cortex. Raven Press, New York, pp 443–465

    Google Scholar 

  • Buchwald JS, Holstein SB, Weber DS (1973) Multiple unit recording: technique, interpretation, and experimental applications. In: Thompson RF, Patterson MM (eds) Bioelectric recording techniques, part A. Academic Press, New York, pp 201–242

    Google Scholar 

  • Burns BD, Webb AC (1979) The correlation between discharge times of neighbouring neurons in isolated cerebral cortex. Proc Roy Soc Lond [Biol] 203:347–360

    Google Scholar 

  • Cleland BG, Dubin MW, Levick WR (1971) Simultaneous recording of input and output of lateral geniculate neurones. Nature (New Biol) 231:191–192

    Google Scholar 

  • Creutzfeldt OD, Jung R (1961) Neuronal discharge in the cat's motor cortex during sleep and arousal. In: Wolstenholme GEW, O'Connor M (eds) The nature of sleep. Churchill, London, pp 131–170

    Google Scholar 

  • Creutzfeldt OD, Meisch JJ (1963) Changes of cortical neuronal activity and EEG during hypoglycemia. Electroencephalogr Clin Neurophysiol [Suppl] 24:158–171

    Google Scholar 

  • Creutzfeldt OD, Hellweg FC, Schreiner C (1980) Thalamocortical transformation of responses to complex auditory stimuli. Exp Brain Res 39:87–104

    Article  PubMed  Google Scholar 

  • Curtis DR, Eccles RM (1958) The excitation of Renshaw cells by pharmacological agents applied electrophoretically. J Physiol (Lond) 141:435–445

    PubMed  Google Scholar 

  • Dickson JW, Gerstein GL (1974) Interaction between neurons in the auditory cortex of the cat. J Neurophysiol 37:1239–1261

    PubMed  Google Scholar 

  • Evarts EV (1968) A technique for recording activity of subcortical neurons in moving animals. Electroencephalogr Clin Neurophysiol 24:83–86

    Article  PubMed  Google Scholar 

  • Friedman DH (1968) Detection of signals by template matching. Johns Hopkins Press, Baltimore

    Google Scholar 

  • Gasanov UG, Galashina AG, Bogdanov AV (1980) A study of neuron systems activity in learning. In: Thompson RF, Hicks LH, Shvyrkov VB (eds) Neural mechanisms of goal-directed behavior and learning. Academic Press, New York, pp 341–352

    Google Scholar 

  • Gerstein GL, Clark WA (1964) Simultaneous study of firing patterns in several neurons. Science 143:1325–1327

    Google Scholar 

  • Gerstein GL, Michalski A (1981) Firing synchrony in a neural group: putative sensory code. In: Szekely G et al. (eds) Neural communication and control. Pergamon Press, Oxford, pp 93–102 (Adv Physiol Sci, vol 30)

    Google Scholar 

  • Gerstein GL, Perkel DH (1972) Mutual temporal relationships among neuronal spike trains. Biophys J 12:453–473

    PubMed  Google Scholar 

  • Gerstein GL, Perkel DH, Subramanian KN (1978) Identification of functionally related neural assemblies. Brain Res 140:43–62

    PubMed  Google Scholar 

  • Gilbert CD, Kelly JP (1975) The projection of cells in different layers of the cat's visual cortex. J Comp Neurol 163:81–106

    Article  PubMed  Google Scholar 

  • Griffith JS, Horn G (1963) Functional coupling between cells in the visual cortex of the unrestrained cat. Nature (Lond) 199:876, 893–895

    PubMed  Google Scholar 

  • Grinvald A, Cohen LB, Lesher S, Boyle MB (1981) Simultaneous optical monitoring of activity of many neurons in invertebrate ganglion using a 124-element photodiode array. J Neurophysiol 45:829–840

    PubMed  Google Scholar 

  • Gross GW (1979) Simultaneous single unit recording in vitro with a photoetched laser deinsulated gold multimicroelectrode surface. IEEE Trans Biomed Eng 26:273–278

    PubMed  Google Scholar 

  • Gross GW, Lucas JH (1982) Long-term monitoring of spontaneous single unit activity from neuronal monolayer networks cultured on photoetched multielectrode surfaces. In Press

    Google Scholar 

  • Gross GW, Rieske E, Kreutzberg GW, Meyer A (1977) A new fixed-array multi-microelectrode system designed for long-term monitoring of extracellular single unit neuronal activity in vitro. Neurosci Lett 6:101–106

    Article  Google Scholar 

  • Grover FS, Buchwald JS (1970) Correlations of cell size with amplitude of background fast activity in specific brain nuclei. J Neurophysiol 33:160–171

    PubMed  Google Scholar 

  • Grünthaler KH, Nixdorf J, Rochow H (1969) Eine neue Umformtechnik für spröde Metalle und Legierungen. Metall 23:310–314

    Google Scholar 

  • Hanna GR, Johnson RN (1968) A rapid and simple method for the fabrication of arrays of recording electrodes. Electroencephalogr Clin Neurophysiol 25:284–286

    Article  PubMed  Google Scholar 

  • Hayek FA (1952) The sensory order — an inquiry into the foundations of theoretical psychology. University of Chicago Press, Chicago

    Google Scholar 

  • Hebb DO (1949) The organization of behaviour — A neuropsychological theory. Wiley, New York

    Google Scholar 

  • Heierli P, Ribaupierre F de, Toros A, Ribaupierre Y de (1981) Functional organization of the medial geniculate body studied by simultaneous recordings of single unit pairs. In: Syka J, Aitkin L (eds) Neuronal mechanisms of hearing. Plenum Press, New York, pp 183–186

    Google Scholar 

  • Hess R, Negishi K, Creutzfeldt O (1975) The horizontal spread of intracortical inhibition in the visual cortex. Exp Brain Res 22:415–419

    Article  Google Scholar 

  • Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol (Lond) 160:106–154

    PubMed  Google Scholar 

  • Humphrey DR (1970) A chronically implantable multiple microelectrode system with independent control of electrode positions. Electroencephalogr Clin Neurophysiol 29:616–620

    Article  PubMed  Google Scholar 

  • Jacobi K, Krüger J (1983) Monkey visual cortex: Cross-correlations between spike trains recorded by 30 microelectrodes. Naunyn Schmiedebergs Arch Pharmacol [Suppl] 322:R100

    Google Scholar 

  • Jobling DT, Smith JB, Wheal HV (1981) Active microelectrode array to record from the mammalian central nervous system in vitro. Med Biol Eng Comput 19:553–560

    PubMed  Google Scholar 

  • Jung R (1961) Korrelationen von Neuronentätigkeit und Sehen. In: Jung R, Kornhuber HH (eds) Neurophysiologie und Psychophysik des visuellen Systems. Springer, Berlin Göttingen Heidelberg, pp 410–435

    Google Scholar 

  • Kimura M, Tanaka K, Toyama K (1976) Interneuronal connectivity between visual cortical neurones of the cat as studied by cross-correlation analysis of their impulse discharges. Brain Res 118:329–333

    Article  PubMed  Google Scholar 

  • Knox CK (1981) Detection of neuronal interactions using correlation analysis. Trends Neurosci 4:222–224

    Article  Google Scholar 

  • Knox CK, Poppele RE (1977) Correlation analysis of stimulus-evoked changes in excitability of spontaneously firing neurons. J Neurophysiol 40:616–625

    PubMed  Google Scholar 

  • Kohonen T (1977) Associative memory. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Krüger J (1982a) Cat visual cortex: Synaptic relations revealed by multi-microelectrode recordings. Pfluegers Arch [Suppl] 392:R50

    Google Scholar 

  • Krüger J (1982b) Neurophysiologische und biophysikalische Systemanalyse der visuellen Informationsverarbeitung. Internal report, Freiburg

    Google Scholar 

  • Krüger J (1982c) A 12-fold microelectrode for recording from vertically aligned cortical neurones. J Neurosci Meth 6:347–350

    Article  Google Scholar 

  • Krüger J, Bach M (1980) A 30 fold multi-microelectrode for simultaneous single unit recording. Pfluegers Arch [Suppl] 384:R33

    Google Scholar 

  • Krüger J, Bach M (1981) Simultaneous recording with 30 microelectrodes in monkey visual cortex. Exp Brain Res 41:191–194

    PubMed  Google Scholar 

  • Krüger J, Bach M (1982) Independent systems of orientation columns in upper and lower layers of monkey visual cortex. Neurosci Lett 31:225–230

    Article  PubMed  Google Scholar 

  • Krüger J, Fischer B (1983) Colour columns and colour areas. In: Mollon JD, Sharpe LT (eds) Colour vision: Physiology and psychophysics. Academic Press, London New York

    Google Scholar 

  • Kuperstein M, Whittington D (1979) Parallel recording of single unit activity in vivo. Soc Neurosci 5:495 (abstract)

    Google Scholar 

  • Kuperstein M, Whittington DA (1981) A practical 24 channel microelectrode for neural recording in vivo. IEEE Trans Biomed Eng BME 28:288–293

    Google Scholar 

  • Lee BB, Cleland BG, Creutzfeldt OD (1977) The retinal input to cells in area 17 of the cat's cortex. Exp Brain Res 30:527–538

    Article  PubMed  Google Scholar 

  • Legéndy C (1970) The brain and its information trapping device. In: Rose J (ed) Progress in cybernetics, vol 1. Gordon and Breach, New York, pp 309–388

    Google Scholar 

  • Lehmann D, Murata K, Koukkou M (1962) Simultane Periodik der Neuronenaktivität in verschiedenen Cortexfeldern der Katze. Naturwissenschaften 49:611–612

    Article  Google Scholar 

  • LeVay S, Gilbert CD (1976) Laminar patterns of geniculocortical projection in the cat. Brain Res 113:1–20

    Article  PubMed  Google Scholar 

  • LeVay S, Sherk H (1981) The visual claustrum of the cat. 1. Structure and connections. J Neurosci 1:956–980

    PubMed  Google Scholar 

  • Lilly JC, Cherry RB (1954) Surface movements of click responses from acoustic cerebral cortex of cat: leading and trailing edges of a response figure. J Neurophysiol 17:521–532

    PubMed  Google Scholar 

  • Llinas R, Nicholson C, Johnson K (1973) Implantable monolithic wafer recording electrodes for neurophysiology. In: Phillips MI (ed) Brain unit activity during behaviour. Thomas, Springfield

    Google Scholar 

  • Loeb GE, Marks WB, Beatty PG (1977) Analysis and microelectronic design of tubular electrode arrays intended for chronic, multiple single-unit recordings from captured nerve fibres. Med Biol Eng Comput 15:195–201

    PubMed  Google Scholar 

  • Malsburg C von der (1981) The correlation theory of brain function. Internal report 1981–82 Max-Planck-Institut Biophysikalische Chemie, Göttingen

    Google Scholar 

  • Mannard A, Stein RB, Charles D (1974) Regeneration electrode units: implants for recording from single peripheral nerve fibers in freely moving animals. Science 183:547–549

    PubMed  Google Scholar 

  • Marks WB (1965) Some methods of simultaneous multiunit recordings. In: Nye PW (ed) Proc symp information processing in sight sensory systems. California Institute of Technology, Pasadena, pp 200–206

    Google Scholar 

  • Matthews BHC (1929) Specific nerve impulses. J Physiol (Lond) 67:169–190

    Google Scholar 

  • Moore GP, Segundo JP, Perkel DH, Levitan H (1970) Statistical signs of synaptic interaction in neurons. Biophys J 10:876–900

    PubMed  Google Scholar 

  • Müller-Paschinger IB, Prohaska O, Vollmer R, Petsche H (1979) Histological marking with multiple thin-film electrode probe for intracortical recording. Electroencephalogr Clin Neurophysiol 47:627–628

    Article  PubMed  Google Scholar 

  • Negishi K, Verzeano M (1961) Recordings of multiple microelectrodes from the lateral geniculate and the visual cortex of the cat. In: Jung R, Kornhuber HH (eds) The visual system: neurophysiology and psychophysics. Springer, Berlin Heidelberg New York, pp 288–295

    Google Scholar 

  • Noda H, Adey WR (1970) Firing of neuron pairs in cat association cortex during sleep and wakefulness. J Neurophysiol 33:672–684

    PubMed  Google Scholar 

  • O'Keefe J, Bouma H (1969) Complex sensory properties of certain amygdala units in the freely moving cat. Exp Neurol 23:384–398

    Article  PubMed  Google Scholar 

  • Olson CR, Graybiel AM (1980) Sensory maps in the claustrum of the cat. Nature (Lond) 288:479–481

    Article  PubMed  Google Scholar 

  • Orbach HS, Cohen LB, Grinvald A (1982) Optical monitoring of evoked activity in the visual cortex of the marine rat. Biol Bull 163:389

    Google Scholar 

  • Palm G (1982) Neural assemblies — an alternative approach to artificial intelligence. In: Braitenberg V (ed) Studies of brain function, vol 17. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Palmer C (1976) A microwire technique for long term recording of single units in the brains of unrestrained animals. J Physiol (Lond) 263:99–101 P

    Google Scholar 

  • Perkel DH, Gerstein GL, Moore GP (1967) Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains. Biophys J 7:419–440

    PubMed  Google Scholar 

  • Perkel DH, Gerstein GL, Smith MS, Tatton WG (1975) Nerve impulse patterns: a quantitative display technique for three neurons. Brain Res 100:271–296

    Article  PubMed  Google Scholar 

  • Pickard RS (1979a) A review of printed circuit microelectrodes and their production. J Neurosci Meth 1:301–318

    Article  Google Scholar 

  • Pickard RS (1979b) Printed circuit microelectrodes. Trends Neurosci 2:259–261

    Article  Google Scholar 

  • Pickard RS, Collins AJ, Joseph PL, Hicks RCJ (1979) A flexible printed circuit probe for electrophysiology. Med Biol Eng Comput 17:261–267

    PubMed  Google Scholar 

  • Pine J (1980) Recording action potentials from cultured neurons with extracellular microcircuit electrodes. J Neurosci Meth 2:19–32

    Article  Google Scholar 

  • Pochay P, Wise KD, Allard LF, Rutledge LT (1979) A multichannel depth probe fabricated using electron-beam lithography. IEEE Trans Biomed Eng 26:199–206

    PubMed  Google Scholar 

  • Prochazka VJ, Kornhuber HH (1973) On-line multi-unit sorting with resolution of superposition signals. Electroencephalogr Clin Neurophysiol 34:91–93

    Article  PubMed  Google Scholar 

  • Prohaska O, Olcaytug F, Womastek K, Petsche H (1977) A multielectrode for intracortical recordings produced by thin-film technology. Electroencephalogr Clin Neurophysiol 42:421–422

    Article  PubMed  Google Scholar 

  • Prohaska O, Pacha P, Pfundner P, Petsche H (1979) A 16-fold semi-microelectrode for intracortical recording of field potentials. Electroencephalogr Clin Neurophysiol 47:629–631

    Article  PubMed  Google Scholar 

  • Rapoport SS, Silkis IG (1981) Joint activity of neighbouring neurones in the cat visual cortex. Zh Vyssh Nerv Deiat 31:812–818

    PubMed  Google Scholar 

  • Reitböck H, Werner G (1983) Multi-electrode recording system for the study of spatio-temporal activity patterns of neurons in the central nervous system. Experientia 39:339–342

    Article  PubMed  Google Scholar 

  • Reitböck H, Adamczak W, Eckhorn R, Muth P, Thielmann R, Thomas U (1981) Multiple single-unit recording. Design and test of a 19-channel micromanipulator and appropriate fiber electrodes. Neurosci Lett [Suppl] 7:181

    Google Scholar 

  • Renaud LP, Kelly JS (1974) Identification of possible inhibitory neurons in the pericruciate cortex of the cat. Brain Res 79:9–28

    Article  PubMed  Google Scholar 

  • Rodieck RW (1967) Maintained activity of cat retinal ganglion cells. J Neurophysiol 30:1043–1071

    PubMed  Google Scholar 

  • Rosenblatt F (1962) Principles of neurodynamics. Spartan, Washington

    Google Scholar 

  • Schneider J, Eckhorn R, Reitböck H (1983) Evaluation of neuronal coupling dynamics. Biol Cybern 46:129–134

    Article  PubMed  Google Scholar 

  • Sejnowski T (1981) Skeleton filters in the brain. In: Hinton GE, Anderson JA (eds) Parallel models of associate memory. Erlbaum, Hillsdale

    Google Scholar 

  • Sherrington C (1941) Man on his nature. The Gifford Lectures Edinburgh 1937–38. University Press, Cambridge

    Google Scholar 

  • Simon W (1965) The real-time sorting of neuro-electric action potentials in multiple unit studies. Electroencephalogr Clin Neurophysiol 18:192–195

    Article  PubMed  Google Scholar 

  • Stålberg E, Trontelj J (1979) Single fibre electromyography. Mirvalle Press, Old Working Surrey

    Google Scholar 

  • Starr A, Wise KD, Csongradi J (1973) An evaluation of photoengraved microelectrodes for extracellular single-unit recordings. IEEE Trans Biomed Eng 20:291–293

    PubMed  Google Scholar 

  • Stevens JK, Gerstein GL (1976) Interactions between cat lateral geniculate neurons. J Neurophysiol 39:239–256

    PubMed  Google Scholar 

  • Strumwasser F (1958) Long-term recording from single neurons in brain of unrestrained animals. Science 127:469–470

    PubMed  Google Scholar 

  • Tan Ü, Marangoz C, Şenyuva F (1979) Antidromic response latency distribution of cat pyramidal tract cells: Three groups with respective extracellular spike properties. Exp Neurol 65:573–586

    Article  PubMed  Google Scholar 

  • Taylor GF (1924) A method of drawing metallic filaments and a discussion of their properties and uses. Physical Rev 23:655–660

    Article  Google Scholar 

  • Terzuolo CA, Araki T (1961) An analysis of intra-versus extracellular potential changes associated with activity of single spinal motoneurons. Ann NY Acad Sci 94:547–558

    PubMed  Google Scholar 

  • Thomas CA Jr, Springer PA, Loeb GE, Berwald-Netter Y, Okun CM (1972) A miniature microelectrode array to monitor the bioelectric activity of cultured cells. Exp Cell Res 74:61–66

    Article  PubMed  Google Scholar 

  • Toyama K, Kimura M, Tanaka K (1981a) Cross-correlation analysis of interneuronal connectivity in cat visual cortex. J Neurophysiol 46:191–201

    PubMed  Google Scholar 

  • Toyama K, Kimura M, Tanaka K (1981b) Organization of cat visual cortex as investigated by cross-correlation technique. J Neurophysiol 46:202–214

    PubMed  Google Scholar 

  • Tsumoto T, Creutzfeldt OD, Legéndy CR (1978) Functional organization of the corticofugal system from visual cortex to lateral geniculate nucleus in the cat. (With an appendix on geniculo-cortical monosynaptic connections). Exp Brain Res 32:345–364

    Article  PubMed  Google Scholar 

  • Verzeano M (1956) Activity of cerebral neurons in the transition from wakefulness to sleep. Science 124:366–367

    PubMed  Google Scholar 

  • Verzeano M, Negishi K (1960) Neuronal activity in cortical and thalamic networks. J Gen Physiol 43:177–195

    Article  PubMed  Google Scholar 

  • Verzeano M, Negishi K (1961) Neuronal activity in wakefulness and sleep. In: Wolstenholme GEW, O'Connor M (eds) The nature of sleep. Churchill, London, pp 108–130

    Google Scholar 

  • Webb AC (1977) Can one detect the presence of orientation columns in the visual cortex of the conscious mobile cat? Proc Int Union of Psychol Sci (Paris) 13:110

    Google Scholar 

  • Wiens T, Gerstein GL (1975) Cross connections among crayfish claw efferents. Neurophysiol 38:909–921

    Google Scholar 

  • Wise KD, Angell JB (1975) A low-capacitance multielectrode probe for use in extracellular neurophysiology. IEEE Trans Biomed Eng 22:212–219

    PubMed  Google Scholar 

  • Wise KD, Angell JB, Starr A (1970) An integrated circuit approach to extracellular microelectrodes. IEE Trans Biomed Eng 17:238–246

    Google Scholar 

  • Wheeler BC, Heetderks WJ (1982) A comparison of techniques for classification of multiple neural signals. IEEE Trans Biomed Eng 29:752–759

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag

About this chapter

Cite this chapter

Krüger, J. (1983). Simultaneous individual recordings from many cerebral neurons: Techniques and results. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 98. Reviews of Physiology, Biochemistry and Pharmacology, vol 98. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0033868

Download citation

  • DOI: https://doi.org/10.1007/BFb0033868

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12817-5

  • Online ISBN: 978-3-540-38744-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics