Skip to main content
Log in

Correlated neuronal variability in monkey visual cortex revealed by a multi-microelectrode

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

Recordings from the visual cortex of anaesthetized monkeys taken with a 30-fold multimicroelectrode demonstrate that the neuronal variability, defined as the change in response strength over time spans of a few seconds to several minutes, is highly correlated within groups of neurones. Several such groups exhibiting independent variability between groups, coexist within the area recorded. This within-group covariance suggests that a major part of neuronal variability is due not to a noise process in the cells, but rather to additional inputs to the neurones, which are not under control of the experimenter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bach M (1981) Untersuchungen zur Wechselwirkung zwischen Nervenzellen im visuellen Cortex mit Vielfach-Mikroelektroden. PhD-Thesis, Freiburg

  • Bloom FE (1981) Chemical signaling and cortical circuitry: integrative aspects. In: Schmitt FO, Worden FG, Adelmann G, Dennis SG (eds) The organisation of the cerebral cortex. MIT Press Cambridge (Mass), pp 359–370

    Google Scholar 

  • Bullock TH (1970) The reliability of eurones. J Gen Physiol 55: 565–584

    Google Scholar 

  • Burns BD (1968) The uncertain nervous system. Arnold E, London

    Google Scholar 

  • Cooley WW, Lohnes PR (1971) Multivariate data analysis. John Wiley & Sons, New York

    Google Scholar 

  • Dammasch IE, Wagner GP (1984) On the properties of randomly connected McCulloch-Pitts networks: differences between input-constant and input-variant networks. Cybern Syst 15: 91–117

    Google Scholar 

  • Doty RW (1980) Non geniculate afferents to striate cortex in macaques. Exp Brain Res 41: A10–11

    Google Scholar 

  • Everitt B (1974) Cluster analysis. Heineman Educational Books Ltd, London

    Google Scholar 

  • Hammersley JM, Handscomb DC (1979) Monte Carlo methods. Chapman and Hall, London

    Google Scholar 

  • Holden AV, Ramadan SM (1980) Identification of endogenous and exogenous activity in a molluscan neurones by spike train analysis. Biol Cybern 37: 107–114

    Google Scholar 

  • Krüger J, Bach M (1981) Simultaneous recording with 30 microelectrodes in monkey visual cortex. Exp Brain Res 41: 191–194

    Google Scholar 

  • Krüger J, Bach M (1982) Independent systems of orientation columns in upper and lower layers of monkey visual cortex. Neurosci Lett 31: 225–230

    Google Scholar 

  • Krüger J, Fischer B (1983) Colour columns and colour areas. In: Mollon JD, Sharpe LT (eds) Colour vision. Academic Press, London

    Google Scholar 

  • Levine MW (1980) Firing rates of a retinal neurone are not predictable from interspike interval statistics. Biophys J 30: 9–25

    Google Scholar 

  • McCulloch WS, Pitts WH (1943) A logical calculus of ideas immanent in nervous activity. Bull Math Biophys 5: 115–133

    Google Scholar 

  • Moore GP, Segundo JP, Perkel DH, Levitan H (1970) Statistical signs of synaptic interactions in neurones. Biophys J 10: 876–900

    Google Scholar 

  • Perkel DH, Gerstein GL, Moore GP (1967) Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains. Biophys J 7: 419–440

    Google Scholar 

  • Rollet B, Bartram M (1976) Einführung in die hierarchische Clusteranalyse für Psychologen, Pädagogen und Soziologen. Ernst Klett Verlag, Stuttgart

    Google Scholar 

  • Rose D (1979) An analysis of the variability of unit activity in the cat's visual cortex. Exp Brain Res 37: 595–604

    Google Scholar 

  • Rosen R (1973) The use of deterministic or probabilistic models (discussion). In: Brazier MAB, Walter DO, Schneider D (eds) Neural modeling. Brain Information Service/Brain Research Institute, UCLA, Los Angeles

    Google Scholar 

  • Schiller PH, Finlay BL, Volman SF (1976) Short-term response variability of macaque monkey striate neurones. Brain Res 105: 347–349

    Google Scholar 

  • Sherry CJ, Klemm WR (1980) The statistical relationship between the “entropy” of a neuronal signal and its variability. J Neurosci 11: 109–113

    Google Scholar 

  • Stein RB (1967) Some models of neuronal variability. Biophys J 7: 37–68

    Google Scholar 

  • Überla K (1968) Faktorenanalyse. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Werner G, Mountcastle VB (1963) The variability of central neural activity in a sensory system and its implication for the central reflection of sensory events. J Neurophysiol 32: 727–742

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 70 “Hirnforschung und Sinnesphysiologie”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bach, M., Krüger, J. Correlated neuronal variability in monkey visual cortex revealed by a multi-microelectrode. Exp Brain Res 61, 451–456 (1986). https://doi.org/10.1007/BF00237570

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00237570

Key words

Navigation