Skip to main content

Molecular Structure of the Arthropod Hemocyanins

  • Chapter
Blood and Tissue Oxygen Carriers

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 13))

Abstract

Hemocyanin is an extracellular, blue protein that occurs in high concentrations in the blood of many arthropods, including spiders, scorpions, horseshoe crabs, crustaceans, and at least two centipedes. Serving as an ### oxygen carrier, it is functionally equivalent to hemoglobin, but performs reversible oxygen binding between two copper ions. Hemocyanin is composed of a number of subunits that assemble in an extremely large macro-molecular entity. These particles, which are similar in size to viruses or ribosomes, exhibit a complex allosteric behavior during oxygen binding. There is growing evidence that this functional plasticity has evolved upon, and answers to, ecophysiological constraints. Arthropod hemocyanins are cubical molecules which, in the electron microscope, differ largely from the cylindrical particles found in mollusks (Fig. 1). Molluscan hemocyanins are decamers, didecamers, or multidecamers of polypeptides of Mr up to 450000 that carry up to eight binuclear copper sites. In contrast, arthropod hemocyanins are hexamers (1 × 6) or oligohexamers (n × 6) of polypeptides of Mr 75000, each containing only a single such copper site (Fig. 2). For earlier reviews, see e.g. Kobert (1903), Quagliariello (1923), Redfield (1934), Ghiretti (1962), Van Holde and Van Bruggen (1971), Bonaventura et al. (1977), Wood (1980), Van Holde and Miller (1982), Ellerton et al. (1983), Brunori et al. (1985), and Markl (1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal OP, Scheller K (1990) Sclerotization of insect cuticle in a cell free system. Z Naturforsch 45C: 129–131

    Google Scholar 

  • Alliel PM, Dautigny A, Lamy J, Lamy J-N, Jolies P (1983) Cell-free synthesis of hemocyanin from the scorpion Androctonus australis. Characterization of the translation products by monospecific antisera. Eur J Biochem 134: 407–414

    Article  PubMed  CAS  Google Scholar 

  • Arisaka F, van Holde KE (1979) Allosteric properties and the association equilibria of hemocyanin from Callianassa californiensis. J Mol Biol 134: 41–73

    Article  PubMed  CAS  Google Scholar 

  • Bak HJ, Beintema JJ (1987) Panulirus interruptus hemocyanin. The elucidation of the complete amino acid sequence of subunit a. Eur J Biochem 169: 333–348

    Article  PubMed  CAS  Google Scholar 

  • Bak HJ, Neuteboom B, Jekel PA, Soeter NM, Vereijken JM, Beintema JJ (1986) Structure of arthropod hemocyanin. FEBS Lett 204: 141–144

    Article  CAS  Google Scholar 

  • Bellelli A, Giardina B, Corda M, Pellegrini MG, Cau A, Condo SG, Brunori M (1988) Sexual and seasonal variability of lobster hemocyanin. Comp Biochem Physiol 91A: 445–449

    Article  CAS  Google Scholar 

  • Beltramini M, Santamaria M, Salvato B (1988) Effects of anions calcium magnesium and aliphatic alcohols on the reaction of hemocyanin with cyanide. Arch Biochem Biophys 262: 149–158

    Article  PubMed  CAS  Google Scholar 

  • Bernhard H, Pilz I, Meisenberger O, Witters R, Lontie R (1983) A small angle X-ray scattering study of the quaternary structure of the 24S component of the hemocyanins of Homarus vulgaris and Cancer pagurus. Biochim Biophys Acta 748: 28–33

    Article  CAS  Google Scholar 

  • Bijlholt MMC (1986) Electron microscopic studies of the quaternary structure of arthropod hemocyanins. Thesis, Rijksuniversiteit Groningen, Netherlands

    Google Scholar 

  • Bijlholt MMC, Van Bruggen EFJ (1986) A model of the architecture of the hemocyanin from the arthropod Squilla mantis (Crustacea, Stomatopoda). Eur J Biochem 155: 339–344

    Article  PubMed  CAS  Google Scholar 

  • Bijlholt MMC, Van Bruggen EFJ, Bonaventura J (1979) Dissociation and reassembly of Limulus polyphemus hemocyanin. Eur J Biochem 95: 399–405

    Article  PubMed  CAS  Google Scholar 

  • Bijlholt MMC, Van Heel MC, Van Bruggen EFJ (1982) Comparison of the 4 x 6-meric hemocyanins from three different arthropods using computer alignment and correspondence analysis. J Mol Biol 161: 139–153

    Article  PubMed  CAS  Google Scholar 

  • Billiald P, Lamy J, Taveau JC, Motta G, Lamy J (1988) Mapping of six epitopes on haemocyanin subunit Aa6 by immunoelectron microscopy. Eur J Biochem 175: 423– 431

    Article  PubMed  CAS  Google Scholar 

  • Billiald P, Lamy JN, Motta G, Goyffon M (1989) Cross-reactivity of a monoclonal antibody to the haemocyanin of various scorpion species. Comp Biochem Physiol 93B: 67–71

    CAS  Google Scholar 

  • Blest AD, Price DG (1981) A new mechanism of transitory, local endocytosis in photoreceptors of a spider, Dinopis. Cell Tissue Res 217: 267–282

    Article  PubMed  CAS  Google Scholar 

  • Boisset N, Frank J, Taveau JC, Billiald P, Motta G, Lamy J, Sizaret PY, Lamy J (1988) Intramolecular localization of epitopes within an oligomeric protein by immunoelectron microscopy and image processing. Proteins 3: 161–183

    Article  PubMed  CAS  Google Scholar 

  • Boisset N, Taveau J-C, Lamy J-N (1990) An approach to the architecture of Scutigera coeloptrata hemocyanin by electron microscopy and image processing. Biol Cell 86: 73–84

    Article  Google Scholar 

  • Bonaventura J, Bonaventura C, Sullivan B (1977) Non-heme oxygen transport proteins. In: Jöbis F (ed) Oxygen and physiological function. Prof Inf Libr, Dallas, pp 177–220

    Google Scholar 

  • Brenowitz M, Bonaventura C, Bonaventura J, Gianazza E (1981) Subunit composition of a high molecular weight oligomer: Limulus polyphemus hemocyanin. Arch Biochem Biophys 210: 748–761

    Article  PubMed  CAS  Google Scholar 

  • Brenowitz M, Bonaventura C, Bonaventura J (1983) Assembly and calcium-induced cooperativity of Limulus IV hemocyanin: a model system for analysis of structure-function relationships in the absence of subunit heterogeneity. Biochemistry 22: 4707–4713

    Article  PubMed  CAS  Google Scholar 

  • Brenowitz M, Bonaventura C, Bonaventura J (1984a) Self-association and oxygen-binding characteristics of the isolated subunits of Limulus polyphemus hemocyanin. Arch Biochem Biophys 230: 238–249

    Article  PubMed  CAS  Google Scholar 

  • Brenowitz M, Bonaventura C, Bonaventura J (1984b) Comparison of the functional properties of the 48-subunit native molecule and the 24- and 12-subunit dissociation intermediates of Limulus polyphemus hemocyanin. Biochemistry 23: 879–888

    Article  CAS  Google Scholar 

  • Briggs DEG, Fortey RA (1989) The early radiation and relationship of the major arthropod groups. Science 246: 241–243

    Article  PubMed  CAS  Google Scholar 

  • Brouwer M, Serigstad B (1989) Allosteric control in Limulus polyphemus hemocyanin: functional relevance of interactions between hexamers. Biochemistry 28: 8819–8827

    Article  PubMed  CAS  Google Scholar 

  • Brouwer M, Bonaventura C, Bonaventura J (1978) Analysis of the effect of three different allosteric ligands on oxygen binding by hemocyanin of the shrimp, Penaeus setiferus. Biochemistry 17: 2148–2154

    Article  PubMed  CAS  Google Scholar 

  • Brouwer M, Bonaventura C, Bonaventura J (1981) Effect of oxygen and allosteric effectors on structural stability of oligomeric hemocyanins of the arthropod, Limulus polyphemus, and the mollusc, Helix pomatia. Biochemistry 20: 1842–1848

    Article  PubMed  CAS  Google Scholar 

  • Brouwer M, Bonaventura C, Bonaventura J (1983) Metal ion interactions with Limulus polyphemus and Callinectes sapidus hemocyanins: stoichiometry and structural and functional consequences of calcium(II), cadmium(II), zinc(II), and mercury(II) binding. Biochemistry 22: 4713–4723

    Article  PubMed  CAS  Google Scholar 

  • Brouwer M, Whaling P, Engel DW (1986) Copper-metallothioneins in the American lobster, Homarus americanus: potential role as Cu(I) donors to apohaemocyanin. Environ Health Perspect 65: 93–100

    PubMed  CAS  Google Scholar 

  • Brown JM, Powers L, Kincaid B, Larrabee JA, Spiro TG (1980) Structural studies of the hemocyanin active site. I. Extended X-ray absorption fine-structure (EXAFS) analysis. J Am Chem Soc 102: 4210–4216

    Article  CAS  Google Scholar 

  • Brunori M, Coletta M, Giardina B (1985) Oxygen carrier proteins. In: Harrison P (ed) Metallo proteins, vol II. MacMillan, London, pp 263–331

    Google Scholar 

  • Brunori M, Coletta M, Di Cera E (1986) A cooperative model for ligand binding to biological macromolecules as applied to oxygen carriers. Biophys Chem 23: 215–222

    Article  PubMed  CAS  Google Scholar 

  • Busselen P (1970) The electrophoretic heterogeneity of Carcinus maenas hemocyanin. Arch Biochem Biophys 137: 415–420

    Article  PubMed  CAS  Google Scholar 

  • Cavellec A, Boisset N, Taveau J-C, Lamy JN (1990) Image processing of electron- microscopic views of Callianassa californiensis hemocyanin. In: Preaux G, Lontie R (eds) Invertebrate dioxygen carriers. Leuven Univ Press, Leuven, pp 271–274

    Google Scholar 

  • Cisne JJ (1974) Trilobites and the origin of arthropods. Science 186: 13–18

    Article  PubMed  CAS  Google Scholar 

  • Connelly PR, Johnson CR, Robert CH, Bak HJ, Gill SJ (1989) Binding of oxygen and carbon monoxide to the hemocyanin from the spiny lobster. J Mol Biol 207: 829–832

    Article  PubMed  CAS  Google Scholar 

  • Craik CS, Sprang S, Fletterick R, Rutter WJ (1982) Intron-exon splice junctions map at protein surfaces. Nature (London) 299: 180–182

    Article  CAS  Google Scholar 

  • Debeire P, Montreuil J, Goyffon M, Van Kuik AJ, Van Halbeek H, Vliegenthart JFG (1986) Primary structure of the oligosaccharide moiety of hemocyanin from the scorpion Androctonus australis. Carbohydr Res 151: 305–310

    Article  CAS  Google Scholar 

  • De Bethune B, Cleuter Y, Marbaix G, Preaux G (1985) Site of biosynthesis of the haemocyanin in the crayfish Astacus leptodactylus. Arch Int Physiol Biochim 93: B75

    Article  Google Scholar 

  • Decker H (1990) Nested allostery in scorpion hemocyanin, Pandinus imperator. Biophys Chem 37: 257–263

    Article  PubMed  CAS  Google Scholar 

  • Decker H, Sterner R (1990) Nested allostery of arthropodan hemocyanin (Eurypelma californicum and Homarus americanus): the role of the protons. J Mol Biol 211: 281–293

    Article  PubMed  CAS  Google Scholar 

  • Decker H, Markl J, Loewe R, Linzen B (1979) Hemocyanins in spiders. VIII. Oxygen affinity of the individual subunits isolated from Eurypelma californicum hemocyanin. Hoppe-Seyler’s Z Physiol Chem 360: 1505–1507

    PubMed  CAS  Google Scholar 

  • Decker H, Schmid R, Markl J, Linzen B (1980) Hemocyanins in spiders. XII. Dissociation and reassociation of Eurypelma hemocyanin. Hoppe-Seyler’s Z Physiol Chem 361: 1707–1717

    Article  PubMed  CAS  Google Scholar 

  • Decker H, Savel A, Linzen B, Van Holde KE (1983) A new graphical test for the MWC-model and its application to some hemocyanins. In: Wood EJ (ed) Structure and function in invertebrate respiratory proteins. Life Chem Rep Suppl 1, Harwood, London, pp 251–256

    Google Scholar 

  • Decker H, Robert CH, Gill SJ (1986) Nesting - an extension of the allosteric model and its application to tarantula hemocyanin. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin Heidelberg New York, pp 383–388

    Google Scholar 

  • Decker H, Connelly P, Robert CH, Gill SJ (1988) Nested allosteric interaction in tarantula hemocyanin revealed through the binding of oxygen and carbon monoxide. Biochemistry 27: 6901–6908

    Article  PubMed  CAS  Google Scholar 

  • Decker H, Savel-Niemann A, Körschenhausen D, Eckerskorn E, Markl J (1989) Allosteric oxygen-binding properties of reassembled tarantula (Eurypelma californicum) hemocyanin with incorporated apo- or met-subunits. Biol Chem HS 370: 511–523

    CAS  Google Scholar 

  • DeFur PL, Mangum CP, Reese JE (1990) Respiratory responses of the blue crab Callinectes sapidus to long-term hypoxia. Biol Bull 178: 46–54

    Article  Google Scholar 

  • DeHaas F, van Breemen JFL, Bijlholt MMC, van Bruggen EFJ (1990) Comparison of two-hexameric hemocyanin structures from Chelicerata and Crustacea at sub-domain resolution. In: Preaux G, Lontie R (eds) Invertebrate dioxygen carriers. Leuven Univ Press, Leuven, pp 285–288

    Google Scholar 

  • Depledge MN, Bjerregaard P (1989) Haemolymph protein composition and copper levels in decapod crustaceans. Helgol Wiss Meeresunters 43: 207–223

    Article  Google Scholar 

  • Drexel R, Takagi T, Linzen B (1986) Sequence homologies of Paroctopus dofleini and Helix pomatia hemocyanin. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin Heidelberg New York, pp 263–264

    Google Scholar 

  • Drexel R, Siegmund S, Schneider H-J, Linzen B, Gielens C, Preaux G, Lontie R, Kellermann J, Lottspeich F (1987) Complete amino-acid sequence of a functional unit from a molluscan hemocyanin (Helix pomatia). Biol Chem HS 368: 617–635

    CAS  Google Scholar 

  • Ellerton HD, Ellerton NF, Robinson HA (1983) Hemocyanin - a current perspective. Proc Biophys Mol Biol 41: 143–248

    Article  CAS  Google Scholar 

  • Eyerie F, Schartau W (1985) Hemocyanins in spiders. XX. Sulfydryl groups and disulfide bridges in subunit d of Eurypelma californicum hemocyanin. Biol Chem HS 366: 403–409

    Google Scholar 

  • Fahrenbach WH (1970) The cyanoblast: hemocyanin formation in Limulus polyphemus. J Cell Biol 44: 445–453

    Article  PubMed  CAS  Google Scholar 

  • Folkerts A, Van Eerd JP (1981) Immunological relatedness of five hemocyanin subunits from the spiny lobster Panulirus interruptus. In: Lamy J, Lamy J (eds) Invertebrate oxygen-binding proteins. Dekker, New York, pp 215–225

    Google Scholar 

  • Franz V (1904) Über die Struktur des Herzens und die Entstehung von Blutzellen bei Spinnen. Zool Anz 27: 192–204

    Google Scholar 

  • Frieden E (1981) The evolution of copper proteins. In: Siegel H (ed) Metal ions in biological systems, vol 13. Copper proteins. Dekker, New York, pp 1–14

    Google Scholar 

  • Fujii T, Sakurai H, Izumi S, Tomino S (1989) Structure of the gene for the arylphorin- type storage protein SP2 of Bombyx mori. J Biol Chem 264: 11020–11025

    PubMed  CAS  Google Scholar 

  • Gaykema WPJ, Hol WGJ, Vereijken JM, Soeter NM, Bak HJ, Beintema JJ (1984) 3.2 Å Structure of the copper-containing, oxygen-carrying protein Panulirus interruptus hemocyanin. Nature (London) 309: 23–29

    Article  CAS  Google Scholar 

  • Gaykema WPJ, Volbeda A, Hol WGJ (1985) Structure determination of Panulirus interruptus haemocyanin at 3.2 Å resolution. Successful phase extension by sixfold density averaging. J Mol Biol 187: 255–275

    Article  Google Scholar 

  • Ghidalia W (1985) Structural and biological aspects of pigments. In: Bliss DE, Mantel LH (eds) The biology of Crustacea, vol 9. Academic Press, London, pp 301–394

    Google Scholar 

  • Ghiretti F (1962) Hemerythrin and hemocyanin. In: Hayaishi O (ed) Oxygenases. Academic Press, London, pp 517–553

    Google Scholar 

  • Ghiretti-Magaldi A, Milanesi C, Salvato B (1973) Identification of hemocyanin in the cyanocytes of Carcinus maenas. Experientia 29: 1265–1267

    Article  PubMed  CAS  Google Scholar 

  • Ghiretti-Magaldi A, Milanesi C, Tognon G (1977) Hemopoiesis in Crustacea Decapoda: origin and evolution of hemocytes and cyanocytes of Carcinus maenas. Cell Differ 6: 167–186

    Article  Google Scholar 

  • Gilbert W (1985) Genes in pieces revisted. Science 228: 823–824

    Article  PubMed  CAS  Google Scholar 

  • Guzman-Casado M, Parody-Morreale A, Mateo PL, Sanchez-Ruiz JM (1990) Differential scanning calorimetry of lobster haemocyanin. Eur J Biochem 188: 181–185

    Article  PubMed  CAS  Google Scholar 

  • Hagerman L (1983) Haemocyanin concentration of juvenile lobsters (Homarus gammarus) in relation to moulting cycle and feeding conditions. Mar Biol 77: 11–19

    Article  CAS  Google Scholar 

  • Hearing VJ, Jimenez M (1987) Mammalian tyrosinase - the critical regulatory control point in melanocyte pigmentation. Int J Biochem 19: 1141–1147

    Article  PubMed  CAS  Google Scholar 

  • Hearing VJ, Jimenez M (1989) Analysis of mammalian pigmentation at the molecular level. Pigm Cell Res 2: 75–85

    Article  CAS  Google Scholar 

  • Hennecke R, Gellissen G, Spindler-Barth M, Spindler K-D (1990) Hemocyanin synthesis in the crayfish, Astacus leptodactylus. In: Preaux G, Lontie R (eds) Invertebrate dioxygen carriers. Leuven Univ Press, Leuven, pp 503–506

    Google Scholar 

  • Herskovits TT (1988) Recent aspects of the subunit organization and dissociation of hemocyanins. Comp Biochem Physiol 91B: 597–611

    CAS  Google Scholar 

  • Herskovits TT, Erhunmwunsee LJ, San George RC, Herp A (1981) Subunit structure and dissociation of Callinectes sapidus hemocyanin. Biochim Biophys Acta 667: 44–58

    PubMed  CAS  Google Scholar 

  • Herskovits TT, Russel MW, Carberry SE (1984) Light-scattering investigation of the subunit structure and sequential dissociation of Homarus americanus hemocyanin. Effects of salts and ureas on the acetylated and unmodified hexamers. Biochemistry 23: 1875–1881

    Article  CAS  Google Scholar 

  • Himmelwright RS, Eickman NC, LuBien CD, Lerch K, Solomon El (1980) Chemical and spectroscopic studies of the binuclear copper active site of Neurospora tyrosinase: comparison to hemocyanins. J Am Chem Soc 102: 7339–7344

    Article  CAS  Google Scholar 

  • Hoylaerts M, Preaux G, Witters R, Lontie R (1979) Immunological heterogeneity of the subunits of Limulus polyphemus hemocyanin. Arch Int Physiol Biochim 87: 417–418

    PubMed  CAS  Google Scholar 

  • Huber M, Lerch K (1985) Primary structure of tyrosinase from Streptomyces glaucescens. Biochemistry 24: 6038–6044

    Article  PubMed  CAS  Google Scholar 

  • Huber M, Lerch K (1986) Active-site and protein structure of tyrosinase: comparison to hemocyanin. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin Heidelberg New York, pp 265–276

    Google Scholar 

  • Huber M, Lerch K (1988) Identification of two histidines as copper ligands in Streptomyces glaucescens tyrosinase. Biochemistry 27: 5610–5615

    Article  PubMed  CAS  Google Scholar 

  • Hughes RC, Butters TD (1981) Glycosylation patterns in cells: an evolutionary marker? TIBS 6: 228–230

    CAS  Google Scholar 

  • Igarashi Y, Kimura K, Kajita A (1986) Calcium dependent allosteric modulation and assembly of the giant hemoglobin from the earthworm, Eisenia foetida. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin Heidelberg New York, pp 89– 92

    Google Scholar 

  • Jacobs M-P, Lontie R, Preaux G (1984) Isolation of an active haemocyanin-mRNA- containing fraction from Cancer pagurus. Arch Int Physiol Biochim 92: B30

    Article  Google Scholar 

  • Jameson BA, Wolf H (1988) The antigenic index: a novel algorithm for predicting antigenic determinants. CABIOS 4: 45–48

    Google Scholar 

  • Jeffrey PD (1979) Hemocyanin from the Australian freshwater crayfish Cherax destructor. Electron microscopy of native and reassembled molecules. Biochemistry 18: 2508–2513

    Article  PubMed  CAS  Google Scholar 

  • Jeffrey PD, Shaw DC, Treacy GB (1976) Hemocyanin from the Australian freshwater crayfish Cherax destructor. Studies of two different monomers and their participation in the formation of multiple hexamers. Biochemistry 15: 5527–5533

    Article  PubMed  CAS  Google Scholar 

  • Jeffrey PD, Shaw DC, Treacy GB (1978) Hemocyanin from the Australian freshwater crayfish Cherax destructor. Characterization of a dimeric subunit and its involvement in the formation of the 25S component. Biochemistry 17: 3078–3084

    Article  PubMed  CAS  Google Scholar 

  • Jeffrey P, Marlborough D, Lamy J, Lamy J, Leclerc M (1981) Immunochemical properties of Cherax destructor hemocyanin. In: Lamy J, Lamy J (eds) Invertebrate oxygen-binding proteins. Dekker, New York, pp 227–237

    Google Scholar 

  • Jekel PA, Bak HJ, Soeter NM, Vereijken JM, Beintema JJ (1988) Panulirus interruptus hemocyanin. The amino acid sequence of subunit b and anomalous behaviour of subunits a and b on polyacrylamide gel electrophoresis in the presence of SDS. Eur J Biochem 178: 403–412

    Article  PubMed  CAS  Google Scholar 

  • Johnes G, Brown N, Manczak M, Shivanand H, Kafatos FC (1990) Molecular cloning, regulation and complete sequence of a hemocyanin-related, juvenile hormone- suppressible protein from insect hemolymph. J Biol Chem 265: 8596–8602

    Google Scholar 

  • Johnson BA (1987) Structure and function of the hemocyanin from a semi-terrestrial crab, Ocypode quadrata. J Comp Physiol B 157: 501–509

    Article  PubMed  CAS  Google Scholar 

  • Jolies J, Jolies P, Lamy J, Lamy J (1979) Structural characterization of seven different subunits in Androctonus australis haemocyanin. FEBS Lett 106: 289–291

    Article  Google Scholar 

  • Jolley RL, Evans LH, Makino N, Mason HS (1974) Oxytyrosinase. J Biol Chem 249: 335–345

    PubMed  CAS  Google Scholar 

  • Kantrowitz ER, Lipscomb WN (1990) Escherichia coli aspartate transcarbamylase: the molecular basis for a concerted allosteric transition. TIBS 15: 53–59

    PubMed  CAS  Google Scholar 

  • Kegeles G, Tai M-S (1973) Rate constants of the hexamer dodecamer reaction of lobster hemocyanin. Biophys Chem 1: 46–50

    Article  CAS  Google Scholar 

  • Kejzlarova-Lepesant J, Mousseron S, Benes H, Jowett T, Chihara C, Claverie J-M, Lepesant J-A (1987) Structure and expression of the LSP-2 gene of Drosophila melanogaster. Biol Chem HS 368: 575–576

    Google Scholar 

  • Kempter B (1983) Site of hemocyanin biosynthesis in the tarantula Eurypelma californicum. Naturwissenschaften 70: 255–256

    Article  CAS  Google Scholar 

  • Kempter B (1986) Intracellular hemocyanin and site of biosynthesis in the spider Eurypelma californicum. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin Heidelberg New York, pp 489–494

    Google Scholar 

  • Kempter B, Markl J, Brenowitz M, Bonaventura C, Bonaventura J (1985) Immunological correspondence between arthropod hemocyanin subunits II. Xiphosuran (Limulus) and spider (Eurypelma, Cupiennius) hemocyanin. Biol Chem HS 366: 77–86

    CAS  Google Scholar 

  • Klarman A, Daniel E (1981) Structural basis of subunit heterogeneity in arthropod hemocyanins. Comp Biochem Physiol 70B: 115–123

    CAS  Google Scholar 

  • Klarman A, Gottlieb J, Daniel E (1979) Quaternary structure and arrangement of subunits in hemocyanin from the scorpion Leirus quinquestriatus. Biochemistry 18: 2239–2244

    Article  PubMed  CAS  Google Scholar 

  • Kobert R (1903) Über Hämocyanin nebst einigen Notizen über Hämerythrin. Pflueger’s Arch Physiol 98: 411–427

    Article  CAS  Google Scholar 

  • König M, Agrawal OP, Schenkel H, Scheller K (1986) Incorporation of calliphorin into the cuticle of the developing blowfly, Calliphora vicina. Wilhelm Roux’ Arch Dev Biol 195: 296–301

    Article  Google Scholar 

  • Lamy JN (1987) Intramolecular localization of antigenic determinants by molecular immunoelectron microscopy. In: Burnett RM, Vogel HJ (eds) Biological organization: macromolecular interactions at high resolution. Academic Press, New York, pp 153– 191

    Google Scholar 

  • Lamy J, Richard M, Goyffon M (1970) Sur les modifications des electrophoregrammes en gel de polyacrylamide des proteines de l’hemolymphe des Scorpions Androctonus australis (L.) et Androctonus mauretanicus (Pocock), provoques par la congelation. CR Acad Sci Paris Ser D 270: 1627–1630

    CAS  Google Scholar 

  • Lamy J, Lamy J, Baglin MC, Weill J (1977) Scorpion hemocyanin subunits: properties, dissociation, association. In: Bannister JV (ed) Structure and function of haemocyanin. Springer, Berlin Heidelberg New York, pp 37–49

    Chapter  Google Scholar 

  • Lamy J, Lamy J, Weill J, Markl J, Schneider H-J, Linzen B (1979a) Hemocyanins in spiders, VII. Immunological comparison of the subunits of Eurypelma californicum hemocyanin. Hoppe-Seyler’s Z Physiol Chem 360: 889–895

    Article  PubMed  CAS  Google Scholar 

  • Lamy J, Lamy J, Weill J (1979b) Arthropod hemocyanin structure: isolation of eight subunits in the scorpion. Arch Biochem Biophys 193: 140–149

    Article  PubMed  CAS  Google Scholar 

  • Lamy J, Lamy J, Weill J, Bonaventura J, Bonaventura C, Brenowitz M (1979c) Immunological correlates between the multiple hemocyanin subunits of Limulus polyphemus and Tachypleus tridentatus. Arch Biochem Biophys 196: 324–339

    Article  PubMed  CAS  Google Scholar 

  • Lamy J, Lamy J, Bonaventura J, Bonaventura C (1980) Structure, function and assembly in the hemocyanin system of the scorpion Androctonus australis. Biochemistry 19: 3033–3039

    Article  PubMed  CAS  Google Scholar 

  • Lamy J, Bijlholt MMC, Sizaret P-Y, Lamy J, van Bruggen EFJ (1981) Quaternary structure of scorpion (Androctonus australis) hemocyanin. Localization of subunits with immunological methods and electron microscopy. Biochemistry 20: 1849–1856

    Article  PubMed  CAS  Google Scholar 

  • Lamy J, Sizaret P-Y, Frank J, Verschoor A, Feldman R, Bonaventura J (1982) Architecture of Limulus polyphemus hemocyanin. Biochemistry 21: 6825–6833

    Article  PubMed  CAS  Google Scholar 

  • Lamy J, Lamy J, Sizaret P-Y, Billiald P, Jolies P, Jolies J, Feldman RJ, Bonaventura J (1983a) Quaternary structure of Limulus polyphemus hemocyanin. Biochemistry 22: 5573–5583

    Article  CAS  Google Scholar 

  • Lamy J, Compin S, Lamy JN (1983b) Immunological correlates between the multiple isolated subunits of Androctonus australis and Limulus polyphemus hemocyanins: an evolutionary approach. Arch Biochem Biophys 223: 584–603

    Article  PubMed  CAS  Google Scholar 

  • Lamy J, Lamy J, Sizaret PY, Billiald P, Motta G (1985a) Quaternary structure of arthropod hemocyanin. In: Lamy J, Truchot JP, Gilles R (eds) Respiratory pigments in animals. Relation structure-function. Springer, Berlin Heidelberg New York, pp 73– 86

    Chapter  Google Scholar 

  • Lamy J, Lamy J, Billiald P, Sizaret P-Y, Cave G, Frank J, Motta G (1985b) Approach to the direct intramolecular localization of antigenic determinants in Androctonus australis hemocyanin with monoclonal antibodies by molecular immunoelectron microscopy. Biochemistry 24: 5532–5542

    Article  PubMed  CAS  Google Scholar 

  • Lamy JN, Lamy J, Billiald P, Sizaret P-Y, Taveau JC, Boisset N (1986) Mapping of antigenic determinants in Androctonus australis hemocyanin: preliminary results. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin Heidelberg New York, pp 185–201

    Google Scholar 

  • Lamy J, Billiald P, Taveau JC, Boisset N, Motta G, Lamy J (1990) Topological mapping of 13 epitopes on a subunit of Androctonus australis hemocyanin. J Struct Biol 103: 64–74

    Article  PubMed  CAS  Google Scholar 

  • Lang WH (1988) cDNA cloning of the Octopus dofleini hemocyanin: sequence of the carboxyl-terminal domain. Biochemistry 27: 7276–7282

    Article  PubMed  CAS  Google Scholar 

  • Larson BA, Terwilliger NB, Terwilliger RC (1981) Subunit heterogeneity of Cancer magister hemocyanin. Biochim Biophys Acta 667: 294–302

    PubMed  CAS  Google Scholar 

  • Leidescher T, Decker H (1990) Conformational changes of tarantula (Eurypelma californicum) hemocyanin detected with a fluorescent probe, NBD chloride. Eur J Biochem 187: 617–625

    Article  PubMed  CAS  Google Scholar 

  • Lerch K (1988) Protein and active-site structure of tyrosinase. In: Bagnara JT (ed) Advances in pigment cell research. Prog Clin Biol Res 256: 85–98

    PubMed  CAS  Google Scholar 

  • Lerch K, Huber M, Schneider H-J, Drexel R, Linzen B (1986) Different origins of metal binding sites in binuclear copper proteins, tyrosinase and hemocyanin. J Inorg Chem 26: 213–217

    CAS  Google Scholar 

  • Linzen B (1983) Subunit heterogeneity in arthropodan hemocyanins. In: Wood EJ (ed) Structure and function of invertebrate respiratory proteins. Life Chem Rep Suppl 1, Harwood, London, pp 27–38

    Google Scholar 

  • Linzen B, Schartau W, Schneider H-J (1985a) Primary structure of arthropod hemocyanins. In: Lamy J, Truchot JP, Gilles R (eds) Respiratory pigments in animals. Relation structure-function. Springer, Berlin Heidelberg New York, pp 59–72

    Chapter  Google Scholar 

  • Linzen B, Soeter MN, Riggs AF, Schneider H-J, Schartau W, Moore MD, Yokota E, Behrens PQ, Nakashima H, Takagi T, Nemoto T, Vereijken JM, Bak HJ, Beirtema JJ, Volbeda A, Gaykema WPJ, Hol WGJ (1985b) The structure of arthropod hemocyanins. Science 229: 519–524

    Article  PubMed  CAS  Google Scholar 

  • Loehr TM, Sanders-Loehr J (1984) Structural information on copper proteins from resonance Raman spectroscopy. In: Lontie R (ed) Copper proteins and copper enzymes 2. CRC Press, Boca Raton, pp 116–155

    Google Scholar 

  • Loewe R (1978) Hemocyanins in spiders. V. Fluorimetric recording of oxygen binding curves, and its application to the analysis of allosteric interactions in Eurypelma californicum hemocyanin. J Comp Physiol B 128: 161–168

    Article  CAS  Google Scholar 

  • Lorösch J, Haase W, Huong PV (1986) Resonance Raman spectroscopic investigations on phenolate bridged binuclear Cu(II) complexes: a basis for the identification of the endogenous bridging ligand in hemocyanin. J Inorg Biochem 27: 53–63

    Article  Google Scholar 

  • Magnus KA, Lattman EE, Hol WGJ, Volbeda A (1990) Hexamers of subunit-II of Limulus hemocyanin (a 48-mer) have the same quaternary structure as whole Panulirus hemocyanin molecules. Biophys J 57: A428

    Google Scholar 

  • Maguire GB, Fielder DR (1975) Disc electrophoresis of the haemolymph proteins of some portunid crabs (Decapoda: Portunidae). I. Effects of storage. Comp Biochem Physiol 52A: 39–42

    Article  Google Scholar 

  • Makino N (1986) Analysis of oxygen binding to Panulirus japonicus hemocyanin. The effect of divalent cations on the allosteric transition. Eur J Biochem 154: 49–55

    Article  PubMed  CAS  Google Scholar 

  • Makino N (1988) Subunits of Panulirus japonicus hemocyanin. 2. Cooperativity of the homogeneous hexamers. Eur J Biochem 173: 431–435

    Article  PubMed  CAS  Google Scholar 

  • Makino N, Kimura S (1988) Subunits of Panulirus japonicus hemocyanin. 1. Isolation and properties. Eur J Biochem 173: 423–430

    Article  PubMed  CAS  Google Scholar 

  • Mangum CP (1980) Respiratory function of the hemocyanins. Am Zool 20: 19–38

    CAS  Google Scholar 

  • Mangum CP (1983) Oxygen transport in the blood. In: Mantel LH (ed) The biology of Crustacea, vol 5. Academic Press, New York, pp 373–429

    Google Scholar 

  • Mangum CP (1985) Oxygen transport in invertebrates. Am J Physiol 248 (Regulatory Integrative Comp Physiol 17): R505–R514

    PubMed  CAS  Google Scholar 

  • Mangum CP (1990) The fourth annual riser lecture: the role of physiology and biochemistry in understanding animal phylogeny. Proc Biol Soc Wash 103: 235–247

    Google Scholar 

  • Mangum CP, Johansen K (1975) The colloid osmotic pressures of invertebrate body fluids. J Exp Zool 63: 661–671

    CAS  Google Scholar 

  • Mangum CP, Rainer JS (1988) The relationship between subunit composition and O2 binding of blue crab hemocyanin. Biol Bull 174: 77–82

    Article  CAS  Google Scholar 

  • Mangum CP, Towle D (1977) Physiological adaptation to unstable environments. Am Sci 65: 67–75

    PubMed  CAS  Google Scholar 

  • Mangum CP, Scott JL, Black REL, Miller KI, van Holde KE (1985) Centipedal hemocyanin: its structure and its implications for arthropod phylogeny. Proc Natl Acad Sci USA 82: 3721–3725

    Article  PubMed  CAS  Google Scholar 

  • Markl J (1980) Hemocyanins in spiders. XI. The quaternary structure of Cupiennius hemocyanin. J Comp Physiol B 140: 199–207

    Article  CAS  Google Scholar 

  • Markl J (1986) Evolution and function of structurally diverse subunits in the respiratory protein hemocyanin from arthropods. Biol Bull 171: 90–115

    Article  CAS  Google Scholar 

  • Markl J (1987) Der Immunmodulator Hämocyanin - ein multigener, allosterischer Proteinkomplex. In: Klippel KE, Harzmann R (eds) Welche Chancen hat die Tumorimmunologie heute? SMV, München-Planegg, pp 73–90

    Google Scholar 

  • Markl J, Kempter B (1981a) Subunit heterogeneity in crustacean hemocyanins as deduced by two-dimensional immuno electrophoresis. J Comp Physiol B 140: 495–502

    Article  Google Scholar 

  • Markl J, Kempter B (1981b) Subunit heterogeneity in arthropod hemocyanins. In: Lamy J, Lamy J (eds) Invertebrate oxygen-binding proteins. Marcel Dekker, New York, pp 125–137

    Google Scholar 

  • Markl J, Winter S (1989) Subunit-specific monoclonal antibodies to tarantula hemocyanin, and a common epitope shared with calliphorin. J Comp Physiol B 159: 139–151

    Article  CAS  Google Scholar 

  • Markl J, Schmid R, Czichos-Tiedt S, Linzen B (1976) Haemocyanins in spiders. II. Chemical and physical properties of the proteins in Dugesiella and Cupiennius blood. Hoppe-Seyler’s Z Physiol Chem 357: 1713–1725

    Article  PubMed  CAS  Google Scholar 

  • Markl J, Hofer A, Bauer G, Markl A, Kempter B, Brenzinger M, Linzen B (1979a) Subunit heterogeneity in arthropod hemocyanins. II. Crustacea. J Comp Physiol B 133: 167–175

    Article  CAS  Google Scholar 

  • Markl J, Markl A, Schartau W, Linzen B (1979b) Subunit heterogeneity in arthropod hemocyanins. I. Chelicerata. J Comp Physiol B 130: 283–292

    Article  CAS  Google Scholar 

  • Markl J, Strych W, Schartau W, Schneider H-J, Schöberl P, Linzen B (1979c) Hemocyanins in spiders. VI. Comparison of the polypeptide chains of Eurypelma californicum hemocyanin. Hoppe-Seyler’s Z Physiol Chem 360: 639–650

    Article  PubMed  CAS  Google Scholar 

  • Markl J, Savel A, Decker H, Linzen B (1980) Hemocyanins in spiders. IX. Homogeneity, subunit composition and the basic oligomeric structure of Eurypelma californicum hemocyanin. Hoppe-Seyler’s Z Physiol Chem 361: 649–660

    Article  PubMed  CAS  Google Scholar 

  • Markl J, Decker H, Stöcker W, Linzen B, Schutter WG, van Bruggen EFJ (1981a) On the role of dimeric subunits in the quaternary structure of arthropod hemocyanins. Hoppe-Seyler’s Z Physiol Chem 362: 185–188

    PubMed  CAS  Google Scholar 

  • Markl J, Kempter B, Linzen B, Bijlholt MMC, van Bruggen EFJ (1981b) Hemocyanins in spiders. XVI. Subunit topography and a model of the quaternary structure of Eurypelma hemocyanin. Hoppe-Seyler’s Z Physiol Chem 362: 1631–1641

    Article  PubMed  CAS  Google Scholar 

  • Markl J, Savel A, Linzen B (1981c) Hemocyanins in spiders. XIV. Subunit composition of dissociation intermediates, and its bearing on the quaternary structure of Eurypelma hemocyanin. Hoppe-Seyler’s Z Physiol Chem 362: 1255–1262

    Article  PubMed  CAS  Google Scholar 

  • Markl J, Bonaventura C, Bonaventura J (1981d) Hemocyanins in spiders. XIII. Kinetics of oxygen dissociation from individual subunits of Eurypelma and Cupiennius hemocyanin. Hoppe-Seyler’s Z Physiol Chem 362: 429–437

    Article  PubMed  CAS  Google Scholar 

  • Markl J, Decker H, Linzen B, Schutter WG, van Bruggen EFJ (1982) Hemocyanins in spiders. XV. The role of individual subunits in the assembly of Eurypelma hemocyanin. Hoppe-Seyler’s Z Physiol Chem 363: 73–87

    Article  PubMed  CAS  Google Scholar 

  • Markl J, Gebauer W, Runzler R, Avissar I (1984) Immunological correspondences between arthropod hemocyanin subunits. I. Scorpion (Leiurus, Androctonus) and spider (Eurypelma, Cupiennius) hemocyanin. Hoppe-Seyler’s Z Physiol Chem 365: 619–631

    Article  PubMed  CAS  Google Scholar 

  • Markl J, Stöcker W, Runzler R, Precht E (1986a) Immunological correspondences between the hemocyanin subunits of 86 arthropods: evolution of a multigene protein family. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin Heidelberg New York, pp 281–292

    Google Scholar 

  • Markl J, Savel A, Knabe B, Storz H, Krabbe T, Abel S, Markl B (1986b) Mercury ions - a tool to study the specific role of individual subunits in the allosteric interaction of arthropod hemocyanins. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin Heidelberg New York, pp 403–406

    Google Scholar 

  • Markl J, Stumpp S, Bosch FX, Voit R (1990) Hemocyanin biosynthesis in the tarantula Eurypelma californicum, studied by in situ hybridization and immuno-electron microscopy. In: Preaux G, Lontie R (eds) Invertebrate dioxygen carriers. Leuven Univ Press, Leuven, pp 497–502

    Google Scholar 

  • Marx R (1983) Ultrastructural aspects of protein synthesis and protein transport in larvae of Calliphora vicina. In: Scheller K (ed) The larval serum proteins of insects. Thieme, Stuttgart, pp 50–60

    Google Scholar 

  • Miller KJ, Eidred NW, Arisaka F, van Holde KE (1977) Structure and function of hemocyanin from thallassinid shrimp. J Comp Physiol B 115: 171–184

    Article  CAS  Google Scholar 

  • Monod J, Wyman J, Changeux J-P (1965) On the nature of allosteric transition: a plausible model. J Mol Biol 12: 88–118

    Article  PubMed  CAS  Google Scholar 

  • Morris S (1990) Organic ions as modulators of respiratory pigment function during stress. Physiol Zool 63: 253–287

    Google Scholar 

  • Müller G, Ruppert S, Schmid E, Schütz G (1988) Functional analysis of alternatively spliced tyrosinase gene transcripts. EMBO J 7: 2732–2730

    Google Scholar 

  • Munn EA, Greville GD (1969) The soluble proteins of developing Calliphora erythrocephala, particularly calliphorin, and similar proteins in other insects. J Insect Physiol 15: 1935–1950

    Article  CAS  Google Scholar 

  • Munn EA, Feinstein A, Greville GD (1971) The isolation and properties of the protein calliphorin. Biochem J 124: 367–374

    PubMed  CAS  Google Scholar 

  • Murray AC, Jeffrey PD (1974) Hemocyanin from the Australian freshwater crayfish Cherax destructor. Subunit heterogeneity. Biochemistry 13: 3667–3671

    Article  PubMed  CAS  Google Scholar 

  • Nakahara A, Suzuki S, Kino J (1983) Tyrosinase activity of squid hemocyanin. In: Wood EJ (ed) Structure and function of invertebrate respiratory proteins. Life Chem Rep Suppl 1, Harwood, London, pp 319–322

    Google Scholar 

  • Nakashima H, Behrens PO, Moore MD, Yokota E, Riggs AF (1986) Structure of hemocyanin II of the horseshoe crab, Limulus polyphemus. J Chem Biol 261: 10526– 10533

    CAS  Google Scholar 

  • Nemoto T, Takagi T (1983) Primary structure of Tachypleus tridentatus a chain. In: Wood JE (ed) Structure and function of invertebrate respiratory proteins. Life Chem Rep Suppl 1, Harwood, London, pp 89–92

    Google Scholar 

  • Neuteboom B, Dokter W, van Gijsen J, Rensink H, De Vries J, Beintema JJ (1989a) Partial amino acid sequence of a hemocyanin subunit from Panulirus vulgaris. Comp Biochem Physiol 94B: 593–597

    CAS  Google Scholar 

  • Neuteboom B, Sierdsema JS, Beintema JJ (1989b) The relationship between N-terminal sequences and immunological characterization of crustacean hemocyanins. Comp Biochem Physiol 94B: 587–592

    CAS  Google Scholar 

  • Ochs RL, Ochs DC, Burton PR (1980) Axons of crayfish nerve cord contain intracellular hemocyanin. J Cell Biol 87: CN623

    Google Scholar 

  • Olson K, Terwilliger N, McDowell J (1988) Structure of hemocyanin in larval and adult American lobsters. Am Zool 28: A47

    Google Scholar 

  • Palli SR, Locke M (1987) Purification and localization of the three major haemolymph proteins of an insect, Calpodes ethlius (Lepidoptera, Hesperiidae). Arch Insect Biochem Biophys 5: 233–245

    Article  CAS  Google Scholar 

  • Patak A, Baldwin J (1989) Immunochemical comparisons of haemocyanins from Australian freshwater crayfish - phylogenetic implications. Biochem Syst Ecol 17: 249–252

    Article  CAS  Google Scholar 

  • Penz F, Nahke P, Decker H (1990). Unfolding of Eurypelma hemocyanin subunit e induced with urea. In: Preaux G, Lontie R (eds) Invertebrate dioxygen carriers. Leuven Univ Press, Leuven, pp 197–200

    Google Scholar 

  • Perutz MF (1989) Mechanisms of cooperativity and allosteric regulation in proteins. Q Rev Biophys 22: 139–236

    Article  PubMed  CAS  Google Scholar 

  • Pfiffner E, Lerch K (1981) Histidine at the active site of Neurospora tyrosinase. Biochemistry 20: 6030–6035

    Article  Google Scholar 

  • Pickett SM, Riggs AF, Larimer JL (1966) Lobster hemocyanin: properties of the minimum functional subunit and of aggregates. Science 151: 1005–1007

    Article  PubMed  CAS  Google Scholar 

  • Pilz J, Goral K, Hoylaerts M, Witters R, Lontie R (1980) Studies by small-angle X-ray scattering of the quaternary structure of the 24S-component of the hemocyanin of Astacus leptodactylus in solution. Eur J Biochem 105: 539–543

    Article  PubMed  CAS  Google Scholar 

  • Preaux G, Vandamme A, De Bethune B, Jacobs M-P, Lontie R (1986) Haemocyanin- mRNA-rich fractions of cephalopodan Decabrachia and of Crustacea, their in vivo and in vitro translation. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin Heidelberg New York, pp 485–488

    Google Scholar 

  • Preaux G, Gielens C, Witters R, Lontie R (1988) The structure of molluscan haemocyanins and their homology with tyrosinases. Bull Soc Chim Belg 97: 1037–1044

    Article  CAS  Google Scholar 

  • Precht E (1990) Immunologische Heterogenität und Sauerstoff-bindungseigenschaften der Untereinheiten des Hämocyanins aus Krabben. Thesis, Univ München

    Google Scholar 

  • Presnell SR, Cohen FE (1989) Topological distribution of four-a-helix bundles. Proc Natl Acad Sci USA 86: 6592–6596

    Article  PubMed  CAS  Google Scholar 

  • Quagliariello G (1923) Das Hämocyanin. Naturwissenschaften 14: 261–268

    Article  Google Scholar 

  • Redfield AC (1934) The haemocyanins. Biol Rev 9: 175–212

    Article  CAS  Google Scholar 

  • Reed AC (1985) Hemocyanin cooperativity: a copper coordination chemistry perspective. In: Karlin KD, Zubieta J (eds) Biological and inorganic copper chemistry. Adenine, New York, pp 61–73

    Google Scholar 

  • Reisinger P (1986) Circular dichroism spectra of native 37s hemocyanin from the spider Eurypelma californicum and its subunits. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin Heidelberg New York, pp 203–206

    Google Scholar 

  • Ricchelli B, Salvato B, Filippi B, Jori G (1980) Conformational changes of Carcinus maenas hemocyanin induced by urea. Arch Biochem Biophys 202: 277–288

    Article  PubMed  CAS  Google Scholar 

  • Ricchelli F, Tealdo E, Salvato B (1983) Differential quenching effect of the copper ions in the active site on the hemocyanin fluorescence. In: Wood EJ (ed) Structure and function of invertebrate respiratory proteins. Life Chem Rep Suppl 1, Harwood, London, pp 301–304

    Google Scholar 

  • Richey B, Decker H, Gill SJ (1985) Binding of oxygen and carbon monoxide to arthropodan hemocyanin: an allosteric analysis. Biochemistry 24: 109–117

    Article  PubMed  CAS  Google Scholar 

  • Robert CH, Decker H, Richey B, Gill SJ, Wyman J (1987) Nesting: hierarchies of allosteric interactions. Proc Natl Acad Sci USA 84: 1891–1895

    Article  PubMed  CAS  Google Scholar 

  • Rochu D, Fine JM (1978) Antigenic structure of the hemocyanin in six species of decapod Crustacea. Comp Biochem Physiol 59A: 145–150

    Article  CAS  Google Scholar 

  • Rochu D, Fine JM (1980) Cancer pagurus hemocyanin: electrophoretic and antigenic heterogeneity of the monomeric subunits. Comp Biochem Physiol 66B: 273–278

    CAS  Google Scholar 

  • Rochu D, Fine JM (1984a) Characterization of the subunits of Cancer pagurus hemocyanin. Comp Biochem Physiol 77B: 333–336

    CAS  Google Scholar 

  • Rochu D, Fine JM (1984b) Cancer pagurus hemocyanin: subunit arrangement and subunit evolution in functional polymeric forms. Comp Biochem Physiol 78B: 67–74

    CAS  Google Scholar 

  • Ruppert S, Müller G, Kwon B, Schütz G (1988) Multiple transcripts of the mouse tyrosinase gene are generated by alternative splicing. EMBO J 7: 2715–2722

    PubMed  CAS  Google Scholar 

  • Ryan RO, Anderson DR, Grimes WJ, Law JH (1985) Arylphorin from Manduca sexta: carbohydrate structure and immunological studies. Arch Biochem Biophys 243: 115– 124

    Article  PubMed  CAS  Google Scholar 

  • Sakurai H, Fujii T, Izumi S, Tomino S (1988) Structure and expression of gene coding for sex-specific storage protein of Bombyx mori. J Biol Chem 263: 7876–7880

    PubMed  CAS  Google Scholar 

  • Salvato B, Beltramini M (1990) Hemocyanin molecular architecture: structure and reactivity of the binuclear copper-active site. Life Chem Rep 8: 1–47

    CAS  Google Scholar 

  • Salvato B, Sartore S, Rizzotti M, Ghiretti-Magaldi A (1972) Molecular weight determination of polypeptide chains of molluscan and arthropod hemocyanins. FEBS Lett 22: 5–7

    Article  PubMed  CAS  Google Scholar 

  • Salvato B, Jori G, Piazzese A, Ghiretti F, Beltramini M, Lerch K (1983) Enzymic activities of type-3 copper pair in Octopus vulgaris haemocyanin. In: Wood EJ (ed) Structure and function of invertebrate respiratory proteins. Life Chem Rep Suppl 1, Harwood, London, pp 313–317

    Google Scholar 

  • Savel-Niemann A, Markl J, Linzen B (1988) Hemocyanins in spiders. XXII. Range of allosteric interaction in a four-hexamer hemocyanin. Co-operativity and Bohr effect in dissociation intermediates. J Mol Biol 204: 385–395

    Article  PubMed  CAS  Google Scholar 

  • Schartau W, Eyerie F, Reisinger P, Geisert H, Storz H, Linzen B (1983) Hemocyanins in spiders. XIX. Complete amino-acid sequence of subunit d from Eurypelma californicum hemocyanin, and comparison to chain e. Hoppe-Seyler’s Z Physiol Chem 364: 1383–1409

    Article  PubMed  CAS  Google Scholar 

  • Schartau W, Metzger W, Sonner P, Pysny W (1986) Hemocyanins of the spider Eurypelma californicum: amino acid sequence of subunit a and of smaller CB peptides of subunit b and c. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin Heidelberg New York, pp 203–206

    Google Scholar 

  • Schartau W, Metzger W, Sonner P, Geisert H, Storz H (1990) Hemocyanins in spiders. XXIII. Complete amino-acid sequence of subunit a of Eurypelma californicum hemocyanin. Biol Chem HS 371: 557–565

    CAS  Google Scholar 

  • Scheller K (1983) The larval serum proteins of insects. Thieme, Stuttgart, pp 1–190

    Google Scholar 

  • Scheller K (1987) Larval serum proteins of insects. Biol Chem HS 368: 571–578

    Google Scholar 

  • Scheller K, Fischer B, Schenkel H (1990) Molecular properties, functions and developmentally regulated biosynthesis of arylphorin in Calliphora vicina. In: Hagedorn HH, Hildebrand JG, Kidwell MG, Law JH (eds) Molecular insect science. Plenum, New York, pp 155–162

    Google Scholar 

  • Schneider H-J, Markl J, Schartau W, Linzen B (1977) Hemocyanins in spiders. IV. Subunit heterogeneity in Eurypelma (Dugesiella) hemocyanin, and separation of polypeptide chains. Hoppe-Seyler’s Z Physiol Chem 358: 1133–1141

    Article  PubMed  CAS  Google Scholar 

  • Schneider H-J, Drexel R, Feldmaier G, Linzen B, Lottspeich F, Henschen A (1983) Hemocyanins in spiders. XVIII. Complete amino-acid sequence of subunit e from Eurypelma californicum hemocyanin. Hoppe-Seyler’s Z Physiol Chem 364: 1357– 1381

    Article  PubMed  CAS  Google Scholar 

  • Schneider H-J, Voll W, Lehmann L, Grißhammer R, Goettgens A, Linzen B (1986) Partial amino acid sequence of crayfish (Astacus leptodactylus) hemocyanin. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin Heidelberg New York, pp 172– 176

    Google Scholar 

  • Schönenberger N, Cox JA, Gabbiani G (1980) Evidence for hemocyanin formation in the compound eye of Squilla mantis (Crustacea Stomatopoda). Cell Tissue Res 205: 397– 409

    Article  PubMed  Google Scholar 

  • Schram FR (1982) The fossil record and evolution of Crustacea. In: Abele LG (ed) The biology of the Crustacea. Academic Press, New York, pp 93–147

    Google Scholar 

  • Schutter WG, Keegstra W, Booy F, Haker J, van Bruggen EFJ (1986) STEM and cryo-TEM of Limulus and Kelletia hemocyanin. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin Heidelberg New York, pp 217–220

    Google Scholar 

  • Senkbeil EG, Wriston JC (1981a) Catabolism of hemocyanin in the American lobster, Homarus americanus. Comp Biochem Physiol 69B: 781–789

    CAS  Google Scholar 

  • Senkbeil EG, Wriston JC (1981b) Hemocyanin synthesis in the American lobster, Homarus americanus. Comp Biochem Physiol 68B, 163–171

    CAS  Google Scholar 

  • Senozan NM, Briggs M (1989) Hemocyanin levels in the giant keyhole limpet, Megathura crenulata, from the coast of California. Comp Biochem Physiol 94A: 195–199

    Article  CAS  Google Scholar 

  • Sharp PM (1988) Introns and the origin of life. TREE 3: 154–156

    Google Scholar 

  • Sherman RG (1973) Ultrastructurally different hemocytes in a spider. Can J Zool 51: 1155–1159

    Article  Google Scholar 

  • Sizaret P-Y, Frank J, Lamy J, Weill J, Lamy JN (1982) A refined quaternary structure of Androctonus australis hemocyanin. Eur J Biochem 127: 501–506

    Article  PubMed  CAS  Google Scholar 

  • Sminia T, Boer HH, Niemantsverdriet A (1972) Haemoglobin producing cells in freshwater snails. Z Zellforsch 135: 563–568

    Article  PubMed  CAS  Google Scholar 

  • Soeter NM, Jekel PA, Beintema JJ, Volbeda A, Hol WGJ (1987) Primary and tertiary structures of the first domain of Panulirus interruptus hemocyanin and comparison of arthropod hemocyanins. Eur J Biochem 169: 323–332

    Article  PubMed  CAS  Google Scholar 

  • Solomon EI (1981) Binuclear copper active site. Hemocyanin, tyrosinase and type 3 copper oxydases. In: Spiro TG (ed) Copper proteins. Wiley, New York, pp 41–108

    Google Scholar 

  • Sterner R, Decker H (1990) Conformational transition of Carcinus maenas hemocyanin monitored with an organic dye (neutral red). In: Preaux G, Lontie R (eds) Invertebrate dioxygen carriers. Leuven Univ Press, Leuven, pp 193–196

    Google Scholar 

  • Stöcker W, Raeder U, Bijlholt MMC, Wichertjes T, Van Bruggen EFJ, Markl J (1988) The quaternary structure of four crustacean 2 × 6 hemocyanins: immunocorrelation, stoichiometry, reassembly and topology of individual subunits. J Comp Physiol 158B: 271–289

    Google Scholar 

  • Sugita H, Sekiguchi K (1975) Heterogeneity of the minimum functional unit of hemocyanins from the spider (Argiope bruennichii), the scorpion (Heterometrus sp.), and the horseshoe crab (Tachypleus tridentatus). J Biochem 78: 713–718

    PubMed  CAS  Google Scholar 

  • Sullivan B, Bonaventura J, Bonaventura C (1974) Functional differences in the multiple hemocyanins of the horseshoe crab, Limulus polyphemus L. Proc Natl Acad Sci USA 71: 2558–2562

    Article  PubMed  CAS  Google Scholar 

  • Sullivan B, Bonaventura J, Bonaventura C, Godette G (1976) Hemocyanin of the horseshoe crab, Limulus polyphemus. Structural differentiation of the isolated components. J Biol Chem 251: 7644–7648

    PubMed  CAS  Google Scholar 

  • Takagi T (1986) Amino acid sequence of the C-terminal domain of octopus (Paroctopus dofleini dofleini) hemocyanin. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin Heidelberg New York, pp 259–262

    Google Scholar 

  • Takagi T, Nemoto T (1980) Tachypleus tridentatus hemocyanin. Separation and characterization of monomer subunits and studies of sulfhydryl groups. J Biochem 87: 1785–1793

    PubMed  CAS  Google Scholar 

  • Telfer WH, Kunkel JG (1991) The function and evolution of insect storage hexamers. Annu Rev Entomol 36: 205–288

    Article  PubMed  CAS  Google Scholar 

  • Telfer WH, Massey HC (1987) A storage hexamer from Hyalophora that binds riboflavin and resembles the apoprotein of hemocyanin. In: Law JH (ed) UCLA Symp Mol Cell Biol New Ser 49. Alan R Liss, New York, pp 305–314

    Google Scholar 

  • Terwilliger NB (1982) Effect of subunit composition on the quaternary structure of isopod (Ligia pallasii) hemocyanin. Biochemistry 21: 2579–2586

    Article  PubMed  CAS  Google Scholar 

  • Terwilliger NB, Terwilliger RC (1982) Changes in the subunit structure of Cancer magister hemocyanin during larval development. J Exp Zool 221: 181–191

    Article  CAS  Google Scholar 

  • Terwilliger NB, Terwilliger RC, Applestein M, Bonaventura C, Bonaventura J (1979) Subunit structure and oxygen binding by hemocyanin of the isopod Ligia exotica. Biochemistry 18: 102–108

    Article  PubMed  CAS  Google Scholar 

  • Topham RW, Tesh S, Bonaventura C, Bonaventura J (1986) Active-site heterogeneity as revealed by peroxide and mercury: interactions with purified subunits of Limulus hemocyanin. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin Heidelberg New York, pp 407–416

    Google Scholar 

  • Traut TW (1988) Do exons code for structural or functional units in proteins? Proc Natl Acad Sci USA 85: 2944–2948

    Article  PubMed  CAS  Google Scholar 

  • Treacy GB, Jeffrey PD (1986) Subunit heterogeneity and aggregate formation in Cherax destructor and Jasus sp. hemocyanins. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin Heidelberg New York, pp 207–211

    Google Scholar 

  • Van Breemen JFL, Ploegman JH, Van Bruggen EFJ (1979) Structure of Helix pomatia oxy-β-hemocyanin and deoxy-ß-hemocyanin tubular polymers. Eur J Biochem 100: 61–65

    Article  PubMed  Google Scholar 

  • Van Bruggen EFJ (1983) An electron microscopists view of the quaternary structure of arthropodan and molluscan hemocyanins. In: Wood EJ (ed) Structure and function of invertebrate respiratory proteins. Life Chem Rep Suppl 1, Harwood, London, pp 1–14

    Google Scholar 

  • Van Bruggen EFJ, Bijlholt MMC, Schütter WG, Wichertjes T, Bonaventura J, Bonaventura C, Lamy J, Lamy J, Leclerc M, Schneider H-J, Markl J, Linzen B (1980) The role of structurally diverse subunits in the assembly of three cheliceratan hemocyanins. FEBS Lett 116: 207–210

    Article  Google Scholar 

  • Van Bruggen EFJ, Schutter WG, Breemen JFL, Bijlholt MMC, Wichertjes T (1981) The hemocyanins. In: Harris JR (ed) Electron microscopy of proteins, 1. Academic Press, London, pp 1–38

    Google Scholar 

  • Van Heel M, Frank J (1981) Use of multivariate statistics in analysing the images of biological macromolecules. Ultramicroscopy 6: 187–194

    PubMed  Google Scholar 

  • Van Heel M, Keegstra W, Schutter W, Van Bruggen EFJ (1983) Arthropod hemocyanin structures studied by image analysis. In: Wood EJ (ed) Structure and function of invertebrate respiratory proteins. Life Chem Rep Suppl 1, Harwood, London, pp 69–73

    Google Scholar 

  • Van Holde KE, Brenowitz M (1981) Subunit structure and physical properties of the hemocyanin of the giant isopod Bathynomus giganteus. Biochemistry 20: 5232–5239

    Article  PubMed  Google Scholar 

  • Van Holde KE, Miller KJ (1982) Haemocyanins. Q Rev Biophys 15: 1–129

    Article  PubMed  Google Scholar 

  • Van Holde KE, van Bruggen EFJ (1971) The hemocyanins. In: Timasheff SN, Fasman GD (eds) Biological macromolecules 5. Dekker, New York, pp 1–53

    Google Scholar 

  • Van Kuik JA (1987) Structural determination of the carbohydrate chains from arthropod and mollusc hemocyanin by means of 500-mHz 1H-NMR spectroscopy. Thesis, Rijksuniversiteit Utrecht, Netherlands

    Google Scholar 

  • Van Kuik JA, van Halbeek H, Kamerling JP, Vliegenthart JFG (1986) Primary structure of the neutral carbohydrate chains of hemocyanin from Panulirus interruptus. Eur J Biochem 159: 297–301

    Article  PubMed  Google Scholar 

  • Vinogradov SN (1985) The structure of invertebrate extracellular hemoglobins (erythrocruorins and chlorocruorins). Comp Biochem Physiol 82B: 1–15

    CAS  Google Scholar 

  • Voit R, Schneider H-J (1986) Tarantula hemocyanin mRNA. In vitro translation, cDNA cloning and nucleotide sequence corresponding to subunit e. Eur J Biochem 159: 23–29

    Article  PubMed  CAS  Google Scholar 

  • Voit R, Feldmaier-Fuchs G (1990) Arthropod hemocyanins: molecular cloning and sequencing of cDNAs encoding the tarantula hemocyanin subunits a and e. J Biol Chem 265: 19447–19452

    PubMed  CAS  Google Scholar 

  • Volbeda A, Hoi WGJ (1989a) Crystal structure of hexameric haemocyanin from Panulirus interruptus refined at 3.2 Å resolution. J Mol Biol 209: 249–279

    Article  PubMed  CAS  Google Scholar 

  • Volbeda A, Hoi WGJ (1989b) Pseudo 2-fold symmetry in the copper-binding domain of arthropodan haemocanins. Possible implications for the evolution of oxygen transport proteins. J Mol Biol 206: 531–546

    Article  PubMed  CAS  Google Scholar 

  • Volbeda A, Feiters MC, Vincent MG, Bouwman E, Dobson B, Kalk, KH, Reedijk J, Hol WGJ (1989) Spectroscopic investigations of Panulirus interruptus hemocyanin in the crystalline state. Eur J Biochem 181: 669–673

    Article  PubMed  CAS  Google Scholar 

  • Voll W, Voit R (1990) Characterization of the gene encoding the hemocyanin subunit e from the tarantula Eurypelma californicum. Proc Natl Acad Sci USA 87: 5312– 5316

    Article  PubMed  CAS  Google Scholar 

  • Vranckx R, Durliat M (1986) Cuticular proteins in the crayfish Astacus leptodactylus. I. Main components. Comp Biochem Physiol 85B: 255–265

    CAS  Google Scholar 

  • Vuillaume M, Ducancel F, Calvayrac R, Rabilloud T Hubert M, Goyffon M (1989) Correlations between the catalase-like activity, and the H2O2-ATP production of haemocyanin and its subunits; implications with the radioresistance of the scorpion Androctonus australis. Comp Biochem Physiol 92B: 17–23

    CAS  Google Scholar 

  • Wache S, Terwilliger NB, Terwilliger RC (1988) Hemocyanin structure changes during early development of the crab Cancer productus. J Exp Zool 247: 23–32

    Article  CAS  Google Scholar 

  • Wade RH, Taveau, JC, Lamy JN (1989) Concerning the axial rotational flexibility of the Fab regions of immunoglobulin G. J Mol Biol 206: 349–356

    Article  PubMed  CAS  Google Scholar 

  • Waxman L (1975) The structure of arthropod and mollusc hemocyanin. J Biol Chem 250: 3796–3806

    PubMed  CAS  Google Scholar 

  • Wibo M (1966) Recherches sur les hemocyanins des arthropodes; constantes de sedimentation et aspects morphologiques. Thesis, Univ Cathol Louvain, Belgium

    Google Scholar 

  • Wichertjes T, Keegstra W, Neuteboom B, Hazes B, Beintema JJ, Van Bruggen EFJ (1989) Crystallization properties and structure of Panulirus interruptus haemocyanin. Eur J Biochem 184: 287–296

    Article  PubMed  CAS  Google Scholar 

  • Willot E, Wang X-Y, Wells MA (1989) cDNA and gene sequence of Manduca sexta arylphorin, an aromatic amino acid-rich larval serum protein. Homology to arthropod hemocyanin. J Biol Chem 264: 19052–19059

    Google Scholar 

  • Winkler M, Lerch K, Solomon EI (1981) Competitive inhibitor binding to the binuclear copper active site in tyrosinase. J Am Chem Soc 103: 7001–7003

    Article  CAS  Google Scholar 

  • Wood EJ (1980) The oxygen transport and storage proteins in invertebrates. Essays Biochem 16: 1–47

    PubMed  CAS  Google Scholar 

  • Wood EJ, Bonaventura J (1981) Identification of Limulus polyphemus haemocyanin messenger RNA. Biochem J 196: 653–656

    PubMed  CAS  Google Scholar 

  • Wyman J (1984) Linkage graphs: a study in the thermodynamics of macromolecules. Q Rev Biophys 17: 453–488

    Article  PubMed  CAS  Google Scholar 

  • Yoo B-S, Lee K-S, Lee J-H, Yang K-H (1989) The subunit heterogeneity of Portunus trituberculatus haemocyanin. Comp Biochem Physiol 92B: 323–327

    CAS  Google Scholar 

  • Zatta P, Ghiretti F (1983) Non-respiratory functions of hemocyanin. In: Wood EJ (ed) Structure and function of invertebrate respiratory proteins. Life Chem Rep Suppl 1, Harwood, London, pp 329–332

    Google Scholar 

  • Zatta P, Moschini G, Buso P, Collauti P, Stievani B (1983) Hemocyanin as metal transport protein in Carcinus maenas blood. In: Wood EJ (ed) Structure and function of invertebrate respiratory proteins. Life Chem Rep Suppl 1, Harwood, London, pp 333–334

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Markl, J., Decker, H. (1992). Molecular Structure of the Arthropod Hemocyanins. In: Mangum, C.P. (eds) Blood and Tissue Oxygen Carriers. Advances in Comparative and Environmental Physiology, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76418-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76418-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76420-2

  • Online ISBN: 978-3-642-76418-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics