Skip to main content
Log in

Hemocyanins in spiders

XI. The quaternary structure ofCupiennius hemocyanin

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

  1. 1.

    The hemocyanin of the lycosid spiderCupiennius salei was separated into its hexameric (16 S) and dodecameric (24 S) components, and analyzed quantitatively. The reassociation and topologic distribution of the subunits were studied.

  2. 2.

    There are two types of subunits. One is monomeric (5 S) and consists of 5 electrophoretically distinct bands which are, however, immunologically identical. The other is a disulphide bridged dimer (7 S) which yields 2 components upon electrophoresis or immunoelectrophoresis. The significance of this heterogeneity was not studied. The dimer is antigenically deficient with respect to the monomer.

  3. 3.

    Whereas the 16 S hemocyanin is composed of six monomers, 24 S hemocyanin contains 10 monomers and 1 dimer.

  4. 4.

    Alkaline dissociation of 24 S hemocyanin (dodecamer) into subunits passes through a heptameric state (18 S) which is composed of 5 monomers and the dimer. In the electron microscope, 16 S-like units with a seventh polypeptide attached can be distinguished.

  5. 5.

    Treatment of 24 S or 18 S hemocyanin with reducing agents to cleave the disulphide bridge leads to a second type of hexamer (16 S′) which is electrophoretically distinct from native hexamers (16 S), and composed of 5 monomers and one constituent polypeptide chain of the dimer.

  6. 6.

    Upon dialysis of a monomer/dimer mixture against neutral buffer containing 40 mM calcium, 16 S, 18 S and 24 S particles are formed. The three reconstituted hemocyanins exhibit subunit compositions identical to the native hemocyanins and the 18 S component obtained during dissociation.

  7. 7.

    The results suggest that the 24 S hemocyanin particle consists of two identical hexamers linked by the disulphide bridge of a dimeric subunit shared by both hexamers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bijlholt MMC, Bruggen EFJ van, Bonaventura J (1979) Dissociation and reassembly ofLimulus polyphemus hemocyanin. Eur J Biochem 95:399–405

    Google Scholar 

  • Czichos-Tiedt S (1975) Versuche zur Reiningung und Charakterisierung des Hämocyanins aus der SpinneCupiennius salei Keyserling. Thesis. Universität Müchen

  • Herick JL, Smith AJ (1968) Size and charge isomer separation and estimation of molecular weights of proteins by disc gel electrophoresis. Arch Biochem Biophys 126:155–164

    Google Scholar 

  • Holde KE van, Bruggen EFJ van (1971) The hemocyanins. In: Timasheff SN, Fasman GD (eds) Subunits in biological systems. Dekker. New York, pp 1–53

    Google Scholar 

  • Hoylaerts M, Préaux G, Witters R, Lontie R (1979) Immunological heterogeneity of the subunits ofLimulus polyphemus haemocyanin. Arch Int Physiol Biochim 87:417–418

    Google Scholar 

  • Jeffrey PD (1979) Hemocyanin from the Australian freshwater crayfishCherax destructor. Electron microscopy of native and reassembled molecules. Biochemistry 12:2508–2513

    Google Scholar 

  • Jeffrey PD, Andrews PR (1980) Application of calculated sedimentation ratios in the specification of models for protein dimers, trimers, tetramers and pentamers. Biophys Chem 11:61–70

    Google Scholar 

  • Johnson ML, Yphantis DA (1978) Subunit association and heterogeneity ofLimulus polyphemus hemocyanin. Biochemistry 17:1448–1455

    Google Scholar 

  • Klarman A, Gottlieb J, Daniel E (1979) Quaternary structure and arrangement of subunits in hemocyanin from the scorpionLeirus quinquestriatus. Biochemistry 18:2239–2244

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T 4. Nature (London) 227:680–685

    Google Scholar 

  • Lamy J, Lamy J, Baglin M-C, Weill J (1977) Scorpion hemocyanin subunits: properties, dissociation, association. In: Bannister JV (ed) Structure and function of haemocyanin. Springer, Berlin Heidelberg New York, pp 37–49

    Google Scholar 

  • Lamy J, Lamy J, Weill J, Markl J, Schneider H-J, Linzen B (1979a) Hemocyanins in spiders. VII. Immunological comparison of the subunits ofEurypelma californicum hemocyanin. Hoppe-Seyler's Z Physiol Chem 360:889–895

    Google Scholar 

  • Lamy J, Lamy J, Weill J (1979b) Arthropod hemocyanin structure. Isolation of eight subunits in the scorpion. Arch Biochem Biophys 193:140–149

    Google Scholar 

  • Lamy J, Lamy J, Weill J, Bonaventura J, Bonaventura C, Brenowitz M (1979c) Purification and immunological identification of the dissociation products of nativeLimulus polyphemus andTachypleus tridentatus hemocyanins. Arch Biochem Biophys 196:324–339

    Google Scholar 

  • Lamy J, Lamy J, Sizaret P-Y, Weill J (1981) Quaternary structure ofAndroctonus australis hemocyanin. In: Lamy J (ed) Structure, active site, and function of invertebrate oxygen binding proteins. Dekker, New York, in press

    Google Scholar 

  • Loewe R, Schmid R, Linzen B (1977) Subunit association and oxygen binding properties in spider hemocyanins. In: Bannister JV (ed) Structure and function of haemocyanin. Springer. Berlin Heidelberg New York, pp 50–54

    Google Scholar 

  • Lontie R, Witters R (1973) Haemocyanin. In: Eichhorn GL (ed) Inorganic biochemistry, vol 1. Elsevier, Amsterdam, pp 344–358

    Google Scholar 

  • Markl J, Kempter B (1981) Subunit heterogeneity in arthropod hemocyanins. In: Lamy J (ed) Structure, active site, and function of invertebrate oxygen binding proteins. Dekker, New York, in press

    Google Scholar 

  • Markl J, Schmid R, Czichos-Tiedt S, Linze B (1976) Haemocyanins in spiders. III. Chemical and physical properties of the proteins inDugesiella andCupiennius blood. Hoppe-Seyler's Z Physiol Chem 357:1713–1725

    Google Scholar 

  • Markl J, Markl A, Schartau W, Linzen B (1979a) Subunit heterogeneity in arthropod hemocyanins. I. Chelicerata. J Comp Physiol 130:283–292

    Google Scholar 

  • Markl J, Hofer A, Bauer G, Markl A, Kempter B, Brenzinger M, Linzen B (1979b) Subunit heterogeneity in arthropod hemocyanins. II. Crustacea. J Comp Physiol 133:167–175

    Google Scholar 

  • Markl J, Strych W, Schartau W, Schneider H-J, Schöberl P, Linzen B (1979c) Hemocyanins in spiders. VI. Comparison of the polypeptide chains ofEurypelma californicum hemocyanin. Hoppe-Seyler's Z Physiol Chem 360:639–650

    Google Scholar 

  • Markl J, Savel A, Decker H, Linzen B (1980) Hemocyanins in spiders. IX. Homogeneity, subunit composition and the basic oligomeric structure ofEurypelma californicum hemocyanin. Hoppe-Seyler's Z Physiol Chem 361:649–660

    Google Scholar 

  • Markl J, Decker H, Savel A, Linzen B (1981) Homogeneity, subunit heterogeneity, and quaternary structure ofEurypelma hemocyanin. In: Lamy J (ed) Structure, active site, and function of invertebrate oxygen binding proteins Dekker, New York, in press

    Google Scholar 

  • Murray AC, Jeffrey PD (1974) Hemocyanin from the Australian freshwater crayfish,Cherax destructor. Subunit heterogeneity. Biochemistry 13:3667–3671

    Google Scholar 

  • Pilz I, Goral K, Hoylaerts M, Witters R, Lontie R (1980) Studies by small-angle X-ray scattering of the quaternary structure of the 24 S-component of the haemocyanin ofAstacus leptodactylus in solution. Eur J Biochem 105:539–543

    Google Scholar 

  • Schaick EJM van, Schutter WG, Gaykema WPJ, Bruggen EFJ van, Hol WGJ (1981) The crystal structure of the hemocyanin hexamer fromPanulirus interruptus at 5 Å resolution. In: Lamy J (ed) Structure, active site and function of invertebrate oxygen binding proteins. Dekker. New York, in press

    Google Scholar 

  • Schepman AMH (1975) X-ray diffraction and electron microscopy. Thesis, Rijksuniversiteit Groningen

    Google Scholar 

  • Schmid R (1976) Chemisch-physikalische Untersuchungen an Spinnenhänmocyaninen und ihren Untereinheiten. Thesis, Universität München

  • Schneider H-J, Markl J, Schartau W, Linzen B (1977) Hemocyanins in spiders. IV. Subunit heterogeneity ofEurypelma (Dugesiella) hemocyanin and separation of polypeptide chains. Hoppe-Seyler's Z Physiol Chem 358:1133–1141

    Google Scholar 

  • Schutter WG, Bruggen EFJ van, Bonaventura J, Bonaventura C, Sullivan B (1977) Structure, dissociation and reassembly ofLimulus polyphemus hemocyanin. In: Bannister JV (ed) Structure and function of haemocyanin. Springer, Berlin Heidelberg New York, pp 13–21

    Google Scholar 

  • Siezen RJ, Bruggen EFJ van (1974) Structure and properties of hemocyanins. XII. Electron microscopy of dissociation products ofHelix pomatia α-heamocyanin: Quaternary structure. J Mol Biol 90:77–89

    Google Scholar 

  • Sullivan B, Bonaventura J, Bonaventura C, Godette G (1976) Hemocyanin of the horseshoe crab,Limulus polyphemus. Structural differentiation of the isolated components. J Biol Chem 251:7644–7648

    Google Scholar 

  • Weeke B (1973) Crossed immunoelectrophoresis. Scand J Immunol 2:47–56

    Google Scholar 

  • Wibo M (1966) Recherches sur les hémocyanines des arthropodes: constantes de sédimentation et aspects morphologiques. Thesis, Université Catholique de Louvain

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markl, J. Hemocyanins in spiders. J Comp Physiol B 140, 199–207 (1980). https://doi.org/10.1007/BF00690404

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00690404

Keywords

Navigation