Skip to main content

Geology and Chemistry

  • Chapter
Hypersaline Environments

Part of the book series: Brock/Springer Series in Contemporary Bioscience ((BROCK/SPRINGER))

Abstract

The terms brines and evaporites are used in a generic way to describe concentrated solutions of ions and the chemical precipitates from those solutions. Based on the order of precipitation of evaporite minerals from brines of known composition, geochemists have deduced the chemistry of brines from which ancient evaporites have been deposited. Modern evaporite basins and their brines also serve as models to reconstruct the physical and temporal development of ancient evaporite deposits. The following discussion highlights some of the major geological aspects of hypersaline environments as well as chemical and physical aspects of brines. The discussion of brine chemistry emphasizes the factors that are important in biological productivity. The modern evaporite areas discussed in this book are shown in Figure 1.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abd-el-Malek, Y. and Rizk, S.G. 1963. Bacterial sulphate reduction and the development of alkalinity. III. Experiments under natural conditions in the Wadi Natrun. Journal of Applied Bacteriology 26: 20–26.

    Article  CAS  Google Scholar 

  • Amit, O. and Bentor, Y.K. 1971. pH dilution curves of saline waters. Chemical Geology 7: 307–313.

    Article  CAS  Google Scholar 

  • Baas-Becking, L.G.M. and Kaplan, I.R. 1956. The microbiological origin of the sulphur nodules of Lake Eyre. Transactions of the Royal Society of South Australia 79: 52–65.

    CAS  Google Scholar 

  • Ben-Yaakov, S. 1973. pH buffering of porewater of recent anoxic marine sediments. Limnology and Oceanography 18: 86–94.

    Article  CAS  Google Scholar 

  • Ben-Yaakov, S. and Sass, E. 1977. Independent estimate of the pH of Dead Sea brine. Limnology and Oceanography 22: 374–376.

    Article  CAS  Google Scholar 

  • Berner, R.A. 1971. Principles of Chemical Sedimentology. McGraw-Hill, New York. 240 pp

    Google Scholar 

  • Borchert, H. and Muir, R.O. 1964. Salt Deposits. The Origin, Metamorphism and Deformation of Evaporites. Van Nostrand-Rheinhold, Princeton, 338 pp.

    Google Scholar 

  • Braitsch, O. 1971. Salt Deposits. Their Origin and Composition. Springer-Verlag, Berlin, 297 pp.

    Google Scholar 

  • Button, A. 1982. Sedimentary iron deposits, evaporites and phosphorites. State of the art report, pp. 259–273 in Holland, H.D. and Schidlowski, M. (editors), Mineral Deposits and the Evolution of the Biosphere, Dahlem Konferenzen, Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Campbell, P.J. 1978. Primary productivity of a hypersaline Antarctic lake. Australian Journal of Marine and Freshwater Research 29: 717–724.

    Article  CAS  Google Scholar 

  • Claypool, G.E., Holser, W.T., Kaplan, I.R., Sakai, H. and Zak, I. 1980. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chemical Geology 28: 199–260.

    Article  CAS  Google Scholar 

  • Cloern, J.E., Cole, B.E. and Oremland, R.S. 1983. Seasonal changes in the chemistry and biology of a meromictic lake (Big Soda Lake, Nevada, U.S.A.). Hydrobiologia 105: 195–206.

    Article  CAS  Google Scholar 

  • Cohen, Y., Goldberg, M., Krumbein, W.E. and Shilo, M. 1977. Solar Lake (Sinai). 1. Physical and chemical limnology. Limnology and Oceanography 22: 597–608.

    Article  CAS  Google Scholar 

  • Copeland, B.J. 1967. Environmental characteristics of hypersaline lagoons. Texas University Contributions to Marine Science 12: 207–218.

    Google Scholar 

  • Davidson, C.F. 1965. A possible mode of origin of strata-bound copper ores. Economic Geology 60: 942–954.

    Article  CAS  Google Scholar 

  • Dean, W.E. 1978. Theoretical versus observed successions from evaporation of sea-water, pp. 74–85 in Dean, W.E. and Schreiber, B.C. (editors), Marine Evaporites, Society of Economic Paleontologists and Mineralogists Short Course, no. 4, Tulsa.

    Google Scholar 

  • Eugster, H.P. and Hardie, L.A. 1978. Saline lakes, pp. 237–293 in Lerman, A. (editor), Lakes. Chemistry Geology Physics, Springer-Verlag, New York.

    Google Scholar 

  • Garreis, R.M. 1967. Ion-sensitive electrodes and individual ion activity coefficients, pp. 344–361 in Eisenman, G. (editor), Glass Electrodes for Hydrogen and Other Cations. Principles and Practice. Marcel Decker, New York.

    Google Scholar 

  • Garrels, R.M. and Perry, E.A. 1974. Cycling of carbon, oxygen, and sulfur through geologic time, pp. 303–336 in Goldberg, E. (editor), The Sea, vol. 3, John Wiley and Sons, New York.

    Google Scholar 

  • Garrels, R.M. and Lerman, A. 1984. Coupling of the sedimentary sulfur and carbon cycles—an improved model. American Journal of Science 284: 989–1007.

    Article  CAS  Google Scholar 

  • Garrels, R.M., Thompson, M.E. and Siever, R. 1961. Control of carbonate solubility by carbonate complexes. American Journal of Science 259: 24–45.

    Article  CAS  Google Scholar 

  • Garrett, D. 1965. Factors in the design of solar salt plants. Part II. Optimum operation of solar ponds, pp. 176–187 in Rau, J.L. (editor), Second Symposium on Salt, vol. 2, Northern Ohio Geological Society, Cleveland.

    Google Scholar 

  • Gerdes, G., Krumbein, W.E. and Holtkamp, E. 1985. Salinity and water activity related zonation of microbial communities and potential stromatolites of the Gavish Sabkha, pp. 238–266 in Friedman, G.M. and Krumbein, W.E. (editors), Hypersaline Ecosystems. The Gavish Sabkha, Ecological Studies 53, Springer-Verlag, New York.

    Google Scholar 

  • Hallberg, R.O., Bubela, B. and Ferguson, J. 1980. Metal chelation in sedimentary systems. Geomicrobiology Journal 2: 99–114.

    Article  CAS  Google Scholar 

  • Hammer, U.T. 1978. The saline lakes of Saskatchewan. III. Chemical characterization. Internationale Revue der gesamten Hydrobiologie 63: 311–335.

    Article  CAS  Google Scholar 

  • Hammer, U.T. 1981. A comparative study of primary production and related factors in four saline lakes in Victoria, Australia. Internationale Revue der gesamten Hydrobiologie 66: 701–743.

    Article  CAS  Google Scholar 

  • Hammer, U.T. and Haynes, R.C. 1978. The saline lakes of Saskatchewan. II. Locale, hydrography and other physical aspects. Internationale Revue der gesamten Hydrobiologie 63: 179–203.

    Article  Google Scholar 

  • Hardie, L.A. 1967. The gypsum-anhydrite equilibrium at one atmosphere pressure. American Mineralogist 52: 172–200.

    Google Scholar 

  • Hardie, L.A. 1984. Evaporites: marine or non-marine. American Journal of Science 284: 193–240.

    Article  CAS  Google Scholar 

  • Hardie, L.A. and Eugster, H.P. 1970. The evolution of closed-basin brines. Mineralogical Society of America Special Paper 3: 273–290.

    Google Scholar 

  • Harvie, C.E., Weare, J.H., Hardie, L.A. and Eugster, H.P. 1980. Evaporation of sea-water: calculated mineral sequences. Science 208: 498–500.

    Article  CAS  Google Scholar 

  • Holser, W.T. 1979a. Mineralogy of evaporites, pp. 211–294 in Burns, R.G. (editor), Marine Minerals, Mineralogical Society of America Short Course Notes, vol. 6, Washington, D.C.

    Google Scholar 

  • Holser, W.T. 1979b. Trace elements and isotopes in evaporites, pp. 295–346 in Burns, R.G. (editor), Marine Minerals, Mineralogical Society of America Short Course Notes, vol. 6, Washington, D.C.

    Google Scholar 

  • Horowitz, N.N. 1979. Biological water requirements, pp. 15–27 in Shilo, M. (editor), Strategies of Microbial Life in Extreme Environments, Dahlem Konferenzen, Berlin.

    Google Scholar 

  • Imhoff, J.F., Sahl, H.G., Soliman, G.S.H. and Trüper, H.G. 1979. The Wadi Natrun: chemical composition and microbial mass developments in alkaline brines of eutrophic desert lakes. Geomicrobiology Journal 1: 219–234.

    Article  CAS  Google Scholar 

  • Javor, B.J. 1983a. Nutrients and ecology of the Western Salt and Exportadora de Sal saltern brines, pp. 195–205 in Schreiber, B.C. and Harner, H.L. (editors), Sixth International Symposium on Salt, vol. 1. The Salt Institute. Toronto.

    Google Scholar 

  • Javor, B.J. 1983b. Planktonic standing crop and nutrients in a saltern ecosystem. Limnology and Oceanography 28: 153–159.

    Article  CAS  Google Scholar 

  • Javor, B.J. 1984. Growth potential of halophilic bacteria isolated from solar salt environments: carbon sources and salt requirements. Applied and Environmental Microbiology 48: 352–360.

    PubMed  CAS  Google Scholar 

  • Jones, B.F., Eugster, H.P. and Rettig, S.L. 1977. Hydrochemistry of the Lake Magadi basin, Kenya. Geochimica et Cosmochimica Acta 41: 53–72.

    Article  CAS  Google Scholar 

  • Kerry, K.R., Grace, D.R., Williams, R. and Burton, H.R. 1977. Studies on some saline lakes of the Vestfold Hills, Antarctica, pp. 839–858 in Llano, G.A. (editor), Adaptations Within Antarctic Ecosystems, Smithsonian Institution, Washington, D.C.

    Google Scholar 

  • Kinsman, D.J.J., Boardman, M. and Borcsik, M. 1974. An experimental determination of the solubility of oxygen in marine brines, pp. 325–327 in Coogan, A.J. (editor), Fourth Symposium on Salt, vol. 1, The Northern Ohio Geological Society, Cleveland.

    Google Scholar 

  • Krumgalz, B. 1980. Salt effect on pH of hypersaline solutions, pp. 73–83 in Nissenbaum, A. (editor), Hypersaline Brines and Evaporitic Environments, Developments in Sedimentology 26, Elsevier Scientific, New York.

    Chapter  Google Scholar 

  • Lazar, B., Starinsky, A., Katz, A., Sass, E. and Ben-Yaakov, S. 1983. The carbonate system in hypersaline solutions: alkalinity and CaCO3 solubility of evaporated sea-water. Limnology and Oceanography 28: 978–986.

    Article  CAS  Google Scholar 

  • Lyons, W.B., Hines, M.E. and Gaudette, H.E. 1984. Major and minor element pore water geochemistry of modern marine sabkhas: the influence of cyanobacterial mats, pp. 411–423 in Cohen, Y., Castenholz, R.W. and Halvorson, H.O. (editor), Microbial Mats: Stromatolites, MBL Lectures in Biology, vol. 3, Alan R. Liss, New York.

    Google Scholar 

  • Mason, D.T. 1967. Limnology of Mono Lake. University of California Publications in Zoology 83: 1–102.

    Google Scholar 

  • Neev, D. and Emery, K.O. 1967. The Dead Sea. Depositional processes and environments of evaporites. Bulletin of the Israel Geological Survey 41, 147 pp.

    Google Scholar 

  • Nehrkorn, A. and Schwartz, W. 1961. Untersuchungen über Lebensgemeinschaften halophiler Mikroorganismen. I. Mikroorganismen aus Salzeen der californischen Wustengebeite und aus einer Natriumchlorid-Sole. Zeitschrift für Allgemeine Mikrobiologie 1: 121–141.

    Article  CAS  Google Scholar 

  • Nissenbaum, A. 1975. The microbiology and biogeochemistry of the Dead Sea. Microbial Ecology 2: 139–161.

    Article  CAS  Google Scholar 

  • Oren, A. 1981. Approaches to the microbial ecology of the Dead Sea. Kieler Meeresforschungen 5: 416–424.

    Google Scholar 

  • Post, F.J. 1977. The microbial ecology of the Great Salt Lake. Microbial Ecology 3: 143–165.

    Article  CAS  Google Scholar 

  • Post, F.J. 1981. Microbiology of the Great Salt Lake North Arm. Hydrobiologia 81: 59–69.

    Article  Google Scholar 

  • Ratcliff, G.A. and Holdcroft, J.G. 1963. Diffusivities of gases in aqueous electrolyte solutions. Transactions of the Institution of Chemical Engineers 41: 315–319.

    CAS  Google Scholar 

  • Renfro, A.R. 1974. Genesis of evaporite-associated stratiform metalliferous deposits—a sabkha process. Economic Geology 69: 33–45.

    Article  CAS  Google Scholar 

  • Rodriguez-Valera, F., Ruiz-Berraquero, R. and Ramos-Cormenzana, A. 1981. Characteristics of the heterotrophic bacterial populations in hypersaline environments of different salt concentrations. Microbial Ecology 7: 235–243.

    Article  Google Scholar 

  • Rodriguez-Valera, F., Ventosa, A., Juez, G. and Imhoff, J.F. 1985. Variation of environmental features and microbial populations with salt concentration in a multi-pond saltern. Microbial Ecology 11: 107–115.

    Article  CAS  Google Scholar 

  • Ronov, A.B. 1968. Probable changes in the composition of sea water during the course of geological time. Sedimentology 10: 25–43.

    Article  CAS  Google Scholar 

  • Rose, A.W. 1976. The effect of cuprous chloride complexes on the origin of red-bed copper and related deposits. Economic Geology 71: 1036–1048.

    Article  CAS  Google Scholar 

  • Rothbaum, H.P. 1958. Vapor pressure of seawater concentrates. Journal of Chemical Engineering Data 3: 50–52.

    Article  CAS  Google Scholar 

  • Sass, E. and Ben-Yaakov, S. 1977. The carbonate system in hypersaline solutions: Dead Sea brines. Marine Chemistry 5: 183–199.

    Article  CAS  Google Scholar 

  • Sonnenfeld, P. 1984. Brines and Evaporites. Academic Press. New York. 613 pp.

    Google Scholar 

  • Thiede, D.S. and Cameron, E.N. 1978. Concentration of heavy metals in the Elk Point evaporitic sequence, Saskatchewan. Economic Geology 73: 405–415.

    Article  CAS  Google Scholar 

  • Timms, B.V. 1983. A study of benthic communities in some shallow saline lakes of western Victoria, Australia. Hydrobiologia 105: 165–177.

    Article  Google Scholar 

  • Tominaga, H. and Fukui, F. 1981. Saline lakes at Syowa Oasis, Antarctica. Hydrobiologia 82: 375–389.

    Article  Google Scholar 

  • Veizer, J., Holser, W.T. and Wilgus, C.K. 1980. Correlation of 13C/12C and 34S/32S secular variations. Geochimica et Cosmochimica Acta 44: 579–587.

    Article  CAS  Google Scholar 

  • Weast, R.C. (editor). 1984. CRC Handbook of Chemistry and Physics. CRC Press. Boca Raton.

    Google Scholar 

  • Winkler, D.W. (editor). 1977. An ecological study of Mono Lake, California. Institute of Ecology Publication 12, University of California, Davis, 190 pp.

    Google Scholar 

  • Wright, S.W. and Burton, H.R. 1981. The biology of Antarctic saline lakes. Hydrobiologia 82: 319–338.

    Article  Google Scholar 

  • Zharkov, M.A. 1981. History of Paleozoic Salt Accumulation. Springer-Verlag. New York. 308 pp.

    Google Scholar 

  • Zharkov, M.A. 1984. Paleozoic Salt Bearing Formations of the World. Springer-Verlag. New York. 427 pp.

    Book  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Javor, B. (1989). Geology and Chemistry. In: Hypersaline Environments. Brock/Springer Series in Contemporary Bioscience. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74370-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74370-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74372-6

  • Online ISBN: 978-3-642-74370-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics