Skip to main content
Log in

Seasonal changes in the chemistry and biology of a meromictic lake (Big Soda Lake, Nevada, U.S.A.)

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Big Soda Lake is an alkaline, saline lake with a permanent chemocline at 34.5 m and a mixolimnion that undergoes seasonal changes in temperature structure. During the period of thermal stratification, from summer through fall, the epilimnion has low concentrations of dissolved inorganic nutrients (N, Si) and CH4, and low biomass of phytoplankton (chlorophyll a ca. 1 mgm -3). Dissolved oxygen disappears near the compensation depth for algal photosynthesis (ca. 20 m). Surface water is transparent so that light is present in the anoxic hypolimnion, and a dense plate of purple sulfur photosynthetic bacteria (Ectothiorhodospira vacuolata) is present just below 20 m (Bchl a ca. 200 mgm-3). Concentrations of N H4 +, Si, and CH4 are higher in the hypolimnion than in the epilimnion. As the mixolimnion becomes isothermal in winter, oxygen is mixed down to 28 m. Nutrients (NH4 +, Si) and CH4 are released from the hypolimnion and mix to the surface, and a diatom bloom develops in the upper 20 m (chlorophyll a > 40 mgm-3). The deeper mixing of oxygen and enhanced light attenuation by phytoplankton uncouple the anoxic zone and photic zone, and the plate of photosynthetic bacteria disappears (Bchl a ca.10mgm-3). Hence, seasonal changes in temperature distribution and mixing create conditions such that the primary producer community is alternately dominated by phytoplankton and photosynthetic bacteria: the phytoplankton may be nutrient-limited during periods of stratification and the photosynthetic bacteria are light-limited during periods of mixing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Axler, R. P., Gersberg, R. M. & Paulson, L. J., 1978. Primary productivity in meromictic Big Soda Lake, Nevada. Great Basin Nat. 38: 187–192.

    Google Scholar 

  • Bradley, W. H., 1931. Origin and microfossils of the Green River formation of Colorado and Utah. U.S.G.S. prof. Pap. 168, 58 pp.

  • Breese, C. R., Jr., 1968. A general limnological study of Big Soda Lake. M.S. Thesis, Univ. Nevada, Reno, 83 pp.

    Google Scholar 

  • Brown, E., Skougstad, M. W. & Fishman, M. J., 1970. Methods for collection and analysis of water samples for dissolved minerals and gases. U.S. Geol. Surv. Tech. Wat. Resour. Inv. 5 A1, V pp.

  • Capone, D. & Taylor, B. F., 1977. Nitrogen fixation (acetylene reduction) in the phyllosphere of Thalassia testudinum. Mar. Biol. 40: 19–28.

    Google Scholar 

  • Carpenter, J. H., 1965. The Chesapeake Bay Institute technique for the Winkler dissolved oxygen method. Limnol. Oceanogr. 10: 141–143.

    Google Scholar 

  • Cloern, J. E. & Cole, B. E., 1982. Autotrophic processes in meromictic Big Soda Lake, Nevada. EOS Trans. Am. Geophys. Un. 63: 965 (abstract).

    Google Scholar 

  • Cohen, Y., Krumbein, W. E. & Shilo, M., 1977. Solar Lake (Sinai). 2. Distribution of phytosynthetic microorganisms and primary production. Limnol. Oceanogr. 22: 609–620.

    Google Scholar 

  • Culver, D. A. & Brunskill, G. J., 1969. Fayetteville Green Lake, New York. 5. Studies of primary production and zooplankton in a meromictic lake. Limnol. Oceanogr. 14: 862–873.

    Google Scholar 

  • Czeczuga, B., 1968. An attempt to determine the primary production of the green sulfur bacteria, Chlorobium limnicola Nads. (Chlorobacteriaceae). Hydrobiologia 31: 317–333.

    Google Scholar 

  • Demaison, G. J. & Moore, G. T., 1980. Anoxic environments and oil source bed genesis. Am. Ass. Petrol. Geol. Bull. 64: 1179–1209.

    Google Scholar 

  • Didyk, B. M., Simoneit, B. R. T., Brassell, S. C. & Eglington, G., 1978. Organic geochemical indicators of paleoenvironmental conditions of sedimentation. Nature 272: 212–216.

    Google Scholar 

  • Hardy, R. W. F., Holsten, R. D., Jackson, E. K. & Burns, R. C., 1968. The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Pl. Physiol., Lancaster 43: 1158–1207.

    Google Scholar 

  • Kharaka, Y. K., Law, L. M., Carothers, W. W. & Robinson, S. W., 1981. Soda Lake, Nevada, 1: Hydrogeochemistry of an alkaline meromictic desert lake. EOS Trans. Am. Geophys. Un. 62: 922 (abstr.)

    Google Scholar 

  • Kimmel, B. L., Gersberg, R. M., Paulson, L. J., Axler R. P. & Goldman, C. R., 1978. Recent changes in the meromictic status of Big Soda Lake, Nevada. Limnol. Oceanogr. 23: 1021–1025.

    Google Scholar 

  • Lawrence, J. R., R. C. Haynes & U. T. Hammer, 1978. Contribution of photosynthetic green sulfur bacteria to total primary production in a meromictic saline lake. Verh. int. Ver. Limnol. 20: 201–207.

    Google Scholar 

  • Lorenzen, C. J., 1967. Determination of chlorophyll and phaeopigments: Spectrophotometric equations. Limnol. Oceanogr. 12: 343–346.

    Google Scholar 

  • Northcote, T. G. & T. G. Halsey, 1969. Seasonal changes in the limnology of some meromictic lakes in southern British Columbia. J. Fish. Res. Bd. Can. 26: 1763–1787.

    Google Scholar 

  • Oremland, R. S., 1981. Microbial formation of ethane in anoxic estuarine sediments. Appl. envir. Microbiol. 42: 122–129.

    Google Scholar 

  • Oremland, R. S., Marsh, L. & Culbertson, C., 1981. Soda Lake 3: Dissolved gases and methanogenesis. EOS Trans. Am. Geophys. Un. 62: 922 (abstr.).

    Google Scholar 

  • Oremland, R. S., Marsh, L. & DesMarais, D. J., 1982. Methanogenesis in Big Soda Lake, Nevada: an alkaline, moderately hypersaline desert lake. Appl. envir. Microbiol. 43: 462–468.

    Google Scholar 

  • Parker, R. D. & Hammer, U. T., in press. A study of Chromatiaceae in a saline meromictic lake in Saskatchewan, Canada. Int. Revue ges. Hydrobiol.

  • Parkin, T. B. & Brock, T. D., 1980. Photosynthetic bacterial production in lakes: The effects of light intensity. Limnol. Oceanogr. 25: 711–718.

    Google Scholar 

  • Parkin, T. B. & Brock, T. D., 1981. Photosynthetic bacterial production and carbon mineralization in a meromictic lake. Arch. Hydrobiol. 91: 366–382.

    Google Scholar 

  • Pfennig, N., 1975. The phototrophic bacteria and their role in the sulfur cycle. Pl. Soil 43: 1–16.

    Google Scholar 

  • Priscu, J. C., Axler, R. P., Carlton, R. G., Reuter, J. E., Arneson, P. A. & Goldman, C. R., 1982. Vertical profiles of primary productivity, biomass and physico-chemical properties in meromictic Big Soda Lake, Nevada-U.S.A. Hydrobiologia 96: 113–120.

    Google Scholar 

  • Rau, G. H., DesMarais, D. J. & Oremland, R. S., 1982. Stable isotope abundance in sedimentary inorganic, organic, and pigment carbon: applications to the paleoecology of BigSoda Lake, Nevada. EOS Trans. Am. Geophys. Un. 63: 957 (abstr.).

    Google Scholar 

  • Robinson, S. W. & Kharaka, Y. K., 1981. BigSoda Lake, Nevada, 2: Carbon isotopes. EOS Trans. Am. Geophys. Un. 62: 922 (abstr.)

    Google Scholar 

  • Rudd, J. W. H., Hamilton, R. D. & Campbell, N. E. R., 1974. Measurements of microbial oxidation of methane in lake water. Limnol. Oceanogr. 19: 519–524.

    Google Scholar 

  • Smith, J. W. & Robb, W. A., 1973. Aragonite and the genesis of carbonates in Mahogany zone oil shales of Colorado's Green River Formation. U.S. Bur. Mines Rep. 7727, 21 pp.

  • Sorokin, J. I., 1970. Interrelations between sulfur and carbon turnover in meromictic lakes. Arch. Hydrobiol. 66: 391–446.

    Google Scholar 

  • Sorokin, J. I. & Donato, N., 1975. On the carbon and sulfur metabolism in the meromictic Lake Faro (Sicily). Hydrobiologia 47: 241–252.

    Google Scholar 

  • Stewart, W. D. P., Fitzgerald, N. G. P. & Burris, R. H., 1967. In situ studies on N2 fixation using the acetylene reduction technique. Proc. Natn. Acad. Sci. U.S.A. 58: 2071–2078.

    Google Scholar 

  • Takahashi, M. & Ichimura, S., 1968. Vertical distribution and organic matter production of photosynthetic sulfur bacteria in Japanese lakes. Limnol. Oceanogr. 13: 644–655.

    Google Scholar 

  • Takahashi, M. & Ichimura, S., 1970. Photosynthetic properties and growth of photosynthetic sulfur bacteria in lakes. Limnol. Oceanogr. 15: 929–944.

    Google Scholar 

  • Takahashi, M., Yamaguchi, Y. & Ichimura, S., 1970. Dark fixation of CO2 in the lake with special reference to organic matter production. Bot. Mag., Tokyo 83: 397–410.

    Google Scholar 

  • Trüper, H. G. & Genovese, S., 1968. Characterization of photosynthetic sulfur bacteria causing red water in Lake Faro (Messina, Sicily). Limnol. Oceanogr. 13: 225–232.

    Google Scholar 

  • Walker, K. F., 1975. The seasonal phytoplankton cycles of two saline lakes in central Washington. Limnol. Oceanogr. 20: 40–53.

    Google Scholar 

  • Wetzel, R. G., 1975. Limnology. W. B. Saunders Co., Philad., 743 pp.

    Google Scholar 

  • Winfrey, M. R. & Zeikus, J. G., 1979. Microbial methanogenesis and acetate metabolism in a meromictic lake. Appl. envir. Microbiol. 37: 213–221.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cloern, J.E., Cole, B.E. & Oremland, R.S. Seasonal changes in the chemistry and biology of a meromictic lake (Big Soda Lake, Nevada, U.S.A.). Hydrobiologia 105, 195–206 (1983). https://doi.org/10.1007/BF00025188

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00025188

Keywords

Navigation