Skip to main content

The Retina-Lamina Pathway in Insects, Particularly Diptera, Viewed from an Evolutionary Perspective

  • Conference paper
Facets of Vision

Abstract

The optical novelties peculiar to arthropod compound eyes would be of little use, were not the associated neural machinery tailored usefully to suit the optical design. We know very little about neural solutions to such matching problems. Neurobiologists are turning increasingly to thinking in evolutionary terms about changes in form and function in eyes, including alterations in the photopigments (Vogt this Vol.) and in the optics (Land and Nilsson this Vol.), but we are fundamentally ignorant about the ways that the neural apparatus might have changed during phylogeny. One progenitor of this volume, Exner, is remembered mostly for having exercised his talents upon optical aspects of compound eye design. By contrast, until recently, very little has been written about the basis for neural design and its evolution in insects or any other group of animals. Simple but powerful comparative methods are still of use in initial assaults upon such problems, an approach associated with the other mentor of the volume, Professor Autrum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altner I, Burkhardt D (1982) Fine structure of the ommatidia and the occurrence of rhabdomeric twist in the dorsal eye of male Bibio marci (Diptera, Nematocera, Bibionidae). Cell Tissue Res 215:607–623.

    Google Scholar 

  • Boschek CB (1971) On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica. Z Zellforsch 118:369–409.

    Article  PubMed  CAS  Google Scholar 

  • Braitenberg V, Hauser-Holschuh H (1972) Patterns of projection in the visual system of the fly II Quantitative aspects of second-order neurons in relation to models of movement perception. Exp Brain Res 16:184–209.

    Article  PubMed  CAS  Google Scholar 

  • Brammer JD (1970) The ultrastructure of the compound eye of a mosquito Aedes aegypti L. J Exp Zool 175:181–196.

    Article  Google Scholar 

  • Burkhardt W, Braitenberg V (1976) Some peculiar synaptic complexes in the first visual ganglion of the fly Musca domestica. Cell Tissue Res 173:287–308.

    Article  PubMed  CAS  Google Scholar 

  • Cajal SR y (1973) The vertebrate retina. Engl Transl in: Rodieck RW, The vertebrate retina. Freeman, San Francisco, pp 772-904 [Orig Publ Cellule 9:17-257 (1893)].

    Google Scholar 

  • Cajal SR y, Sanchéz D (1915) Contributions to the knowledge of the nerve centers of insects. Trab Lab Invest Biol Univ Madrid 13:1–164 [Orig Span; Engl translation by Power ME, Truscott BL (1942) Yale Univ Libr].

    Google Scholar 

  • Campos-Ortega JA, Strausfeld NJ (1973) Synaptic connections of intrinsic cells and basket arborizations in the external plexiform layer of the fly’s eye. Brain Res 59:119–136.

    Article  PubMed  CAS  Google Scholar 

  • Colless DH, McAlpine JF (1970) Diptera. In: Waterhouse DF (ed) The insects of Australia. Melbourne Univ Press, pp 656-740.

    Google Scholar 

  • Datum KH, Weiler R, Zettler F (1986) Immunocytochemical demonstration of gamma-amino butyric acid and glutamic acid decarboxylase in R7 photoreceptors and C2 centrifugal fibres in the blowfly visual system. J Comp Physiol A 159:241–249.

    Article  CAS  Google Scholar 

  • Dietrich W (1909) Die Facettenaugen der Dipteren. Z Wiss Zool 92:465–539.

    Google Scholar 

  • Disney RHL (1986a) Morphological and other observations on Chonocephalus (Phoridae) and phylogenetic implications for the Cyclorrhapha (Diptera). J Zool London (A) 210:77–87.

    Article  Google Scholar 

  • Disney RHL (1986b) Two remarkable new species of scuttle-fly (Diptera: Phoridae) that parasitize termites (Isoptera) in Sulawesi. Syst Entomol 11:413–422.

    Article  Google Scholar 

  • Donovan LA, Thompson PM, Shaw SR (1986) Light adaptation, serotonin, and efferent neurons all may affect visual responsiveness in a circadian-insensitive insect retina. Soc Neurosci Abstr 12:856.

    Google Scholar 

  • Dumont JPC, Robertson RM (1986) Neuronal circuits: an evolutionary perspective. Science 233:849–853.

    Article  PubMed  CAS  Google Scholar 

  • Dumont JPC, Robertson RM (1987) Neuronal circuits and evolution. Science 236:1681–2.

    Article  Google Scholar 

  • Ennos AR (1987) A comparative study of the flight mechanism of Diptera. J Exp Biol 127:355–372.

    Google Scholar 

  • Fischbach KF (1983) Neurogenetik am Beispiel des visuellen Systems von Drosophila melanogaster. Habil Thesis, Univ Würzburg, FRG.

    Google Scholar 

  • Franceschini N (1975) Sampling of the visual environment by the compound eye of the fly: fundamentals and applications. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelberg New York, pp 98–125.

    Chapter  Google Scholar 

  • Griffiths GCD (1972) The phylogenetic classification of Diptera Cyclorrhapha with special reference to the structure of the male postabdomen. Junk, The Hague.

    Google Scholar 

  • Hackman W, Väisänen R (1982) Different classification systems in the Diptera. Ann Zool Fenn 19:209–219.

    Google Scholar 

  • Hardie RC (1987) Is histamine a neurotransmitter in insect photoreceptors? J Comp Physiol A 161:201–214.

    Article  PubMed  CAS  Google Scholar 

  • Hauser-Holschuh H (1975) Vergleichende quantitative Untersuchungen an den Sehganglien der Fliegen Musca domestica und Drosphila melanogaster. Diss, Univ Tübingen, FRG.

    Google Scholar 

  • Hennig W (1973) Ordnung Diptera (Zweiflügler). In: Beier M (ed) Kukenthal’s Handbuch der Zoologie, 2nd edn, vol IV/2 (2), 31, pp 1-337 (Engl Transi Entomol Res Inst Libr, Agric Can, Ottawa).

    Google Scholar 

  • Hennig W (1981) Insect phylogeny. (Engl Transi by Pont AC) Wiley & Sons, New York.

    Google Scholar 

  • Horridge GA, Meinertzhagen IA (1970) The accuracy of the patterns of connexions of the first-and second-order neurons of the visual system of Calliphora. Proc R Soc London Ser B 175:69–82.

    Article  CAS  Google Scholar 

  • Järvilehto M, Meinertzhagen IA, Shaw SR (1985) Diffusional restriction and dye coupling in insect brain slices. Soc Neurosci Abstr 11:240.

    Google Scholar 

  • Jerison HJ (1985) Issues in brain evolution. Oxford Surveys Evol Biol 2:102–134.

    Google Scholar 

  • Kirschfeld K (1967) Die Projektion der optischen Umwelt auf das Raster der Rhabdomeren im Komplexauge von Musca. Exp Brain Res 3:248–270.

    Article  PubMed  CAS  Google Scholar 

  • Meyer EP, Matute C, Streit P, Nässel DR (1986) Insect optic lobe neurons identifiable with monoclonal antibodies to GABA. Histochemistry 84:207–216.

    Article  PubMed  CAS  Google Scholar 

  • Nässel DR (1988) Serotonin and serotonin-immunoreactive neurons in the nervous system of insects. Progr Neurobiol 30:1–86.

    Article  Google Scholar 

  • Nässel DR, Hagberg M, Seyan HS (1983) A new, possibly serotonergic neuron in the lamina of the blowfly optic lobe: an immunocytochemical and Golgi-EM study. Brain Res 280:361–367.

    Article  PubMed  Google Scholar 

  • Nicol D, Meinertzhagen IA (1982a) An analysis of the number and composition of the synaptic populations formed by photoreceptors of the fly. J Comp Neurol 207:29–44.

    Article  PubMed  CAS  Google Scholar 

  • Nicol D, Meinertzhagen IA (1982b) Regulation of the fly photoreceptor synapses: the effects of alterations in the number of pre-synaptic cells. J Comp Neurol 207:45–60.

    Article  PubMed  CAS  Google Scholar 

  • Pick B (1977) Specific misalignments of rhabdomere visual axes in the neural superposition eye of dipteran flies. Biol Cybernet 26:215–224.

    Article  Google Scholar 

  • Saint Marie RL, Carlson SD (1983) Glial membrane specializations and the compartmentalization of the lamina ganglionaris of the housefly compound eye. J Neurocytol 12:243–275.

    Article  PubMed  CAS  Google Scholar 

  • Seifert P, Smola U (1984) Morphological evidence for interaction between retinula cells of different ommatidia in the eye of the moth-fly Psychoda cinerea Banks (Diptera, Psychodidae). J Ultrastruct Res 86:176–185.

    Article  Google Scholar 

  • Shaw SR (1981) Anatomy and physiology of identified non-spiking cells in the photoreceptor-lamina complex of the compound eye of insects, especially Diptera. In: Roberts A, Bush BMH (eds) Neurons without impulses. Cambridge Univ Press, pp 61-116.

    Google Scholar 

  • Shaw SR (1984) Early visual processing in insects. J Exp Biol 112:225–251.

    PubMed  CAS  Google Scholar 

  • Shaw SR, Meinertzhagen IA (1985) Evolutionary progression in an identified synaptic contact. Soc Neurosci Abstr 11:626.

    Google Scholar 

  • Shaw SR, Meinertzhagen IA (1986) Evolutionary progression at synaptic connections made by identified homologous neurons. Proc Natl Acad Sci USA 83:7961–7965.

    Article  PubMed  CAS  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy. Freeman, San Francisco.

    Google Scholar 

  • Stavenga DG (1979) Pseudopupils of compound eyes. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6A. Springer, Berlin Heidelberg New York, pp 357–439.

    Google Scholar 

  • Steyskal GC (1974) Recent advances in the primary classification of the Diptera. Ann Entomol Soc 67:513–517.

    Google Scholar 

  • Strausfeld NJ (1970) Golgi studies on insects Part II. The optic lobes of Diptera. Philos Trans R Soc London Ser B 258:135–223.

    Article  Google Scholar 

  • Strausfeld NJ (1976) Atlas of an insect brain. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Strausfeld NJ, Braitenberg V (1970) The compound eye of the fly (Musca domestica): connections between the cartridges of the lamina ganglionaris. Z Vergl Physiol 70:95–104.

    Article  Google Scholar 

  • Strausfeld NJ, Campos-Ortega JA (1973) The L4 monopolar neurone: a substrate for lateral interaction in the visual system of the fly Musca domestica (L). Brain Res 59:97–117.

    Article  PubMed  CAS  Google Scholar 

  • Strausfeld NJ, Campos-Ortega JA (1977) Vision in insects: pathways possibly underlying neural adaptation and lateral inhibition. Science 195:894–897.

    Article  PubMed  CAS  Google Scholar 

  • Sulston JE, Schierenberg E, White JG, Thompson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100:64–119.

    Article  PubMed  CAS  Google Scholar 

  • Thomas JB, Bastiani MJ, Bate M, Goodman CS (1984) From grasshopper to Drosophila: a common plan for neuronal development. Nature (London) 310:203–207.

    Article  CAS  Google Scholar 

  • Trujillo-Cenóz O (1965) Some aspects of the structural organization of the intermediate retina of dipterans. J Ultrastruct Rest 13:1–33.

    Article  Google Scholar 

  • Trujillo-Cenóz O, Bernard GD (1972) Some aspects of the retinal organization of Sympycnus lineatus Loew (Diptera, Dolichopodidae). J Ultrastruct Res 38:149–160.

    Article  PubMed  Google Scholar 

  • Wada S (1974) Spezielle randzonale Ommatidien der Fliegen (Diptera: Brachycera): Architektur und Verteilung in den Komplexaugen. Z Morphol Tiere 77:87–125.

    Article  Google Scholar 

  • Wada S (1975) Morphological duality of the retinal pattern in flies. Experientia 31:921–923.

    Article  PubMed  CAS  Google Scholar 

  • Waddington CH, Perry MM (1960) The ultrastructure of the developing eye of Drosophila. Proc R Soc London Ser B 153:155–187.

    Article  Google Scholar 

  • Wehrhahn C (1985) Visual guidance of flies during flight. In: Kerkut GA. Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 6. Pergamon, Oxford New York, pp 673–684.

    Google Scholar 

  • Wilcox M, Franceschini N (1984) Illumination induces dye incorporation in photoreceptor cells. Science 225:851–854.

    Article  PubMed  CAS  Google Scholar 

  • Williams D (1980) Organisation of the compound eye of a tipulid fly during the day and night. Zoomorphologie 95:85–104.

    Article  Google Scholar 

  • Wilson JA, Phillips CE, Adams ME, Huber F (1982) Structural comparison of an homologous neuron in gryllid and acridid insects. J Neurobiol 13:459–467.

    Article  PubMed  CAS  Google Scholar 

  • Zeil J (1979) A new kind of neural superposition eye: the compound eye of male Bibionidae. Nature (London) 278:249–250.

    Article  Google Scholar 

  • Zeil J (1983a) Sexual dimorphism in the visual system of flies: the compound eyes and neural superposition in Bibionidae (Diptera). J Comp Physiol A 150:379–393.

    Article  Google Scholar 

  • Zeil J (1983b) Sexual dimorphism in the visual system of flies: the divided brain of male Bibionidae (Diptera). Cell Tissue Res 229:591–610.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shaw, S.R. (1989). The Retina-Lamina Pathway in Insects, Particularly Diptera, Viewed from an Evolutionary Perspective. In: Stavenga, D.G., Hardie, R.C. (eds) Facets of Vision. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74082-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74082-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74084-8

  • Online ISBN: 978-3-642-74082-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics