Skip to main content

Hemmung und Induktion des Arzneimittelstoffwechsels bei Intensivpatienten

  • Conference paper
Aspekte der Arzneitherapie bei Intensivpatienten

Zusammenfassung

Viele Arzneimittel können aufgrund ihrer geringen Wasserlöslichkeit nicht über die Nieren eliminiert werden. Sie unterliegen daher einem Metabolismus, der zu wasserlöslichen Stoffwechselprodukten führt. Im Mittelpunkt dieses Stoffwechsels, der überwiegend in der Leber stattfindet, steht das Cytochrom P-450, durch das Arzneimittel oxidativ verändert werden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Aarts EM (1985) Evidence for the function of D-glucaric acid as indicator for the drug induced enhanced metabolism through the glucuronic acid pathway in man. Biochem Pharmacol 14: 359–363

    Article  Google Scholar 

  2. Alvan G, Piafski K, Lind M, von Bahr C (1977) Effect of pentobarbital on the disposition of alprenolol. Clin Pharmacol Ther 22: 316–321

    PubMed  CAS  Google Scholar 

  3. Baldeo WC, Gilbert JN, Powell JW (1980) Multidose studies in the human metabolism of pentobarbitone. Eur J Drug Metab Pharmacokinet 5: 75–80

    Article  PubMed  CAS  Google Scholar 

  4. Bayliff CD, Schwartz ML, Hardy BG (1985) Pharmacokinetics of high-dose pentobarbital in severe head trauma. Clin Pharmacol Ther 38: 457–461

    Article  PubMed  CAS  Google Scholar 

  5. Berman ML, Green OC (1971) Acute stimulation of Cortisol metabolism by pentobarbital in man. Anesthesiology 34: 365–369

    Article  PubMed  CAS  Google Scholar 

  6. Breimer DD, Honhoff C, Zilly W, Richter E, van Rossum JM (1975) Pharmacokinetics of hexo- barbital in plasma of man after intravenous infusion. J Pharmacokin Biopharm 3: 1–11

    Article  CAS  Google Scholar 

  7. Breimer DD, Zilly W, Richter E (1976) Influence of rifampicin on drug metabolism: Differences between hexobarbital and antipyrine. Clin Pharmacol Ther 21: 470–480

    Google Scholar 

  8. Brown MW, Maldonado AL, Meredith AL, Meredith CG, Speeg KV (1985) Effect of keto- conazole on hepatic oxidative drug metabolism. Clin Pharmacol Ther 37: 290–297

    Article  PubMed  CAS  Google Scholar 

  9. Campos AR, Herraez FXV, Marcos RJ, Amer JG, Porcar RC, Lucia PI (1980) Drug use in an intensive care unit and its relation to survival. Intens Care Med 6: 163–168

    Article  CAS  Google Scholar 

  10. Chalk JB, Ridgeway JB, Brophy T, Yelland JDN, Eadie MJ (1984) Phenytoin impairs the bio¬availability of dexamethasone in neurological and neurosurgical patients. J Neurol Neurosurg Psych 47: 1087–1090

    Article  CAS  Google Scholar 

  11. Collste P, Seideman P, Borg K-O, Haglund K, von Bahr C (1979) Influence of pentobarbital on effect and plasma levels of alprenolol and 4-hydroxy-alprenolol. Clin Pharmacol Ther 25: 423–424

    PubMed  CAS  Google Scholar 

  12. Conney AH (1967) Pharmacological implications of microsomal enzyme induction. Pharmacol Rev 19: 317–366

    PubMed  CAS  Google Scholar 

  13. Danhof M, Verbeek RMA, Van Boxtel CJ, Boeijing JK, Breimer DD (1982) Differential effects of enzyme induction on antipyrine metabolite formation. Brit J Clin Pharmacol 13: 379–386

    CAS  Google Scholar 

  14. Ehrnebo M (1974) Pharmacokinetics and distribution of pentobarbital in humans following oral and intravenous administration. J Pharm Sei 6: 1114–1118

    Article  Google Scholar 

  15. Freitag B, Borman T (1982) Arzneimittelinteraktionen in der Intensivtherapie. Anaesthesiol Reanim 7: 147–152

    CAS  Google Scholar 

  16. Gabrielsen J, Bendtsen A, Eriksen H, Andersen S (1985) Methylprednisolone halflife during simultaneous barbiturate treatment and mechanical hyperventilation in neurosurgical patients. J Neurosurg 62: 182–185

    Article  PubMed  CAS  Google Scholar 

  17. Gibson GA, Blouin RA, Bauer LA, Rapp RP, Tibbs PA (1985) Influence of high-dose pentobarbital on theophylline pharmacokinetics. A case report. Ther Drug Monitor 7: 181–184

    Google Scholar 

  18. Haglund K, Seideman P, Collste P, Borg K-O, von Bahr C (1979) Influence of pentobarbital on metoprolol plasma levels. Clin Pharmacol Ther 26: 326–329

    PubMed  CAS  Google Scholar 

  19. Hansen JM, Siersbaeck-Nielsen K, Skovsted L (1971) Carbamazepine-induced acceleration of diphenylhydantoin and warfarin metabolism in man. Clin Pharmacol Ther 12: 539–544

    PubMed  CAS  Google Scholar 

  20. Heinemeyer G, Roots I, Gramm HJ, Dennhardt R (1985) Induction and inhibition of drug elimination in critical care patients as shown by pentobarbital and metamizol clearance. Biochem Pharmacol 34: 413–414

    Article  CAS  Google Scholar 

  21. Heinemeyer G, Roots I, Schulz H, Dennhardt R (1985) Hemmung der Pentobarbital-Elimination durch Miconazol bei Intensivtherapie des erhöhten intracraniellen Druckes. Intensivmed 22: 164–167

    Google Scholar 

  22. Heinemeyer G, Roots I, Lestau P, Klaiber H-R, Dennhardt R (1986) D-glucaric acid excretion in critical care patients — comparison to 6/3-hydroxyCortisol excretion and serum /-glutamyl- transpeptidase activity and relation to multiple drug therapy. Brit J Clin Pharmacol 21: 9–18

    CAS  Google Scholar 

  23. Heinemeyer G, Roots I, Dennhardt R (1986) Monitoring of pentobarbital plasma levels in critical care patients suffering from increased intracranial pressure. Ther Drug Monitor 8: 145–150

    Article  CAS  Google Scholar 

  24. Heinemeyer G, Gramm H-J, Simgen W, Dennhardt R, Roots I (1987) Hexobarbital and di- pyrone kinetics in critical care patients receiving high-dose pentobarbital. Eur J Clin Pharmacol 32: 273–277

    Article  PubMed  CAS  Google Scholar 

  25. Heinemeyer G (1987) Clinical pharmacokinetic considerations in the treatment of raised intracranial pressure. Clin Pharmacokinet 13: 1–25

    Article  PubMed  CAS  Google Scholar 

  26. Hildebrandt AG, Roots I, Speck M, Saalfrank K, Kewitz H (1975) Evaluation of in vivo parameters of drug metabolizing enzyme activity in man after administration of clemastine, phenobarbital or placebo. Eur J Clin Pharmacol 8: 327–336

    Article  PubMed  CAS  Google Scholar 

  27. Hildebrandt AG, Roots I, Heinemeyer G, Nigam S, Helge H (1978) Aminopyrine as one of the parameters to measure in vivo drug metabolism in man and animal. In: Estabrook RW, Linden-laub E (eds) The induction of drug metabolism. Schattauer Verlag, Stuttgart, New York, pp 615–627

    Google Scholar 

  28. Klotz U, Reimann I (1980) Delayed clearance of diazepam due to Cimetidine. N Engl J Med 301: 1012–1014

    Article  Google Scholar 

  29. Kutt H, Winters W, McDowell FH (1966) Depression of parahydroxylation of diphenylhydantoin by antituberculosis therapy. Neurology 16: 594–602

    PubMed  CAS  Google Scholar 

  30. Loft S, Sonne J, Pilsgaard H, Dossing M, Poulsen E (1986) Inhibition of antipyrine elimination by disulfiram and Cimetidine. The effect of concomitant administration. Brit J Clin Pharmacol 21: 75–77

    Google Scholar 

  31. Marselos M, Alakuijala P, Lang M, Törönen R (1977) Studies on the mechanism by which disulfiram and diethyldithiocarbamate affect drug metabolism. In: Ullrich V, Roots I, Hildebrandt AG, Estabrook RW, Conney AH (eds) Microsomes and drug oxidations. Pergamon Press, Oxford, pp 589–596

    Google Scholar 

  32. Neuvonen PJ, Penttilae O (1974) Interaction between doxycycline and barbiturates. Brit Med J 1: 535–536

    Article  PubMed  CAS  Google Scholar 

  33. Neuvonen PJ, Tokola RA, Kaste M (1981) Cimetidine - phenytoin interaction. Effect on serum Phenytoin concentration and antipyrine test. Eur J Clin Pharmacol 21: 215–220

    Google Scholar 

  34. Niemeegers CE, Levron JC1, Awouters F, Janssen PAJ (1982) Inhibition and induction of microsomal enzymes in the rat. A comparison of four antimycotics miconazole, econazole, clotrimazole and ketoconazole. Arch Int Pharmacodyn 251: 26–38

    Google Scholar 

  35. Ohnhaus EE, Park BK (1979) Measurement of urinary 6/K)HF excretion as an in vivo parameter on the clinical assessment of the microsomal enzyme — inducing capacity of antipyrine, pheno- barbitone and rifampicin. Eur J Clin Pharmacol 15: 139–145

    Article  PubMed  CAS  Google Scholar 

  36. Park BK (1982) Assessment of the drug metabolism activity of the liver. Brit J Clin Pharmacol 14: 631–651

    CAS  Google Scholar 

  37. Peden NR, Rewhorn I, Champion MC, Mussani R, Ooi TC (1984) Cortisol and dexamethasone elimination during treatment with Cimetidine. Brit J Clin Pharmacol 18: 101–103

    CAS  Google Scholar 

  38. Perucca E, Hedges A, Makki KA, Rutprah M, Wilson JF, Richens A (1985) A comparative study of the relative enzyme inducing properties of anticonvulsant drugs in epileptic patients. Brit J Clin Pharmacol 18: 401–410

    Google Scholar 

  39. Pessayre D, Mazel P (1976) Induction and inhibition of hepatic drug metabolizing enzymes by rifampin. Biochem Pharmacol 25: 943–949

    Article  PubMed  CAS  Google Scholar 

  40. Rameis H (1985) Die Bedeutung des „Drug-Monitoring“für die Intensivmedizin. Intensivmed 21: 64–68

    Google Scholar 

  41. Reiche R, Frey H-H (1981) Interactions between chloramphenicol and intravenous anesthetics. Anästhesist 30: 504–507

    CAS  Google Scholar 

  42. Remmer H, Fleischmann R, Kunz W (1978) Pharmacological consequences of induction of drug metabolizing enzymes. In: Estabrook RW, Lindenlaub E (eds) The induction of drug metabolism. Schattauer Verlag, Stuttgart, New York, pp 556–581

    Google Scholar 

  43. Rietbrock I, Lazarus G, Richter E, Breimer DD (1981) Hexobarbitone disposition at different stages of intensive care treatment. Brit J Anaesth 53: 283–293

    Article  PubMed  CAS  Google Scholar 

  44. Roots I (1979) Effect of rifampicin on urinary excretion of 6/?-hydroxycortisol and glucaric acid in man and animal. Arch Pharmacol [Suppl R72] 307

    Google Scholar 

  45. Roots I, Ley B, Hildebrandt AG (1978) In vivo parameters of drug metabolism — Differences in specificity towards inducing agents. In: Ullrich V, Roots I, Hildebrandt AG, Estabrook RW, Conney AH (eds) Microsomes and drug oxidations. Pergamon Press, Oxford, pp 581–588

    Google Scholar 

  46. Roots I, Holbe R, Hövermann W, Nigam S, Heinemeyer G, Hildebrandt AG (1979) Quantitative determination by HPLC of urinary 6 ß-hydroxycortisol, an indicator of enzyme induction by rifampicin and antiepileptic drugs. Eur J Clin Pharmacol 16: 63–71

    Article  PubMed  CAS  Google Scholar 

  47. Roots I (1986) Wann ist die Bestimmung von Arzneimittelkonzentrationen im Plasma nützlich oder notwendig? Internist 27: 40–52

    PubMed  CAS  Google Scholar 

  48. Rosalki SB, Tarlow D, Rau D (1971) Plasma gamma glutamyltranspeptidase elevation in patients receiving enzyme inducing drugs. Lancet 2: 376–377

    Article  PubMed  CAS  Google Scholar 

  49. Schaible DH, Cupit GC, Swedlow DB, Rocci ML Jr (1982) High-dose pentobarbital pharmacokinetics in hypothermic brain-injured children. J Pediatr 100: 655–660

    Article  PubMed  CAS  Google Scholar 

  50. Seideman P, Ericsson O, Groningsson K, Von Bahr C (1981) Effect of pentobarbital on the formation of diastereomeric oxazepam glucuronides in man. Analysis by high performance liquid chromatography. Acta Pharmacol Toxicol 49: 200–204

    Google Scholar 

  51. Skovsted L, Hansen JM, Kristensen M, Christensen LK (1974) Inhibition of drug metabolism in man. In: Morselli L, Garratini S, Cohen SN (eds) Drug interactions. Raven Press, New York, pp 81–90

    Google Scholar 

  52. Somogyi A, Gugler R (1982) Drug interactions with Cimetidine. Clin Pharmacokin 7: 23–41

    Article  CAS  Google Scholar 

  53. Sotaniemi EA, Medzihradsky F, Eliasson G (1974) Glucaric acid as an indicator of use of enzyme inducing drugs. Clin Pharmacol Ther 15: 417–423

    PubMed  CAS  Google Scholar 

  54. Vesell E, Passananti GT, Greene FE (1973) Impairment of drug metabolism in man by allopurinol and nortriptyline. New Engl J Med 283: 1484

    Article  Google Scholar 

  55. Vesell ES, Passananti GT, Glenwright PA, Dvorchik BH (1975) Studies on the disposition of antipyrine, aminopyrine, and phenacetin using plasma, saliva, and urine. Clin Pharmacol Ther 18: 259–272

    PubMed  CAS  Google Scholar 

  56. Vesell ES (1979) The antipyrine test in clinical pharmacology: conceptions and misconceptions. Clin Pharmacol Ther 26: 275–286

    PubMed  CAS  Google Scholar 

  57. Vital Durand D, Hampden C, Boobis AR, Park BK, Davies DS (1986) Induction of mixed function oxidase activity in man by rifapentine (MDL 473), a long acting rifamycine derivative. Brit J Clin Pharmacol 21: 1–7

    CAS  Google Scholar 

  58. Vree TB, Henderson PT, van der Kleijn E, Guelen PMJ (1975) Drug interactions at the metabolic level. A reality in drug treatment of epilepsy. In: Schneider H, Janz D, Gardner-Thorpe C, Meinardi H, Sherwin AL (eds) Clinical pharmacology of antiepileptic drugs. Springer Verlag, New York, Heidelberg, Berlin, pp 34–42

    Google Scholar 

  59. Watson WA, Godley PJ, Garriott JC, Bradberry JC, Puckett JD (1983) Blood pentobarbital concentrations during thiopental therapy. Drug Intell. Clin. Pharm 20: 283–287

    Google Scholar 

  60. Werk EE, MacGee J, Sholiton J (1964) Altered Cortisol metabolism in advanced cancer and other terminal illness: excretion of 6ß-hydroxycortisol. Metabolism 13: 1425–1438

    Article  PubMed  CAS  Google Scholar 

  61. Wessling H, Mols-Türkow I (1975) Interaction between diphenylhydantoin ( DPH) and tolbutamide in man. Eur J Clin Pharmacol 8: 75–78

    Google Scholar 

  62. Whitfield JB, Moss DW, Neale G Orme, M Breckenridge A (1973) Changes in plasma-gamma- glutamyltranspeptidase activity associated with alterations in drug metabolism in man. Brit Med J 1: 316–318

    Article  PubMed  CAS  Google Scholar 

  63. Wong DD, Longenecker DG, Liepman M, Baker S, LaVergne M (1985) Phenytoin-dexametha- sone: A possible drug-drug interaction. JAMA 15: 2062–2063

    Google Scholar 

  64. Yamada S, Iwai K (1976) Induction of hepatic cortisol-6-hydroxylase by rifampicin. Lancet 2: 366–367

    Article  PubMed  CAS  Google Scholar 

  65. Zemaitis MA, Greene FE (1976) Impairment of hepatic microsomal and plasma esterases of the rat by disulfiram and diethyldithiocarbamate. Biochem Pharmacol 25: 453–459

    Article  PubMed  CAS  Google Scholar 

  66. Zilly W, Breimer DD, Richter E (1978) Hexobarbital disposition in compensated and decompensated cirrhosis of the liver. Clin Pharmacol Ther 23: 525–534

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Heinemeyer, G. (1988). Hemmung und Induktion des Arzneimittelstoffwechsels bei Intensivpatienten. In: Aspekte der Arzneitherapie bei Intensivpatienten. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71694-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71694-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-17261-1

  • Online ISBN: 978-3-642-71694-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics