Skip to main content

Perception of Water Surface Waves: How Surface Waves Are Used for Prey Identification, Prey Localization, and Intraspecific Communication

  • Chapter
Progress in Sensory Physiology

Part of the book series: Progress in Sensory Physiology ((PHYSIOLOGY,volume 5))

Abstract

The surfaces of lakes, ponds and even puddles provide very special environments. Wherever air and calm water meet, a surface film divides the dry world above from the wet world below. The particular properties of the water surface are created by the attractive forces between water molecules. Within a body of water these forces occur equally from all sides, but near the surface the attractive forces from below are greater than those from above; hence the molecules near the water-air interface are pulled toward the water’s center of mass. As a result the surface acts as if it were a stretched elastic membrane, supporting objects with a density greater than that of water and allowing certain animals to stand and move on it.

Financial support for the experimental work of the author was provided by the Deutsche Forchungsgemeinschaft grants to E. Schwartz (Schw. 21/5)and F. G. Barth (SFB 45, A4)

I am Grateful to Dr. W. Gnatzy for critically reading the manuscript and to J. Ruthven for commenting on the English

Present address: University of California, San Diego, Department of Neurosciences A-001, School of Medicine, La Jolla, CA 92093, USA

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schwartz E (1965) Bau und Funktion der Seitenlinie des Streifenhechtlings Aplocheilus lineatus. Z Vergl Physiol 50:55–87

    Google Scholar 

  2. Schwartz E (1971) Die Ortung von Wasserwellen durch Oberflächenfische. Z Vergl Physiol 74: 64–80

    Article  Google Scholar 

  3. Kramer G (1933) Untersuchungen über die Sinnesleistungen und das Orientierungs-verhalten von Xenopus laevis. Zool Jb Physiol 52: 629–676

    Google Scholar 

  4. Dijkgraaf S (1947) Über die Reizung des Ferntastsinns bei Fischen und Amphibien. Experientia 3: 206–208

    Article  PubMed  CAS  Google Scholar 

  5. Görner P (1973) The importance of the lateral line system for the perception of surface waves in the clawed toad, Xenopus laevis. Experientia 29:295–296

    Google Scholar 

  6. Görner P (1976) Source localization with labyrinth and lateral line in the clawed toad (Xenopus laevis). In: Schuijf A, Hawkins AD (eds) Sound reception in fish. Elsevier, Amsterdam, pp 171 –184

    Google Scholar 

  7. Görner P, Möller P, Weber W (1984) Lateral-line input and stimulus localization in the African clawed toad Xenopus sp. J Exp Biol 108:315–328

    Google Scholar 

  8. Bleckmann H (1980) Reaction time and stimulus frequency in prey localization in the surface-feeding fish Aplocheilus lineatus. J Comp Physiol 140: 163–172

    Article  Google Scholar 

  9. Bleckmann H (1982) Reaction time, threshold values and localization of prey in stationary and swimming surface-feeding fish Aplocheilus lineatus (Cyprinodontidae). Zool Jb Physiol 86: 71 - 81

    Google Scholar 

  10. Bleckmann H, Schwartz E (1981) Reaction time of the topminnow Aplocheilus lineatus to surface waves determined by video and electromyogram recordings. Experientia 37:362 –363

    Google Scholar 

  11. Bleckmann H, Schwartz E (1982) The functional significance of frequency modulation within a wave train for prey localization in the surface-feeding fish Aplocheilus lineatus ( Cyprinodontidae ). J Comp Physiol 145: 331–339

    Google Scholar 

  12. Bleckmann H, Waldner I, Schwartz E (1981) Frequency discrimination of the surface- feeding fish Aplocheilus lineatus - a prerequisite for prey localization? J Comp Physiol 143: 485–490

    Article  Google Scholar 

  13. Bleckmann H, Müller U, Hoin-Radkovski I (1984) Determination of source distance by the surface-feeding fishes Aplocheilus lineatus (Cyprinodontidae) and Pantodon buchholzi (Pantodontidae). In: Varju D, Schnitzler H-U (eds) Localization and orientation in biology and engineering. Springer, Berlin Heidelberg New York Tokyo, pp 66–69

    Google Scholar 

  14. Hoin-Radkovski I, Bleckmann H, Schwartz E (1984) Determination of source distance in the surface-feeding fish Pantodon buchholzi ( Pantodontidae ). Anim Behav 32: 840–851

    Google Scholar 

  15. Elepfandt A (1982) Accuracy of taxis response to water waves in the clawed toad (Xenopus laevis Daudin) with intact or with lesioned lateral line system. J Comp Physiol 148: 535–545

    Article  Google Scholar 

  16. Elepfandt A (1984) The role of ventral lateral line organs in water wave localization in the clawed toad (Xenopus laevis). J Comp Physiol 154: 773–780

    Article  Google Scholar 

  17. Elepfandt A (1984) Localization of water surface waves with the lateral line system in the clawed toad (Xenopus laevis Daudin). In: Varju D, Schnitzler H-U (eds) Localization and orientation in biology and engineering. Springer, Berlin Heidelberg New York Tokyo, pp 63–65

    Google Scholar 

  18. Nachtigall W (1961) Funktionelle Morphologie, Kinematik und Hydromechanik des Ruderapparates von Gyrinus. Z Vergl Physiol 45: 193–226

    Article  Google Scholar 

  19. Rudolph P (1967) Zum Ortungsverfahren von Gyrinus substiatus Steph. Z Vergl Physiol 56:341 –375

    Google Scholar 

  20. Reinig HJ, Uhlemann H (1973) Über das Ortungsvermögen des Taumelkäfers Gyrinus substriatus ( Coleóptera, Gyrinidae). J Comp Physiol 84: 281–298

    Google Scholar 

  21. Heinrich B, Vogt FD (1980) Aggregation and foraging behavior of whirligig beetles ( Gyrinidae ). Behav Ecol Sociobiol 7: 179–186

    Google Scholar 

  22. Rabe W (1953) Beiträge zum Orientierungsproblem der Wasserwanzen. Z Vergl Physiol 35: 300–325

    Article  Google Scholar 

  23. Wolda H (1961) Response decrement in the prey catching activity of Notonecta glauca L. (Hemiptera). Arch Neerl Zool 14:61–89

    Google Scholar 

  24. Lang HH (1975) Die Analyse des Dispersionsmusters und seine Bedeutung für eine Population räuberischer Wasserwanzen (Notonecta glauca). Oekologia 20: 311 - 320

    Google Scholar 

  25. Lang HH (1980) Surface wave discrimination between prey and nonprey by the back- swimmer Notonecta glauca L. (Hemiptera, Heteroptera). Behav Ecol Sociobiol 6: 233 - 246

    Article  Google Scholar 

  26. Mistick DC (1978) Neurones in the leech that facilitate an avoidance behavior following nearfield water disturbances. J Exp Biol 75: 1 - 23

    PubMed  CAS  Google Scholar 

  27. Friesen WO, Dedwylder RD (1978) Detection of low amplitude water movements: a new sensory modality in the medicinal leech. Neurose Abstr 4: 380

    Google Scholar 

  28. Friesen WO (1981) Physiology of water motion detection in the medicinal leech. J Exp Biol 92: 255 - 275

    PubMed  CAS  Google Scholar 

  29. Joung SR, Dedwylder RD, Friesen WO (1981) Responses of the medicinal leech to water waves. J Comp Physiol 144:111 -116

    Google Scholar 

  30. Meehan OL (1934) Spiders that fish. Natural History 34: 538 - 541

    Google Scholar 

  31. Gudger EW (1931) Some more spider fishermen. Natural History 31: 58 - 61

    Google Scholar 

  32. Carico JE (1973) The neartic species of the genus Dolomedes (Araneae, Pisauridae). Bull Mus Comp Zool 144: 435 - 488

    Google Scholar 

  33. Gettmann WW (1977) Ökologische Untersuchungen zum Beutefang und Analyse der Beutefanghandlung bei Wolfsspinnen der Gattung Pirata (Araneae, Lycosidae). Ph.D. thesis, Universität Kaiserlautern

    Google Scholar 

  34. Williams DS (1979) The feeding behavior of New Zealand Dolomedes species (Araneae, Pisauridae). N Z J Comp Zool 6:95 -105

    Google Scholar 

  35. Bleckmann H, Rovner J (1984) Sensory ecology of the semiaquatic spider Dolomedes triton. I. Roles of vegetation and wind generated waves in site selection. Behav Ecol Sociobiol 14:297 - 302

    Google Scholar 

  36. Bleckmann H, Barth FG (1984) Sensory ecology of the semiaquatic spider Dolomedes triton. II. The release of predatory behavior by water surface waves. Behav Ecol Sociobiol 14: 303-312

    Google Scholar 

  37. Liehe H (1936) Beobachtungen über das Verhalten der Wasserläufer (Gerridae, Hemiptera, Heteroptera). Bull Int Acad Pol Sei B2: 525 - 546

    Google Scholar 

  38. Rensing L (1962) Beiträge zur vergleichenden Morphologie, Physiologie und Ethologie des Wasserläufers. Zool Beitr Berlin (N.F.) 7: 447 - 490

    Google Scholar 

  39. Wiese K (1969) Wahrnehmung von Oberflächen wellen geringer Amplitude durch den Wasserläufer. Naturwissenschaften 56: 575

    Article  PubMed  CAS  Google Scholar 

  40. Meyer HW (1971) Visuelle Schlüsselreize für die Auslösung der Beutefanghandlung beim Bachwasserläufer Velia caprai (Hemiptera, Heteroptera). I. Untersuchung der räumlichen und zeitlichen Reizparameter mit formverschiedenen Attrappen. Z Vergl Physiol 72: 260 - 297

    Article  Google Scholar 

  41. Meyer HW (1971) Visuelle Schlüsselreize für die Auslösung der Beutefanghandlung beim Bachwasserläufer Velia caprai (Hemiptera, Heteroptera). II. Untersuchung der Wirkung zeitlicher Reizmuster mit Flimmerlicht. Z Vergl Physiol 72:298 - 342

    Google Scholar 

  42. Murphey RK (1971) Motor control of orientation to prey by the water strider Gerris remigis. Z Vergl Physiol 72: 150 - 167

    Article  Google Scholar 

  43. Murphey RK (1971) Sensory aspects of the control of orientation to prey by the water strider, Gerris remigis. Z Vergl Physiol 72: 168 - 185

    Article  Google Scholar 

  44. Jamieson GS, Scudder GGE (1979) Predation in Gerris (Hemiptera): reactive dis-tances and locomotion rates. Oecologia 44: 13 - 20

    Article  Google Scholar 

  45. Wilcox RS, Ruckdeschel Th (1982) Food threshold territoriality in a water strider (Gerris remigis). Behav Ecol Sociobiol 11: 85 - 90

    Article  Google Scholar 

  46. Foster WA, Treherne JE (1980) Feeding, predation and aggregation behavior in a marine insect, Halobates robustus Barber ( Hemiptera, Gerridae) in the Galapagos Islands. Proc R Soc Lond Biol 209: 539-553

    Google Scholar 

  47. Schwind R (1978) Visual system of Notonecta glauca: a neuron sensitive to movement in the binocular visual field. J Comp Physiol 123:315 - 328

    Google Scholar 

  48. Schwind R (1980) Geometrical optics of the Notonecta eye: adaptations to optical environment and way of life. J Comp Physiol 140: 59 - 68

    Article  Google Scholar 

  49. Schwind R (1983) A polarization sensitive response of the flying water bug Notonecta glauca to UV light. J Comp Physiol 150: 87 - 93

    Article  Google Scholar 

  50. Grodd W (1977) Oberflächenwellen zur Reizung von Seitenlinienorganen bei Fischen und Amphibien. Diplomarbeit, Universität Gießen, FRG

    Google Scholar 

  51. Thorade H (1931) Probleme der Wasserwellen. In: Jensen C, Schwassmann A (eds) Probleme der kosmischen Physik, XIII u. X IV. Grand, Hamburg

    Google Scholar 

  52. Wetzel RG (1975) Limnology. Saunders, Philadelphia

    Google Scholar 

  53. Bleckmann H (1985) Discrimination between prey and non-prey wave signals in the fishing spider Dolomedes triton. In: Kalmring K, Eisner N (eds) Acoustic and vibra¬tional communication in insects. Parey, Berlin

    Google Scholar 

  54. Sommerfeld A (1970) Vorlesungen über theoretische Physik, Vol 2 Mechanik der deformierbaren Medien. Akademische Verlagsgesellschaft, Leipzig

    Google Scholar 

  55. Auerbach F, Hort W (1931) In: Barth JA (ed) Mechanik der Flüssigkeiten. Leipzig

    Google Scholar 

  56. Markl H (1983) Vibrational communication. In: Huber F, Markl H (eds) Neuroetho- logy and behavioral physiology. Springer, Berlin Heidelberg New York Tokyo, pp 332 - 353

    Google Scholar 

  57. Wiese K (1972) Das mechanorezeptorische Beuteortungssystem von Notonecta. I. Die Funktion des tarsalen Scolopidialorgans. J Comp Physiol 78: 83 - 102

    Article  Google Scholar 

  58. Murphey RK, Mendenhall B (1973) Localization of receptors controlling orientation to prey by the back swimmer. J Comp Physiol 84: 19 - 30

    Article  Google Scholar 

  59. Murphey RK (1973) Mutual inhibition and the organization of a non-visual orienta¬tion in Notonecta. J Comp Physiol 84: 31 - 40

    Article  Google Scholar 

  60. Lang HH (1980) Surface wave sensitivity of the back swimmer Notonecta glauca. Naturwissenschaften 67:204 - 205

    Google Scholar 

  61. Wiese K (1974) The mechanoreceptive system of prey localization in Notonecta. II. The principle of prey localization. J Comp Physiol 92: 317 - 325

    Article  Google Scholar 

  62. Berestynska-Wilczek M (1962) Investigations of the sensitivity of the spider Pirata piraticus (Clerck) to vibrations of the water surface. Acta Biol Cracov Ser Zool 5: 263 - 277

    Google Scholar 

  63. Walcott C, van der Klott WG (1959) The physiology of the spider vibration receptor. J Exp Zool 141: 191 - 244

    Article  Google Scholar 

  64. Liesenfeld FJ (1961) Untersuchungen am Netz und über den Erschütterungssinn von Zygiella x-notata (Cl.)(Araneidae). Biol Zentralbl 80: 563 - 592

    Google Scholar 

  65. Barth FG, Geethabali (1982) Spider vibration receptors: threshold curves of individual slits in the metatarsal lyriform organ. J Comp Physiol 148: 175 - 185

    Google Scholar 

  66. Schwartz E (1970) Ferntastsinne von Oberflächenfischen. Z Morphol Tiere 67: 40 - 57

    Google Scholar 

  67. Schwartz E, Hasler AD (1966) Superficial lateral line organs of the mudminnow (Umbra limi). Z Vergl Physiol 53:317 - 327

    Google Scholar 

  68. Schwartz E, Hasler AD (1966) Perception of surface waves by the blackstripe top- minnow, Fundulus notatus. J Fish Res Bd Canada 23:1331 -1352

    Google Scholar 

  69. Bleckmann H, Topp G (1981) Surface wave sensitivity of the lateral line organs of the topminnow Aplocheilus Meatus. Naturwissenschaften 67: 624 - 625

    Article  Google Scholar 

  70. Müller U, Schwartz E (1982) Influence of single neuromasts on prey localizing behavior of surface feeding fish, Aplocheilus lineatus. J Comp Physiol 149: 399-408

    Google Scholar 

  71. Schuijf A (1976) Variation of hydrodynamic parameters with depth in capillary gravity waves. In: Schuijf A, Hawkins AD (eds) Sound reception in fish. Elsevier, Oxford, pp 183 - 184

    Google Scholar 

  72. Wilcox RS (1972) Communication by surface waves. J Comp Physiol 80: 255 - 266

    Article  Google Scholar 

  73. Hergenröder R, Barth FG (1983) The release of attack and escape behavior by vibratory stimuli in a wandering spider ( Cupiennius salei Keys. ). J Comp Physiol 152: 347-359

    Google Scholar 

  74. Bleckmann H, Lötz T, Barth FG (1986) The vertebrate catching behavior of the fishing spider Dolomedes triton. Anim Behav (in preparation)

    Google Scholar 

  75. Deshefy GS (1981) Sailing behavior in the fishing spider, Dolomedes triton (Walckenaer). Anim Behav 29: 3

    Article  Google Scholar 

  76. Markl H, Lang HH, Wiese K (1973) Die Genauigkeit der Ortung eines Wellenzen-trums durch den Rückenschwimmer Notonecta glauca. J Comp Physiol 86: 359 - 364

    Article  Google Scholar 

  77. Görner P (1963) Untersuchungen zur Morphologie und Elektrophysiologie des Seiten¬organs vom Krallenfrosch (Xenopus laevis). Z Vergl Physiol 47: 316 - 338

    Article  Google Scholar 

  78. Flock A (1965) Electron microscopic and electrophysiological studies on the lateral- line canal organ. Acta Otolaryngol (Stockh) Suppl 199: 1 - 90

    Google Scholar 

  79. Schwartz E (1974) Lateral line mechanoreceptors in fishes and amphibians. In: Fessard A (ed) Handbook of sensory physiology, volume III/3. Springer, Berlin Heidelberg New York, pp 257 - 278

    Google Scholar 

  80. Tittel G, Müller U, Schwartz E (1984) Determination of stimulus direction by the top- minnow Aplocheilus lineatus. In: Varju D, Schnitzler HU (eds) Localization and orien¬tation in biology and engineering. Springer, Berlin Heidelberg New York, pp 69 - 72

    Google Scholar 

  81. Gudger EW (1922) Spiders as fishermen. J Am Museum Nat Hist 22: 565 - 568

    Google Scholar 

  82. Gudger EW (1925) Spiders as fishermen and hunters. J Am Museum Nat Hist 25: 261 - 275

    Google Scholar 

  83. Tucker VA (1969) Wave-making by whirligig beetles (Gyrinidae). Science 166: 897 - 899

    Article  PubMed  CAS  Google Scholar 

  84. Topp G (1983) Primary lateral line response to water surface waves in the topminnow Aplocheilus lineatus (Pisces, Cyprinodontidae). Pflügers Arch 397: 62 - 67

    Article  PubMed  CAS  Google Scholar 

  85. Waldner I (1981) Habituation von Apolcheilus lineatus auf Oberflächenwellen des Wassers. Ph.D. thesis, Universität Gießen

    Google Scholar 

  86. Wilcox RS (1979) Sex discrimination in Gerris remigis: role of surface wave signal. Science 206: 1325 - 1326

    Article  PubMed  CAS  Google Scholar 

  87. Roland Ch, Rovner JS (1983) Chemical and vibratory communication in the aquatic pisaurid spider Dolomedes triton. J Arachnol 11: 77 - 85

    Google Scholar 

  88. Böttger K (1974) Zur Biologie von Sphaerodema grassei ghesquierei. Studien an zentralafrikanischen Belostomatiden (Heteroptera, Insecta). Arch Hydrobiol 74: 100 - 122

    Google Scholar 

  89. Lang HH, Markl H (1981) Sex discrimination in the back swimmer Notonecta glauca upon contact with conspecifics ( Heteroptera: Notonectidae). Entomol General 7: 175-191

    Google Scholar 

  90. Küme W (1960) Verhaltensstudien an maulbrütenden (Betta anabatoides) und nest¬bauenden Kampffisch (Betta splendens). Z Tierpsychol 18: 33 - 55

    Article  Google Scholar 

  91. Kaus S (1977) Untersuchungen zum vibrotaktischen Verhalten junger Kampffische (Betta splendens R.). Diplomarbeit, Universität Gießen

    Google Scholar 

  92. Markl H, Hauff J (1973) Die Schwellenkurve des durch Vibration ausgelösten Fluchttauchens von Mückenlarven. Naturwissenschaften 60: 432–433

    Article  Google Scholar 

  93. Wiese K, Wollnik F, Jebram D (1980) The protective reflex of Bowerbankia ( Bryozoa ): Calibration and use to indicate movements of the medium beneath a capillary surface wave. J Comp Physiol 137: 297–303

    Google Scholar 

  94. Markl H, Wiese K (1969) Die Empfindlichkeit des Rückenschwimmers Notonecta glauca L. für Oberflächenwellen des Wassers. Z Vergl Physiol 62: 413–420

    Article  Google Scholar 

  95. Müller U (1984) Die morphologische und physiologische Anpassung des Seitenliniensystems von Pantodon buchholzi an den Lebensraum Wasseroberfläche. Ph.D. thesis, Universität Gießen

    Google Scholar 

  96. Wiese K, Schmidt K (1974) Mechanorezeptoren im Insektentarsus. Die Konstruktion des tarsalen Scolopidialorgans bei Notonecta ( Hemiptera, Heteroptera). Z Morphol Tiere 79: 47–63

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bleckmann, H. (1985). Perception of Water Surface Waves: How Surface Waves Are Used for Prey Identification, Prey Localization, and Intraspecific Communication. In: Autrum, H., Ottoson, D., Perl, E.R., Schmidt, R.F., Shimazu, H., Willis, W.D. (eds) Progress in Sensory Physiology. Progress in Sensory Physiology, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70408-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70408-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70410-9

  • Online ISBN: 978-3-642-70408-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics