Skip to main content

Imaging of the Spine: Techniques and Indications

  • Chapter
Diagnosis and Therapy of Spinal Tumors

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

In 1995 the radiological community commemorated the 100th anniversary of Wilhelm Conrad Röntgen’s discovery of a type of radiation with extraordinary powers of penetration which he named X-rays. This remarkable modality has formed the mainstay of medical imaging during the past century, and is only recently in the process of being superseded by the even more versatile technique of magnetic resonance imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Algra PR (1995) Diagnostic imaging of vertebral metastases. Riv Neuroradiol Suppl 8: 165–175

    Google Scholar 

  • Algra PR, Bloem JL, Tissing H, Falke THM, Arndt JW, Verboom LJ (1991a) Detection of vertebral metastases: comparison between MR imaging and bone scintigraphy. Radiographics 11:219–232

    Article  CAS  Google Scholar 

  • Algra PR, Bloem JL, Valk J (1991b) Disappearance of the basivertebral vein: a new MR imaging sign of bone marrow disease. AJR Am J Roentgenol 157: 1129–1130

    Article  CAS  Google Scholar 

  • Algra PR, Heimans JJ, Valk J, Nauta JJ, Lachniet M, Van Kooten B (1991c) Do metastases in vertebrae begin in the body or pedicles? Imaging study in 45 patients. AJR Am J Roentgenol 158:1275–1279

    Article  Google Scholar 

  • Aslanian V, Lemaignen H, Bunouf P, Svaland MG, Borseth A, Lundby B (1996) Evaluation of the clinical safety of gadodiamide injection, a new nonionic MRI contrast medium for the central nervous system: a European perspective. Neuroradiology 38: 537–541

    Article  CAS  PubMed  Google Scholar 

  • Atlas SW (1996) Magnetic resonance imaging of the brain and spine. Lippincott-Raven, Philadelphia

    Google Scholar 

  • Atlas SW, Hackney DB, Listerud J (1993) Fast spin echo imaging of the brain and spine. Magn Reson Q 9: 61–83

    CAS  PubMed  Google Scholar 

  • Balériaux D, Parizel P, Rodesch et al. (1988) Magnetic resonance imaging (MRI) of the spinal cord and intracanalar lesions. J Beige Radiol 71:79–90

    PubMed  Google Scholar 

  • Balériaux D, Parizel P, Bank WO (1992) Intraspinal and intramedullary pathology. In: Manelfe C (ed) Imaging of the spine and spinal cord. Raven, New York, pp 513–564

    Google Scholar 

  • Bellon EM, Haacke EM, Coleman PE, Sacco DC, Steiger DA, Gangarosa RE (1986) MR artifacts: a review. AJR Am J Roentgenol 147:1271–1281

    Article  CAS  PubMed  Google Scholar 

  • Brugières P, Gaston A, Degryse HR et al. (1994) Randomised double blind trial of the safety and efficacy of two gadolinium complexes (Gd-DTPA and Gd-DOTA). Neuroradiology 36:27–30

    Article  PubMed  Google Scholar 

  • Chang CA (1993) Magnetic resonance imaging contrast agents. Design and physicochemical properties of gadodiamide. Invest Radiol 28:21–27

    Article  Google Scholar 

  • Chappell PM, Glover GH, Enzman DR (1995) Contrast on T2-weighted images of the lumbar spine using fast spin-echo and gated conventional spin-echo sequences. Neuroradiology 37:183–186

    Article  CAS  PubMed  Google Scholar 

  • Chrysikopoulos H, Pappas J, Papanikolau N (1996) Bone marrow lesions: evaluation with fat-suppression turbo spin echo MR imaging at 0.5 T. Eur Radiol 6: 895–899

    Article  CAS  PubMed  Google Scholar 

  • Czervionke LF, Daniels DL, Wehrli FW et al. (1988) Magnetic susceptibility artifacts in gradient-recalled echo MR imaging. AJNR 9:1149–1155

    CAS  PubMed  Google Scholar 

  • De Bisschop E, Luypaert R, Louis O, Osteaux M (1993) Fat fraction of lumbar bone marrow using in vivo proton nuclear magnetic resonance spectroscopy. Bone 14:133–136

    Article  PubMed  Google Scholar 

  • De Schepper AMA, Ramon F, Van Marek E (1993) MR imaging of eosinophilic granuloma: report of 11 cases. Skeletal Radiol 22:163–166

    Article  PubMed  Google Scholar 

  • Deyo RA, Diehl AK (1988) Cancer as a cause of low back pain. J Gen Intern Med 3: 230–238

    Article  CAS  PubMed  Google Scholar 

  • Dixon WT (1984) Simple proton spectroscpic imaging. Radiology 153:189–194

    CAS  PubMed  Google Scholar 

  • Frank JA, Ling A, Patronas NJ et al. (1990). Detection of malignant bone tumours: MR imaging versus scintigraphy. AJR Am J Roentgenol 155:1043–1048

    Article  CAS  PubMed  Google Scholar 

  • Freyschmidt JBerning W (1995) Musculoskeletal interventions. Part 2: Percutaneous bone biopsy. In: Baert ALGrenier PWilli UVBloem JL (eds) Musculoskeletal imaging: an update. Syllabus Categorical Course, European Congress of Radiology ECR 95, pp 19–23

    Google Scholar 

  • Georgy BA, Hesselink JR, Middleton MS (1995) Fat-suppression contrast-enhanced MRI in the failed back surgery syndrome: a prospective study. Neuroradiology 37: 51–57

    Article  CAS  PubMed  Google Scholar 

  • Greenfield GB (1980) Radiology of bone diseases, 3rd edn. Lippincott, Philadelphia; pp. 401–414.

    Google Scholar 

  • Haase A, Frahm J, Matthaei D, Hänicke W, Merboldt K-D (1986) FLASH imaging: rapid NMR imaging using low-flip angle pulses. J Magn Reson B 67: 258–266

    CAS  Google Scholar 

  • Hauenstein KH, Wimmer B, Beck A (1988) Knochenbiopsie unklarer Knochenläsionen mit einer neuen 1.4 mm messenden Biopsiekanüle. Radiologe 28: 251–256

    CAS  PubMed  Google Scholar 

  • Hendrick RE, Russ PD, Simon JS (1993) MRI principles and artifacts. The Raven MRI teaching file. Raven, New York

    Google Scholar 

  • Henkelman RM, Hardy PA, Bishop JE, Coons CS, Plewes DB (1992). Why fat is bright in RARE and fast spin-echo imaging. J Magn Reson Imaging 2: 533–540

    Article  CAS  PubMed  Google Scholar 

  • Hittmair K, Mallek R, Prayer D, Schindler EG, Kolleger H (1996) Spinal cord lesions in patients with multiple sclerosis: comparison of MR pulse sequences. AJNR 17: 1555–1565

    CAS  PubMed  Google Scholar 

  • Hofman PAM, Wilmink JT (1995) 3-D volume scanning: a new technique for lumbar MR imaging. Acta Neurochir (Wien) 134: 108–112

    Article  CAS  Google Scholar 

  • Hofman PAM, Wilmink JT (1996) Optimising the image of the intradural nerve root: the value of MR radiculography. Neuroradiology 38: 654–657

    Article  CAS  PubMed  Google Scholar 

  • Hollis PH, Malis LI, Zappulla RA (1986) Neurological deterioration after lumbar puncture below complete spinal subarachnoid block. J Neurosurg 64: 253–256

    Article  CAS  PubMed  Google Scholar 

  • Jones KM, Unger EC, Granstrom P, et al. (1992) Bone marrow imaging using STIR at 0.5 and 1.5 T. Magn Reson Imaging 10:169–176

    Article  CAS  PubMed  Google Scholar 

  • Jones KM, Schwartz RB, Mantello MT, et al. (1994). Fast spin-echo MR in the detection of vertebral metastases: comparison of three sequences. AJNR 15: 401–407

    CAS  PubMed  Google Scholar 

  • Joseph PM, Atlas SW (1996) Artifacts. In: Atlas SW (ed. Magnetic resonance imaging of the brain and spine. Lippincott-Raven, Philadelphia

    Google Scholar 

  • Kattapuram SV, Rosenthal DI (1987) Percutaneous biopsy of the cervical spine using CT guidance. AJR Am J Roentgenol 149: 539–541

    Article  CAS  PubMed  Google Scholar 

  • Kattapuram SV, Khurana JS, Scott JA, El-Khoury GY (1990) Negative scintigraphy with positive magnetic resonance imaging in bone metastases. Skeletal Radiol 19: 113–116

    Article  CAS  PubMed  Google Scholar 

  • Kattapuram SV, Khurana JS, Rosenthal DI (1992) Percutaneous needle biopsy of the spine. Spine 17: 561–564

    Article  CAS  PubMed  Google Scholar 

  • Kett H, Prüll C (1990) Physical principles and signal behaviour in magnetic resonance imaging. In: Breit A (ed) magnetic resonance in oncology. Springer, Berlin Heidelberg New York, pp 3–14

    Google Scholar 

  • Krudy AG (1992) MR myelography using heavily T2-weighted fast spin echo pulse sequences with fat suppression. AJR Am J Roentgenol 159:1315–1320

    Article  CAS  PubMed  Google Scholar 

  • Listerud JL, Einstein S, Outwater E, Kressel HY (1992) First principles of fast spin echo. Magn Reson Q 8:199–244

    CAS  PubMed  Google Scholar 

  • Mascalchi M, Dal Pozzo G, Bartolozzi C (1993) Effectiveness of the short TI inversion recovery (STIR) sequence in MR imaging of intramedullary spinal lesions. Magn Reson Imaging 11: 17–25

    Article  CAS  PubMed  Google Scholar 

  • Mehta RC, Marks MP, Hinks RS, Glover GH, Enzmann. DR (1995) MR evaluation of vertebral metastases: Tl-weighted, STIR, FSE and IRFSE sequences. AJNR 16: 281–288

    CAS  PubMed  Google Scholar 

  • Meyer D, Schaefer M, Bonnemain B (1988) Gd-DOTA, a potential MRI contrast agent: current status of physico-chemical knowledge. Invest Radiol 23 (1): 232–235

    Article  Google Scholar 

  • Mirowitz SA, Shady KL (1992) Gadopentate dimeglumine-enhanced MR imaging of the post-operative lumbar spine: comparison of fat-suppression and conventional Tl-weighted images. AJR 159:385–389

    Article  CAS  PubMed  Google Scholar 

  • Mitchell GE, Louri H, Berne AS (1967) The various causes of scalloped vertebrae with notes on their pathogenesis. Radiology 89:67–74

    CAS  PubMed  Google Scholar 

  • Neumann K, Hosten N, Venz S (1995) Screening for skeletal metastases of the spine and pelvis: gradient echo opposed-phase MRI compared with bone scintigraphy. Eur Radio 5:276–284

    Article  Google Scholar 

  • Nitz WR (1995) Fast MR imaging techniques. In: Parizel PM, Van Goethem JW, van den Hauwe L, De Schepper AM, Balériaux D, David P (eds) Erasmus course on magnetic resonance imaging, syllabus ‘Central Nervous System II’. University of Antwerp

    Google Scholar 

  • Olcott EW, Dillon WP (1993) Plain film clues to the diagnosis of spinal epidural neoplasm and infection. Neuroradiology 35: 288–292

    Article  CAS  PubMed  Google Scholar 

  • Osborn AG (1994) Diagnostic neuroradiology. Mosby, St. Louis

    Google Scholar 

  • Parizel PM (1994) The influence of field strength on magnetic resonance imaging (a comparative study in physico-chemical phantoms, isolated brain specimens and clinical applications). PhD thesis, University of Antwerp

    Google Scholar 

  • Parizel PM, Balériaux D, Rodesch G, et al(1989a) Gd-DTPA-enhanced MR imaging of spinal tumors. AJR Am J Roentgenol 152:1087–1096; AJNR 10:249–258

    Article  CAS  PubMed  Google Scholar 

  • Parizel PM, Degryse HR, Gheuens J et al. (1989b) Gadolinium DOTA enhanced MR of intracranial lesions. J Comput Assist Tomogr 13:378–385

    Article  CAS  PubMed  Google Scholar 

  • Parizel PM, van Hasselt BAAM, van den Hauwe L, Van Goethem JWM, De Schepper AMA (1994) Understanding chemical shift induced boundary artefacts as a function of field strength: influence of imaging parameters (bandwidth, field-of-view, and matrix size). Eur J Radiol 18:158–164

    Article  CAS  PubMed  Google Scholar 

  • Parizel PM, Van Riet B, van Hasselt BAAM et al. (1995) Influence of magnetic field strength on T2* decay and phase effects in gradient echo MRI of vertebral bone marrow. J Comput Assist Tomogr 19: 465–471

    Article  CAS  PubMed  Google Scholar 

  • Parizel PM, Van Goethem JW, van den Hauwe L, Deckers F, Gunzburg R, De Schepper AM (1996) Imaging of spinal implants and radiologic assessment of fusion. In: Szpalski M, Gunzburg R, Spengler DM, Nachemson A (eds): Instrumented fusion of the degenerative lumbar spine: state of the art, questions, and controversies. Lippincott-Raven, Philadelphia, pp 25–33

    Google Scholar 

  • Petersein J, Saini S (1995) Fast MR imaging: technical strategies. AJR Am J Roentgenol 165:1105–1109

    Article  CAS  PubMed  Google Scholar 

  • Plewes DB (1994) Contrast mechanisms in spin echo MR imaging. Radiographics 14: 1389–1404

    Article  CAS  PubMed  Google Scholar 

  • Posse S, Aue WP (1990) Susceptibility artifacts in spin echo and gradient echo imaging. J Magn Res on B88: 473–492

    Google Scholar 

  • Price RR (1995) Contrast mechanisms in gradient-echo imaging and an introduction to fast imaging. Radiographics 15: 165–178

    Article  CAS  PubMed  Google Scholar 

  • Quaynor H, Tronstad A, Heldaas O (1995) Frequency and severity of headache after lumbar myelography using a 25-gauge pencil point (Whitacre) spinal needle. Neuroradiology 37:553–556

    Article  CAS  PubMed  Google Scholar 

  • Reul J, Gievers B, Weis J, Thron A (1995) Assessment of the narrow cervical spinal canal: a prospective comparison of MRI, myelography and CT-myelography. Neuroradiology 37: 187–191

    Article  CAS  PubMed  Google Scholar 

  • Rinck PA (1993). Magnetic resonance in medicine (the basic textbook of the European magnetic resonance forum), 3rd edn. Balckwell, Oxford

    Google Scholar 

  • Rodesch G, Van Bogaert P, Mavroudakis N et al. (1990) Neuroradiologic findings in leptomeningeal carcinomatosis: the value interest of gadolinium-enhanced MRI. Neuroradiology 32: 26–32

    Article  CAS  PubMed  Google Scholar 

  • Ross JS (1992) MR Imaging of the cervical spine: techniques for two- and three-dimensional imaging. AJR Am J Roentgenol 159:779–786

    Article  CAS  PubMed  Google Scholar 

  • Ross JS, Ruggieri PM, Glicklich M et al. (1993) 3D MRI of the cervical spine: low flip angle FISP vs. Gd-DTPA turbo FLASH in degenerative disc disease. J Comput Assist Tomogr 17:26–33

    Article  CAS  PubMed  Google Scholar 

  • Runge VM (1996) Review of neuroradiology. Saunders, Philadelphia

    Google Scholar 

  • Runge VM, Wood ML, Kaufman D, Price AC (1988) Gd-DTPA future applications with advanced imaging techniques. Radiographics 8: 161–179

    Article  CAS  PubMed  Google Scholar 

  • Schuknecht B, Huber P, Büller B, Nadjmi M (1992) Spinal leptomeningeal neoplastic disease. Eur Neurol 32: 11–16

    Article  CAS  PubMed  Google Scholar 

  • Shapiro R (1984) Myelography, 4th edn. Year Book, Chicago

    Google Scholar 

  • Shellock FG, Crues JV (1988) High field-strength MR imaging and metallic biomedical implants: an ex vivo evaluation of deflection forces. AJR Am J Roentgenol 151: 389–392

    Article  CAS  PubMed  Google Scholar 

  • Smith RC, Lange RC, McCarthy SM (1991) Chemical shift artifact: dependence on shape and orientation of the lipid-water interface. Radiology 181: 225–229

    CAS  PubMed  Google Scholar 

  • Stark DD, Bradley WG (1992) Magnetic resonance imaging. 2nd edn. Mosby Year Book, St. Louis

    Google Scholar 

  • Sze G (1990) Magnetic resonance imaging of the spine in oncology. In: Breit A (ed) Magnetic resonance in oncology. Springer, Berlin Heidelberg New York, pp 41–54

    Google Scholar 

  • Sze GAbramson AKrol G , et al. (1988a) Gadolinium-DTPA/ dimeglumine in the MR evaluation of intradural extramedullary spinal disease. AJNR 9: 153–163; AJR Am J Roentgenol 150: 911–921.

    Google Scholar 

  • Sze G, Krol G, Zimmerman RD, Deck MDF (1988b) Intramedullary disease of the spine: diagnosis using gadolinium-DTPA enhanced MR imaging. AJNR 9: 847–858; AJR Am J Roentgenol 151: 1193–1204

    Google Scholar 

  • Tartaglino LM, Flanders AE, Vinitski S, Friedman DP (1994) Metallic artifacts on MR images of the postoperative spine: reduction with fast spin-echo techniques. Radiology 190:565–569

    CAS  PubMed  Google Scholar 

  • Tien RD (1992) Fat-suppression MR imaging in neuroradiology: techniques and clinical application. Review article. AJR Am J Roentgenol 158: 369–379

    Article  CAS  PubMed  Google Scholar 

  • Tien RD, Olson EM, Zee CS (1992) Diseases of the lumbar spine: findings on fat-suppressed MR imaging. AJR Am J Roentgenol 159:95–99

    Article  CAS  PubMed  Google Scholar 

  • Tilling R, Fink U, Deimling M, Bauer WM, Yousry T, Krauss B (1988) Klinische Anwendung von Gradientenecho-Sequenzen mit längeren Repetitionszeiten. Fortschr Röntgenstr 149:303–309

    Article  Google Scholar 

  • Uchida N, Sugimara K, Kajitani A et al. (1993). MR imaging of vertebral metastases: evaluation of fat-saturation imaging. Enr J Radiol 17:91–94

    CAS  Google Scholar 

  • Valk J (1988) Gadolinium-DTPA in MR of spinal lesions. AJNR 9: 345–350

    Google Scholar 

  • Van de Keift E, Bosmans J, Parizel PM, Van Vyve M, Selosse P (1991) Intracerebral hemorrhage after lumbar myelography with iohexol: report of a case and review of the literature. Neurosurgery 28(4): 570–574

    Article  Google Scholar 

  • Van Goethem JWM, Parizel PM, Perdieus D, Hermans P, de Moor J (1991) MR and CT imaging of paraspinal textiloma (gossybipoma). J Comput Assist Tomogr 15: 1000–1003

    Article  PubMed  Google Scholar 

  • Van Goethem JWM, Van de Kelft E, Biltjes IGGM, van Hasselt BAAM, van den Hauwe L, Parizel PM, De Schepper AMA (1996) MRI after successful lumbar discectomy. Neuroradiology 38: 90–96

    Article  Google Scholar 

  • Wehrli FW (1991) Fast-scan magnetic resonance (principles and applications). Raven, New York

    Google Scholar 

  • Wehrli FW, McGowan JC (1996). The basis of MR contrast. In: Atlas SW (ed) Magnetic resonance imaging of the brain and spine. Lippincott-Raven, Philadelphia

    Google Scholar 

  • Wehrli FW, Perkins TG, Shimakawa A, Roberts F (1987) Chemical shift-induced amplitude modulations in images obtained with gradient refocusing. Magn Reson Imaging 5:157–158

    Article  CAS  PubMed  Google Scholar 

  • Weinreb JC, Brateman L, Babcock EE, Maravilla KR, Cohen JM, Horner SD (1985) Chemical shift artifact in clinical magnetic resonance images at 0.35 T. AJR Am J Roentgenol 145: 183–185

    Article  CAS  PubMed  Google Scholar 

  • White SJ, Hajnal JV, Young IR, Bydder GM (1993) Use of fluid attenuated inversion recovery pulse sequences for imaging the spinal cord. Magn Reson Med 28: 153–162

    Article  Google Scholar 

  • Wilmink JT (1988) Radiology of sciatica. PhD thesis, University of Groningen, Van Denderen, Groningen

    Google Scholar 

  • Wilmink JT, Lindeboom SF, Vencken LM, van den Burg W (1984) Relationship between contrast medium dose and adverse effects in lumbar myelography. Diagn Imaging Clin Med 53:208–214

    CAS  PubMed  Google Scholar 

  • Wismer GL, Rosen BR, Buxton R, Stark DD, Brady TJ (1985) Chemical shift imaging of bone marrow: preliminary experience. AJR Am J Roentgenol 145:1031–1037

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Parizel, P.M., Wilmink, J.T. (1998). Imaging of the Spine: Techniques and Indications. In: Algra, P.R., Valk, J., Heimans, J.J. (eds) Diagnosis and Therapy of Spinal Tumors. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60254-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60254-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64321-7

  • Online ISBN: 978-3-642-60254-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics