Skip to main content

Transgenic Citrus

  • Chapter
Transgenic Trees

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 44))

Abstract

Citrus is the largest fruit crop in the world, with a total production of 85 million tons in the season 1994/1995 (FAO 1995). They are grown in tropical and subtropical regions with a wide variety of soil and climatic conditions. They are subjected to important abiotic stresses, such as acid, alkaline, and salty soils, flooding and drought, freezing and high temperatures. In addition, they are affected by many pests and diseases caused by fungi, bacteria, spiroplasmas, phytoplasmas, virus, viroids, and virus-like pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bar-Joseph M, Marcus R, Lee RF (1989) The continuous challenge of citrus tristeza virus control Annu Rev Phytopathol 27: 291 – 316

    Google Scholar 

  • Baulcombe DC (1996) Mechanisms of pathogen-derived resistance to viruses in transgenic plants. Plant Cell 8: 1833 – 1844

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cameron JW, Frost HB (1968) Genetics, breeding and nucellar embryony. In: Reuther W, Bachelor LD, Webber HJ (eds) The citrus industry, vol II. Division Agricultural Sciences. University of California, Berkeley, pp 325 – 381

    Google Scholar 

  • Cervera M, Juárez J, Navarro A, Pina JA, Durán-Vila N, Navarro L, Peña L (1998a) Genetic transformation and regeneration of mature tissues of woody fruit plants bypassing the juvenile stage. Transgenic Res 7: 51 – 59

    Article  CAS  Google Scholar 

  • Cervera M, López MM, Navarro L, Peña L (1998b) Virulence and supervirulence of Agrobacterium tumefaciensin woody fruit plants. Physiol Mol Plant Pathol 52: 67 – 78

    Article  Google Scholar 

  • DeCleene M, DeLey J (1976) The host range of crown gall Bot Rev 42: 389 – 466

    Google Scholar 

  • Durán-Vila N, Ortega V, Navarro L (1989) Morphogenesis and tissue cultures of three Citrusspecies. Plant Cell Tissue Org Cult 16: 123 – 133

    Article  Google Scholar 

  • FAO (1995) Quarterly bulletin of statistics, vol 8. FAO, Rome, pp 31 – 33

    Google Scholar 

  • Fillatti J J, Kiser J, Rose R, Cornai L (1987) Efficient transfer of a glyphosate tolerance gene into tomato using a binary Agrobacterium tumefaciensvector. Bio/Technology 5: 726 – 730

    Article  CAS  Google Scholar 

  • Frost HB, Soost RK (1968) Seed reproduction: development of gametes arid embryos. In: Reuther W, Bachelor LD, Webber HJ (eds) The citrus industry, vol II. Division Agricultural Sciences. University of California, Berkeley, pp 292 – 334

    Google Scholar 

  • Gamier M, Bové JM (1993) Citrus greening disease and the greening bacterium. In: Moreno P, da Graça JV, Timmer LW (eds) Proc 12th Conf Int Org Citrus Virol IOCV, Riverside, California, pp 212 – 219

    Google Scholar 

  • Gmitter F, Xiao SY, Huang S, Hu XL, Garnsey SM, Deng Z (1996) A localized likage map of the citrus tristeza virus resistance gene region. Theor Appi Genet 92: 688 – 695

    Article  CAS  Google Scholar 

  • Gutiérrez MA, Luth DE, Moore GA (1997) Factors affecting Agrobacterium-mediated transformation in Citrusand production of sour orange (Citrus aumntiumL.) plants expressing the coat protein gene of citrus tristeza virus. Plant Cell Rep 16: 745 – 753

    Article  Google Scholar 

  • Härtung JS, Beretta J, Brlansky, RH, Spisso J, Lee RF (1994) Citrus variegated chlorosis bacterium: axenic culture, pathogenicity, and serological relationship with other strain of Xytella fastifiosa. Phytopathology 84: 591 – 597

    Article  Google Scholar 

  • Herrero R, Asíns MJ, Carbonell EA, Navarro L (1996) Genetic diversity in the orange subfamily Aurantioideae. I. Intraspecies and intragenus genetic variability. Theor Appi Genet 92: 599 – 609

    Article  CAS  Google Scholar 

  • Hidaka T, Omura M (1993) Transformation of citrus protoplasts by electroporation. J Jpn Soc Hortic Sci 62: 371 – 376

    Article  CAS  Google Scholar 

  • Hidaka T, Omura M, Ugaki M, Tomiyama M, Kato A, Ohshima M, Motoyoshi F (1990) Agrobacterium-mediated transformation and regeneration of Citrus spp. from suspension cells. Jpn Breed 40: 199 – 207

    Article  Google Scholar 

  • Hood EE, Clapham DH, Ekberg I, Johannson T (1990) T-DNA presence and opine production in tumors of Picea abies (L.) Karst induced by Agrobacterium tumefaciemA281. Plant Mol Biol 14: 111 – 117

    Article  CAS  PubMed  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacteriumhelper plasmids for gene transfer to plants. Transgenic Res 2: 208 – 218

    Article  CAS  Google Scholar 

  • Jin S, Komari T, Gordon MF, Nester EW (1987) Genes responsibel for the supervirulence phenotype of Agrobacterium turnefaciensA281. J Bacteriol 169: 4417 – 4425

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaneyoshi J, Kobayashi S, Nakamura Y, Shigemoto R, Doi Y (1994) A simple and efficient gene transfer system of trifoliate orange. Plant Cell Rep 13: 541 – 545

    CAS  Google Scholar 

  • Kobayashi S, Uchimiya H (1989) Expression and integration of a foreign gene in orange (Citrussinensis Osb.) protoplasts by direct DNA transfer. Jpn J Genet 64: 91 – 97

    Article  Google Scholar 

  • Kobayashi S, Nakamura Y, Kaneyoshi J, Higo H, Higo K (1996) Transformation of Kiwifruit (Actinidia chinensis) and trifoliate orange (Poncirus trifoliata) with a synthetic gene encoding the human epidermal growth factor (hEGF). J Jpn Soc Hortic Sci 64: 763 – 769

    Article  CAS  Google Scholar 

  • Mandel MJ, Yanofsky MF (1995) A gene triggering flower formation in Arabidopsis. Nature 377: 522 – 524

    Article  CAS  PubMed  Google Scholar 

  • Mestre P, Asins MJ, Pina JA, Carbonell E, Navarro L (1997a) Molecular markers flanking citrus tristeza virus resistance gene from Poncirus trifoliata (L.) Raft. Theor Appi Gen 94: 458 – 464

    Article  CAS  Google Scholar 

  • Mestre P, Asins MJ, Carbonell EA, Navarro L (1997b) New gene(s) involved in the resistance of Poncirus trifoliata (L.) Raf. to citrus tristeza virus. Theor Appi Gen 95: 691 – 695

    Article  Google Scholar 

  • Moore G A, Jacono CC, Neidigh JL, Lawrence SD, Cline K (1992) Agrobacterium-mediated transformation of citrus stem segments and regeneration of transgenic plants. Plant Cell Rep 11: 238 – 242

    CAS  PubMed  Google Scholar 

  • Moore GA, Jacono CC, Neidigh JL, Lawrence SD, Cline K (1993) Transformation in Citrus. In: Bajaj YPS (ed) Plant protoplasts and genetic engineering. Biotechnology in agriculture and forestry, vol 23. Springer, Berlin Heidelberg New York, pp 194 – 208

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15: 473 – 479

    Article  CAS  Google Scholar 

  • Murguia JR, Bellés JM, Serrano R (1995) A salt-sensitive 3(2),5-bisphosphate nucleotidase involved in sulfate activation. Science 267: 232 – 234

    Article  CAS  PubMed  Google Scholar 

  • Navarro L (1988) Application of shoot-tip grafting in vitro to woody species. Acta Hort in 227: 43 – 55

    Google Scholar 

  • Navarro L (1992) Citrus shoot tip grafting in vitro. In: Bajaj YPS (ed) High-tech and micropropagation II. Biotechnology in agriculture and forestry, vol 18. Springer, Berlin Heidelberg New York pp 328 – 338

    Google Scholar 

  • Navarro L, Roistacher CN, Murashige T (1975) Improvement of shoot-tip grafting in vitro for virus-free citrus. J Am Soc Hortic Sci 100: 471 – 479

    Google Scholar 

  • Newell CA, Rozman R, Hinchee MA, Lawson EC, Haley L, Sanders P, Kaniewski W, Turner NE, Horsch RB, Fraley RT (1991) Agrobacterium-mediated transformation of Solanum tuberosum L. cv. Russet Burbank. Plant Cell Rep 10: 30 – 34

    Article  CAS  PubMed  Google Scholar 

  • Ollitrault P, Faure X (1992) Système de reproduction et organization de la diversité génétique dans le genre Citrus. In: BRG (ed) Complexe d’espèce, flux de gènes et ressources génétiques. Actes du Colloque International. Paris, pp 133 – 151

    Google Scholar 

  • Peña L, Cervera M, Juárez J, Ortega C, Pina JA, Durán-Vila N, Navarro L (1995a) High efficiency Agrobacterium-mediated transformation and regeneration of citrus. Plant Sci 104: 183 – 191

    Article  Google Scholar 

  • Peña L, Cervera M, Juárez J, Navarro A, Pina JA, Durán-Vila N, Navarro L (1995b) Agrobacterium-mediated transformation of sweet orange and regeneration of transgenic plants. Plant Cell Rep 14: 616 – 619

    Article  Google Scholar 

  • Peña L, Cervera M, Juárez J, Navarro A, Pina JA, Navarro L (1997) Genetic transformation of lime (Citrus aurantifoliaSwing.): factors affecting transformation and regeneration. Plant Cell Rep 16: 731 – 737

    Article  Google Scholar 

  • Pythoud F, Sinkar VP, Nester EW, Gordon MP (1987) Increased virulence of Agrobacterium rhizogenesconferred by the vir region of pTiBo542: Application to genetic engineering of poplar. Bio/Technology 5: 1323 – 1327

    Article  Google Scholar 

  • Rodrigo I, Vera P, Tornero P, Hernández-Yago J, Conejero V (1993) cDNA cloning of vtroid-induced tomato pathogenesis-related protein P23. Characterization as a vacuolar antifungal factor. Plant Physiol 102:939–945

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sambrook J, Fritsch EE, Maniatis T (1989) Molecular cloning – a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Savage EM, Gardner FE (1965) The Troyer and Carrizo citranges. Calif Citrigr 50:112–116

    Google Scholar 

  • Soost RK, Cameron JW (1975) Citrus. In: Janick J, Moore JN (eds) Advances in fruit breeding. Purdue University Press, West Lafayette, pp 507 – 540

    Google Scholar 

  • Timmer LW (1988) Phytophthora-induced diseases. In: Whiteside JO, Garnsey SM, Timmer LW (eds) Compendium of Citrusdiseases. APS Press, Am Phytopathological Soc, St Paul, Minnesota, pp 22 – 25

    Google Scholar 

  • Vancanneyt G, Schmidt R, O’Connor-Sánchez A, Willmitzer L, Rocha-Sosa M (1990) Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant-transformation. Mol Gen Genet 220: 245 – 250

    Article  CAS  PubMed  Google Scholar 

  • Vardi A, Bleichman S, Aviv D (1990) Genetic transformation of citrus protoplasts and regeneration of transgenic plants. Plant Sci 69: 199 – 206

    Article  CAS  Google Scholar 

  • Weigel D, Nilsson O (1995) A developmental switch sufficient for flower initiation in diverse plants. Nature 377: 495 – 500

    Article  CAS  PubMed  Google Scholar 

  • White PR (1951) Nutritional requirements of isolated plant tissues and organs. Annu Rev Plant Physiol 2: 231

    Article  CAS  Google Scholar 

  • Yao J-L, Wu J-H, Gleave AP, Morris BAM (1996) Transformation of citrus embryogenic cells using particle bombardment and production of transgenic embryos. Plant Sci 113: 175 – 183

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer\Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Peña, L., Navarro, L. (2000). Transgenic Citrus. In: Bajaj, Y.P.S. (eds) Transgenic Trees. Biotechnology in Agriculture and Forestry, vol 44. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59609-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59609-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64049-0

  • Online ISBN: 978-3-642-59609-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics