Skip to main content

Part of the book series: Ecological Studies ((ECOLSTUD,volume 150))

Abstract

Biological soil crusts result from an intimate association between soil particles and cyanobacteria, algae, microfungi, lichens, and bryophytes (in different proportions) which live within, or immediately on top of, the uppermost millimeters of soil. Soil particles are aggregated through the presence and activity of these biota, and the resultant living crust covers the surface of the ground as a coherent layer (Fig. 1.1). This definition does not include communities where soil particles are not aggregated by these organisms (e.g., cyanobacterial/algal horizons in littoral sand and mudflats), where organisms are not in close contact with the soil surface (e.g., thick moss-lichen mats growing on top of decaying organic material, as in boreal regions), nor where the majority of the biomass is above the soil surface (e.g., large club-moss mats found in North American grasslands or dense stands of fruticose lichens, such as Niebla and Teloschistes species from the coastal fog deserts of California and of Namibia, respectively). However, the boundaries between the latter communities and biological soil crusts are fluid. In a similar fashion, there is no strict dividing line between the cyanobacterial, green algal, and fungal species that occur in soil-crust communities, yet are also found in a multitude of additional habitats (e.g., intertidal mats, tree trunks and leaves, rock faces).

Schematic block diagram of a biological soil crust with typical colonizers. Thickness of the layer about 3 mm, organisms not drawn to scale. (Illustration Renate Klein-Rödder)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Belnap J (1993) Recovery rates of cryptobiotic soil crusts: inoculant use and assessment methods. Great Basin Nat 53(1):89–95

    Google Scholar 

  • Bewley JD, Krochko JE (1982) Desiccation-tolerance. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology II. Water relations and carbon assimilation. Encyclopedia of plant physiology 12B. Springer, Berlin Heidelberg New York, pp 325–378

    Chapter  Google Scholar 

  • Bilger W, Bohuschke M, Ehling-Schulz M (1997) Annual time course of the contents of carotenoids and UV-protective pigments in the cyanobacterium Nostoc commune. Bibl Lichenol 67:223–234

    Google Scholar 

  • Büdel B, Lange OL (1994) The role of cortical and epinecral layers in the lichen genus Peltula. Cryptogam Bot 4:262–269

    Google Scholar 

  • Büdel B, Wessels DCJ (1986) Parmelia hueana Gyeln., a vagrant lichen from the Namib Desert, SWA/Namibia. I. Anatomical and reproductive adaptations. Dinteria 18:3–15

    Google Scholar 

  • Büdel B, Karsten U, Garcia-Pichel F (1997) Ultraviolet-absorbing scytenemin and mycosporine-like amino acid derivatives in exposed, rock-inhabiting cyanobacterial lichens. Oecologia 112:165–172

    Article  Google Scholar 

  • Crum H (1993) A lichenologists view of lichen manna. Contrib Univ Mich Herb 19:293–306

    Google Scholar 

  • Demmig-Adams A, Máguas C, Adams III WW, Meyer A, Kilian E, Lange OL (1990a) Effect of high light on the efficiency of photochemical energy conversion in a variety of lichen species with green and blue-green phycobionts. Planta 180:400–409

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Adams III WW, Czygan F-C, Schreiber U, Lange OL (1990b) Differences in the capacity for radiationless energy dissipation in the photochemical apparatus of green and blue-green algal lichens associated with differences in carotenoid composition. Planta 180:582–589

    Article  CAS  Google Scholar 

  • Dietz S, Büdel B, Lange OL, Bilger W (2000) Transmittance of light through the cortex of lichens from contrasting habitats. Bibl Lichenol 75:171–182

    Google Scholar 

  • Eldridge DJ, Greene RSB (1994) Microbiotic soil crusts: a review of their roles in soil and ecological processes in the rangelands of Australia. Aust J Soil Res 32:389–415

    Article  Google Scholar 

  • Eldridge DJ, Tozer ME (1996) Distribution and floristics of bryophytes in soil crusts in semi-arid and arid eastern Australia. Aust J Bot 44:223–247

    Article  Google Scholar 

  • Eldridge DJ, Tozer ME (1997) A practical guide to soil lichens and bryophytes of Australia’s dry country. Dep Land and Water Cons, Sydney

    Google Scholar 

  • Elenkin AA (1901) Wanderflechten der Steppen und Wüsten. Bull Jard Imp Bot St Pétersbourg 1:1–45

    Google Scholar 

  • Evans RD, Johansen JR (1999) Microbiotic crusts and ecosystem processes. Crit Rev Plant Sci 18:183–225

    Article  Google Scholar 

  • Frey W, Kürschner H (1988) Bryophytes of the Arabian Peninsula and Socotra. Floristics, phytogeography and definition of the Xerthermic Pangaean element. Nova Hedwigia 46:37–120

    Google Scholar 

  • Frey W, Kürschner H (1991a) Lebensstrategien von terrestrischen Bryophyten in der Judäischen Wüste. Bot Acta 104:172–182

    Google Scholar 

  • Frey W, Kürschner H (1991b) Das Fossombronio-Gigaspermetum mouretii in der Judäischen Wüste. 2. Ökosoziologie und Lebensstrategien. Cryptogam Bot 2/3:73–84

    Google Scholar 

  • Frey W, Kürschner H (1991 c) Morphologische und anatomische Anpassungen der Arten in terrestrischen Bryophytengesellschaften entlang eines ökologischen Gradienten in der Judäischen Wüste. Bot Jahrb Syst 112:529–552

    Google Scholar 

  • Frey W, Kürschner H (1998) Wüstenmoose: Anpassungen und Überlebensstrategien im täglichen Kampf mit der Sonne. Biol Unserer Zeit 28:231–240

    Article  Google Scholar 

  • Galun M (1963) Autecological and synecological observations on lichens of the Negev, Israel. Isr J Bot 12:179–186

    Google Scholar 

  • Galun M, Bubrick P, Garty J (1982) Structural and metabolic diversity of two desert-lichen populations. J Hattori Bot Lab 53:321–324

    Google Scholar 

  • Garcia-Pichel F, Castenholz RW (1991) Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J Phycol 27: 395–409

    Article  CAS  Google Scholar 

  • Garcia-Pichel F, Castenholz RW (1993) Occurrence of UV-absorbing, mycosporine-like compounds among cyanobacterial isolates and an estimate for their screening capacity. Appl Environ Microbiol 59:163–169

    PubMed  CAS  Google Scholar 

  • Gauslaa Y, Solhaug KA (1999) High-light damage in air-dry thalli of the old forest lichen Lobaria pulmonaria — interactions of irradiance, exposure duration and high temperature. J Exp Bot 50:697–705

    CAS  Google Scholar 

  • Harper KT, Marble JR (1988) A role for nonvascular plants in management of arid and semiarid rangeland. In: Tueller PT (ed) Vegetation science applications for rangeland analysis and management. Kluwer Academic Publishers, Dordrecht, pp 135–169

    Chapter  Google Scholar 

  • Hartung W, Gimmler H (1994) A stress-physiological role for abscisic acid (ABA) in lower plants. Prog Bot 55:157–173

    Article  CAS  Google Scholar 

  • Hellwege EM, Dietz K-J, Volk OH, Hartung W (1994) Abscisic acid and the induction of desiccation tolerance in the extremely xerophilic liverwort Exormotheca holstii. Planta 194:525–531

    Article  CAS  Google Scholar 

  • Jahns HM (1988) The lichen thallus. In: Galun M (ed) Handbook of lichenology, 1. CRC Press, Boca Raton, pp 95–143

    Google Scholar 

  • Johansen JR (1993) Cryptogamic crusts of semiarid and arid lands of North America. J Phycol 29:140–147

    Article  Google Scholar 

  • Johansen JR, Rushforth SR (1986) Cryptogamic soil crusts: seasonal variation. Great Basin Nat 46:632–640

    Google Scholar 

  • Kappen L (1973) Response to extreme environments. In: Ahmadjian V, Hale ME (ed) The lichens. Academic Press, New York, pp 311–380

    Chapter  Google Scholar 

  • Kappen L (1988) Ecophysiological relationships in different climatic regions. In: Galun M (ed) Handbook of lichenology, 2. CRC Press, Boca Raton, pp 37–100

    Google Scholar 

  • Kappen L, Lange OL (1972) Die Kälteresistenz einiger Makrolichenen. Flora 161:1–29

    Google Scholar 

  • Komáromy ZP (1976) Soil algal growth types as edaphic adaptation in Hungarian forest and grass steppe ecosystems. Acta Bot Acad Sci Hung 22:373–379

    Google Scholar 

  • Lange OL (1953) Hitze-und Trockenresistenz der Flechten in Beziehung zu ihrer Verbreitung. Flora 140:39–97

    Google Scholar 

  • Lange OL (1955) Untersuchungen über die Hitzeresistenz der Moose in Beziehung zu ihrer Verbreitung. I. Die Resistenz stark ausgetrockneter Moose. Flora 142:381–399

    Google Scholar 

  • Lange OL (1965) Der CO2-Gaswechsel von Flechten bei tiefen Temperaturen. Planta 64:1–19

    Article  CAS  Google Scholar 

  • Lange OL, Belnap J, Reichenberger H (1998) Photosynthesis of the cyanobacterial soil crust lichen Collema tenax for arid lands in southern Utah, USA: role of water content on light and temperature response of CO2 exchange. Funct Ecol 12:195–202

    Article  Google Scholar 

  • Lange OL, Leisner MR, Bilger W (1999) Chlorophyll fluorescence characteristics of the cyanobacterial lichen Peltigera rufescens under field conditions II. Diel and annual distribution of metabolic activity and possible mechanisms to avoid photoinhibition. Flora 194:413–430

    Google Scholar 

  • Leisner MR, Bilger W, Czygan F-C, Lange OL (1993) Lipophilous carotenoids of cyanobacterial lichens from different habitats, including an extreme desert site. Cryptogam Bot 4:74–82

    Google Scholar 

  • Leisner MR, Bilger W, Czygan F-C, Lange OL (1994) Light exposure and the composition of lipophilous carotenoids in cyanobacterial lichens. J Plant Physiol 143:514–519

    Article  CAS  Google Scholar 

  • Lovelock CE, Osmond CB, Seppelt RD (1995) Photoinhibition in the Antarctic moss Grimmia antarctici Card. when exposed to cycles of freezing and thawing. Plant Cell Environ 18:1395–1402

    Article  Google Scholar 

  • Poelt J, Baumgärtner H (1964) Über Rhizinenstränge bei placodialen Flechten. Österr Bot Z 111:1–18

    Article  Google Scholar 

  • Proctor MCF (1981) Physiological ecology of bryophytes. In: Schulze-Motel W (ed) Advances in bryology 1. Cramer, Vaduz, pp 79–166

    Google Scholar 

  • Rikkinen J (1995) What’s behind the pretty colours? A study on the photobiology of lichens. Bryobrothera 4:1–239

    Google Scholar 

  • Rogers RW (1977) Lichens of hot arid and semi-arid lands. In: Seaward MRD (ed) Lichen ecology. Academic Press, London, pp 211–252

    Google Scholar 

  • Rosentreter R (1993) Vagrant lichens in North America. Bryologist 96:333–338

    Article  Google Scholar 

  • Rumrich U, Rumrich M, Lange-Bertalot H (1989) Diatmeen als “Fensteralgen” in der Namib-Wüste und anderen ariden Gebieten von SWA/Namibia. Dinteria 20:23–29

    Google Scholar 

  • Rundel PW, Lange OL (1980) Water relations and photosynthetic response of a desert moss. Flora 169:329–335

    Google Scholar 

  • Sanders WB (1994) Role of lichen rhizomorphs in thallus propagation and substrate colonization. Cryptogam Bot 4:283–289

    Google Scholar 

  • Scherer S, Ernst A, Chen T-W, Böger P (1984) Rewetting of drought-resistant blue-green algae: time course of water uptake and reappearance of respiration, photosynthesis and nitrogen fixation. Oecologia 62:418–423

    Article  Google Scholar 

  • Schneider G (1979) Die Flechtengattung Psora sensu Zahlbruckner. Bibl Lichenol 13: 1–291

    Google Scholar 

  • Schubert R (1982) Lichens of central Asia. J Hattori Bot Lab 53:341–343

    Google Scholar 

  • Solhaug KA, Gauslaa Y (1996) Parietin, a photoprotective secondary product of the lichen Xanthoria parietina. Oecologia 108:412–418

    Article  Google Scholar 

  • Starks TL, Shubert LE, Trainor FR (1981) Ecology of soil algae: a review. Phycologia 20:65–80

    Article  Google Scholar 

  • Timdal E (1986) A revision of Psora (Lecideaceae) in North America. Bryology 89:253–275

    Article  Google Scholar 

  • Vogel S (1955) Niedere “Fensterpflanzen” in der südafrikanischen Wüste. Eine ökologische Schilderung. Beitr Biol Pflanz 31:45–135

    Google Scholar 

  • Volk OH (1979) Beiträge zur Kenntnis der Lebermoose (Marchantiales) aus Südwestafrika (Namibia) I. Mitt Bot Staatssamml Münch 15:223–242

    Google Scholar 

  • Volk OH (1984) Beiträge zur Kenntnis der Marchantiales in Südwest-Afrika/Namibia IV. Nova Hedwigia 39:117–143

    Google Scholar 

  • West NE (1990) Structure and function of soil microphytic crusts in wildland ecosystems of arid and semi-arid regions. Adv Ecol Res 20:179–223

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Belnap, J., Büdel, B., Lange, O.L. (2001). Biological Soil Crusts: Characteristics and Distribution. In: Belnap, J., Lange, O.L. (eds) Biological Soil Crusts: Structure, Function, and Management. Ecological Studies, vol 150. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56475-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56475-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43757-4

  • Online ISBN: 978-3-642-56475-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics