Skip to main content

Part of the book series: Encyclopedia of Plant Physiology ((920,volume 12 / B))

Abstract

Productivity and geographical distribution of plant species are limited as much, if not more, by water stress than by any other environmental factor. Fully one-third of the exposed land mass is classified as arid or semi-arid while the remainder is subjected to seasonal or local variations in water supply. It is hardly surprising that a strong evolutionary impetus toward improved drought-resistance has resulted in a considerable array of adaptations at all levels of organization (ecological, morphological, physiological, and biochemical). Within this variety three basic strategies are recognizable: drought-evasion, drought-avoidance, and drought-tolerance (Cloudsley-Thompson and Chadwick 1964). Drought evasion (or escape) is seen most easily in the ephemeral annuals. Due to an abbreviated life-cycle these plants complete their vegetative growth and reproductive cycle during periods of moisture availability, surviving the intervening dry periods as desiccation-tolerant seeds. Drought-avoidance is achieved primarily through adaptations that retard water loss and/or increase water absorption. Plants in which these features are well-developed effectively forestall internal water deficits when exogenous supplies are scarce. Drought-tolerance is a feature of plants capable of experiencing protoplasmic dehydration without permanent injury. Except for the seed stage, this latter mechanism is poorly developed in the majority of higher plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alpert P (1979) Desiccation of desert mosses following a summer rainstorm. Bryologist 82:65–71

    Google Scholar 

  • Barnett NM, Naylor AW (1966) Amino acid and protein metabolism in Bermudagrass during water stress. Plant Physiol 41:1222–1230

    PubMed  CAS  Google Scholar 

  • Baskin CC, Baskin JM (1974) Responses of Astragalus tennesseensis to drought. Changes in free amino acids and amides during water stress and possible ecological significance. Oecologia 17:11–16

    Google Scholar 

  • Bérard-Therriault L, Cardinal A (1973) Importance de certains facteurs ecologiques sur la resistance a la desiccation des Fucales (Phaeophyceae). Phycologia 12:41–52

    Google Scholar 

  • Bertsch A (1966) CO2-Gaswechsel und Wasserhaushalt der aerophilen Grünalge Apatococcus lobatus. Planta 70:46–72

    Google Scholar 

  • Bewley JD (1973a) Polyribosomes conserved during desiccation of the moss Tortula ruralis are active. Plant Physiol 51:285–288

    PubMed  CAS  Google Scholar 

  • Bewley JD (1973b) Desiccation and protein synthesis in the moss Tortula ruralis. Can J Bot 51:203–206

    CAS  Google Scholar 

  • Bewley JD (1973c) The effects of liquid nitrogen temperatures in protein and RNA synthesis in the moss Tortula ruralis. Plant Sci Lett 1:303–308

    CAS  Google Scholar 

  • Bewley JD (1979) Physiological aspects of desiccation tolerance. Annu Rev Plant Physiol 30:195–238

    CAS  Google Scholar 

  • Bewley JD (1981) Protein synthesis. In: Paleg LG, Aspinall D (eds) Physiology and biochemistry of drought resistance in plants. Academic Press, London New York, pp 261–282

    Google Scholar 

  • Bewley JD, Gwóźdź EA (1975) Plant desiccation and protein synthesis. II. On the relationship between endogenous ATP levels and protein synthesizing capacity. Plant Physiol 55:1110–1114

    PubMed  CAS  Google Scholar 

  • Bewley JD, Larsen KM (1980) Protein synthesis ceases in water-stressed pea roots and maize mesocotyls without loss of polyribosomes. Effects of lethal and non-lethal water stress. J Exp Bot 31:1245–1256

    CAS  Google Scholar 

  • Bewley JD, Pacey J (1978) Desiccation-induced ultrastructural changes in drought-sensitive and drought-tolerant plants. In: Crowe JH, Clegg JS (eds) Dry biological systems. Academic Press, London New York, pp 53–73

    Google Scholar 

  • Bewley JD, Thorpe TA (1974) On the metabolism of Tortula ruralis following desiccation and freezing: Respiration and carbohydrate oxidation. Physiol Plant 32:147–153

    CAS  Google Scholar 

  • Bewley JD, Tucker EB, Gwóźdź EA (1974) The effects of stress on the metabolism of Tortula ruralis. In: Bieleski RL, Ferguson AR, Cresswell MM (eds) Mechanisms of regulation of plant growth. Roy Soc NZ Bull 12:395–402

    Google Scholar 

  • Bewley JD, Halmer P, Krochko J, Winner WE (1978) Metabolism of a drought-tolerant and a drought-sensitive moss. Respiration, ATP synthesis and carbohydrate status. In: Crowe JH, Clegg JS (eds) Dried biological systems. Academic Press, London New York, pp 185–203

    Google Scholar 

  • Biebl R (1962) Seaweeds. In: Lewin RA (ed) Physiology and biochemistry of algae. Academic Press, London New York, pp 799–815

    Google Scholar 

  • Blekhman GI (1979) Factors behind changes of ribonuclease activity and characteristics of manifestations of this activity during dehydration of plants. Sov Plant Physiol 26:754–762

    Google Scholar 

  • Boyer JS (1976) Water deficits and photosynthesis. In: Kozlowski TT (ed) Water deficits and plant growth vol IV. Academic Press, London New York, pp 153–190

    Google Scholar 

  • Brinkhuis BH, Tempel NR, Jones RF (1976) Photosynthesis and respiration of exposed salt-marsh fucoids. Mar Biol 34:349–360

    Google Scholar 

  • Brock TD (1975a) Effect of water potential on a Microcoleus (Cyanophyceae) from a desert crust. J Phycol 11:316–320

    Google Scholar 

  • Brock TD (1975b) The effect of water potential on photosynthesis in whole lichens and in their liberated algal components. Planta 124:13–23

    CAS  Google Scholar 

  • Brown DH, Buck GW (1979) Desiccation effects and cation distribution in bryophytes. New Phytol 82:115–125

    CAS  Google Scholar 

  • Buck GW, Brown DH (1979) The effect of desiccation on cation location in lichens. Ann Bot (London) 44:265–277

    CAS  Google Scholar 

  • Busby JR, Whitfield DWA (1978) Water potential, water content, and net assimilation of some boreal forest mosses. Can J Bot 56:1551–1558

    Google Scholar 

  • Chapman ARO (1973) A critique of prevailing attitudes towards the control of seaweed zonation on the sea shore. Bot Mar 16:80–82

    Google Scholar 

  • Chapman VJ (1966) The physiological ecology of some New Zealand seaweeds. In: Young EG, McLachlan JL (eds) Proc 5th Int Seaweed Symp Pergamon, Oxford, pp 29–54

    Google Scholar 

  • Clausen E (1952) Hepatics and humidity, a study on the occurrence of hepatics in a Danish tract and the influence of relative humidity on their distribution. Dan Bot Ark 15:5–80

    Google Scholar 

  • Clausen E (1964) The tolerance of hepatics to desiccation and temperature. Bryologist 67:411–417

    Google Scholar 

  • Cloudsley-Thompson JL, Chadwick MJ (1964) Life in deserts. Defour Editions, Philadelphia

    Google Scholar 

  • Cooper JP (ed) (1975) Photosynthesis and productivity in different environments. Univ Press, Cambridge

    Google Scholar 

  • Cowan DA, Green TGA, Wilson AT (1979) Lichen metabolism I. The use of tritium labelled water in studies of anhydrobiotic metabolism in Ramalina celastri and Peltigera polydactyla. New Phytol 82:489–503

    CAS  Google Scholar 

  • Darbyshire B (1974) The function of the carbohydrate units of three fungal enzymes in their resistance to dehydration. Plant Physiol 54:717–721

    PubMed  CAS  Google Scholar 

  • Darbyshire B, Steer BT (1973) Dehydration of macromolecules. I. Effect of dehydrationrehydration on indoleacetic acid oxidase, ribonuclease, ribulosediphosphate carboxylase, and ketose-1-phosphate aldolase. Aust J Biol Sci 26:591–604

    CAS  Google Scholar 

  • Davis JS (1972) Survival records in the algae, and the survival role of certain algal pigments, fat and mucilaginous substances. Biologist 54:52–93

    Google Scholar 

  • Dhindsa RS, Bewley JD (1976a) Plant desiccation: polyribosome loss not due to ribonuclease. Science 191:181–182

    PubMed  CAS  Google Scholar 

  • Dhindsa RS, Bewley JD (1976 b) Water stress and protein synthesis. IV. Responses of a drought-tolerant plant. J Exp Bot 27:513–523

    CAS  Google Scholar 

  • Dhindsa RS, Bewley JD (1977) Water stress and protein synthesis. V. Protein synthesis, protein stability and membrane permeability in a drought-sensitive and a drought-tolerant moss. Plant Physiol 59:295–300

    PubMed  CAS  Google Scholar 

  • Dhindsa RS, Bewley JD (1978) Messenger RNA is conserved during drying of drought-tolerant Tortula ruralis. Proc Natl Acad Sci USA 75:842–846

    PubMed  CAS  Google Scholar 

  • Dilks TJK, Proctor MCF (1974) The pattern of recovery of bryophytes after desiccation. J Bryol 8:97–115

    Google Scholar 

  • Dilks TJK, Proctor MCF (1976a) Effects of intermittent desiccation on bryophytes. J Bryol 9:249–264

    Google Scholar 

  • Dilks TJK, Proctor MCF (1976b) Seasonal variation in desiccation tolerance in some British bryophytes. J Bryol 9:239–247

    Google Scholar 

  • Dilks TJK, Proctor MCF (1979) Photosynthesis, respiration and water content in bryophytes. New Phytol 82:87–114

    Google Scholar 

  • Dromgoole FI (1980) Desiccation resistance of intertidal and subtidal algae. Bot Mar 23:149–159

    Google Scholar 

  • Eickmeier WG (1979) Photosynthetic recovery in the resurrection plant Selaginella lepidophylla after wetting. Oecologia 39:93–106

    Google Scholar 

  • Evans JH (1959) The survival of fresh-water algae during dry periods II. Drying environments. J Ecol 47:55–81

    Google Scholar 

  • Farrar JF (1973) Lichen physiology: progress and pitfalls. In: Ferry DW, Baddeley MS, Hawksworth DL (eds) Air pollution and lichens. Athlone, London, pp 238–282

    Google Scholar 

  • Farrar JF (1976) The lichen as an ecosystem: observation and experiment. In: Brown DH, Hawksworth DL, Bailey RH (eds) Lichenology: progress and problems. Academic Press, London New York, pp 385–406

    Google Scholar 

  • Farrar JF, Smith DC (1976) Ecological physiology of the lichen Hypogymnia physodes. III. The importance of the rewetting phase. New Phytol 77:115–125

    CAS  Google Scholar 

  • Fellows RJ, Boyer JS (1978) Altered ultrastructure of cells of sunflower leaves having low water potentials. Protoplasma 93:381–395

    Google Scholar 

  • Finean JB (1969) Biophysical contributions to membrane structure. Q Rev Biophys 2:1–23

    PubMed  CAS  Google Scholar 

  • Fogg GE (1969) Survival of algae under adverse conditions. In: Woolhouse HW (ed) Dormancy and survival. Symp Soc Exp Biol vol 23. Univ Press, Cambridge, pp 123–142

    Google Scholar 

  • Fork DC, Hiyama T (1973) The photochemical reactions of photosynthesis in an alga exposed to extreme conditions. Carnegie Inst Washington Yearb 72:384–388

    Google Scholar 

  • Fraymouth J (1928) The moisture relations of terrestrial algae. III. The respiration of certain lower plants, including terrestrial algae, with special reference to the influence of drought. Ann Bot (London) 42:75–100

    CAS  Google Scholar 

  • Freeman TP, Duysen ME (1975) The effect of imposed water stress on the development and ultrastructure of wheat chloroplasts. Protoplasma 83:131–145

    Google Scholar 

  • Fridovich I (1975) Superoxide dismutases. Annu Rev Biochem 44:147–159

    PubMed  CAS  Google Scholar 

  • Fridovich I (1976) Oxygen radicals, hydrogen peroxide, and oxygen toxicity. In: Pryor WA (ed) Free radicals in biology vol I. Academic Press, London New York, pp 239–277

    Google Scholar 

  • Gaff DF (1971) Desiccation-tolerant flowering plants in Southern Africa. Science 174:1033–1034

    PubMed  CAS  Google Scholar 

  • Gaff DF (1972) Drought resistance in Welwitschia mirabilis Hook. fil. Dinteria 7:3–7

    Google Scholar 

  • Gaff DF (1977) Desiccation tolerant vascular plants of Southern Africa. Oecologia 31:95–109

    Google Scholar 

  • Gaff DF (1980) Protoplasmic tolerance of extreme water stress. In: Turner NC, Kramer PJ (eds) Adaptation of plants to water and high temperature stress. Wiley-Interscience, New York, pp 207–229

    Google Scholar 

  • Gaff DF, Churchill DM (1976) Borya nitida Labili. — an Australian species in the Liliaceae with desiccation-tolerant leaves. Aust J Bot 24:209–224

    Google Scholar 

  • Gaff DF, Ellis RP (1974) Southern African grasses with foliage that revives after dehydration. Bothalia 11:305–308

    Google Scholar 

  • Gaff DF, Hallam ND (1974) Resurrecting desiccated plants. In: Bieleski RL, Ferguson AR, Cresswell MM (eds) Mechanisms of regulation of plant growth. Roy Soc NZ Bull 12:389–393

    Google Scholar 

  • Gaff DF, Latz P (1978) The occurrence of resurrection plants in the Australian flora. Aust J Bot 26:485–492

    Google Scholar 

  • Gaff DF, McGregor GR (1979) The effect of dehydration and rehydration on the nitrogen content of various fractions from resurrection plants. Biol Plant 21:92–99

    CAS  Google Scholar 

  • Gaff DF, Zee S-Y, O’Brien TP (1976) The fine structure of dehydrated and reviving leaves of Borya nitida Labili. — a desiccation-tolerant plant. Aust J Bot 24:225–236

    Google Scholar 

  • Gannutz TP (1969) Effects of environmental extremes on lichens. Bull Soc Bot Fr Mem 1968. Colloq Lichens 1967, pp 169–179

    Google Scholar 

  • Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111: 1164–1194

    Google Scholar 

  • Grime JP (1979) Primary strategies in plants. Trans Bot Soc Edinburgh 43:151–160

    Google Scholar 

  • Gupta RK (1976) The physiology of the desiccation resistance in bryophytes: nature of organic compounds leaked from desiccated liverwort, Plagiochila asplenioides. Biochem Physiol Pflanz 170:389–395

    CAS  Google Scholar 

  • Gupta RK (1977a) An artefact in studies of the responses of respiration of bryophytes to desiccation. Can J Bot 55:1195–1200

    Google Scholar 

  • Gupta RK (1977b) A note on photosynthesis in relation to water content in liverworts: Porella platyphylla and Scapania undulata. Aust J Bot 25:363–365

    CAS  Google Scholar 

  • Gupta RK (1977c) A study of photosynthesis and leakage of solutes in relation to the desiccation effects in bryophytes. Can J Bot 55:1186–1194

    CAS  Google Scholar 

  • Gupta RK (1978) The physiology of the desiccation resistance in bryophytes: effect of desiccation on water status and chlorophyll a and b in bryophytes. Indian J Exp Biol 16:354–356

    CAS  Google Scholar 

  • Gupta RK (1979) Leakage of photosynthates from water-stressed liverwort Scapania undulata (L.) Dum. Indian J Exp Biol 17:164–166

    CAS  Google Scholar 

  • Gwóźdź EA, Bewley JD (1975) Plant desiccation and protein synthesis. An in vitro system from dry and hydrated mosses using endogenous and synthetic messenger RNA. Plant Physiol 55:340–345

    PubMed  Google Scholar 

  • Gwóźdź EA, Bewley JD, Tucker EB (1974) Studies on protein synthesis in Tortula ruralis: polyribosome reformation following desiccation. J Exp Bot 25:599–608

    Google Scholar 

  • Hallam ND, Gaff DF (1978a) Reorganization of fine structure during rehydration of desiccated leaves of Xerophyta villosa. New Phytol 81:349–355

    Google Scholar 

  • Hallam ND, Gaff DF (1978 b) Regeneration of chloroplast structure in Talbotia elegans: a desiccation-tolerant plant. New Phytol 81:657–662

    Google Scholar 

  • Hambler DJ (1961) A poikilohydrous poikilochlorophyllous angiosperm from Africa. Nature (London) 191:1415–1416

    Google Scholar 

  • Hambler DJ (1964) The vegetation of granite outcrops in Western Nigeria. J Ecol 52:573–594

    Google Scholar 

  • Hanson AD, Nelsen CE, Everson EH (1977) Evaluation of free proline accumulation as an index of drought resistance using two contrasting barley cultivars. Crop Sci 17:720–726

    CAS  Google Scholar 

  • Harris GB (1976) Water content and productivity of lichens. In: Lange OL, Kappen L, Schulze E-D (eds) Water and plant life. Problems and modern approaches. Ecol Stud vol 19. Springer, Berlin Heidelberg New York, pp 452–468

    Google Scholar 

  • Henckel PA, Pronina ND (1968) Factors underlying dehydration resistance in poikiloxerophytes. Sov Plant Physiol 15:68–74

    Google Scholar 

  • Henckel PA, Pronina ND (1969) Anabiosis with desiccation of the poikiloxerophytic flowering plant Myrothamnus flabellifolia. Sov Plant Physiol 16:745–749

    Google Scholar 

  • Henckel PA, Pronina ND (1973) The euxerophytic affiliation of Haberlea rhodopensis (Family Gesneriaceae). Sov Plant Physiol 20:690–692

    Google Scholar 

  • Henckel PA, Kurkova EB, Pronina ND (1970) Effect of dehydration on the course of photosynthesis in homeohydrous and poikilohydrous plants. Sov Plant Physiol 17:952–957

    Google Scholar 

  • Henckel PA, Satarova NA, Shaposhnikova SV (1977) Protein synthesis in poikiloxerophytes and wheat embryos during the initial period of swelling. Sov Plant Physiol 24:737–741

    Google Scholar 

  • Hinshiri HM, Proctor MCF (1971) The effect of desiccation on subsequent assimilation and respiration of the bryophytes Anomodon viticulosus and Forella platyphylla. New Phytol 70:527–538

    Google Scholar 

  • Hoffmann P (1968) Pigmentgehalt und Gaswechsel von Myrothamnus-Blätrern nach Austrocknung und Wiederaufsättigung. Photosynthetica 2:245–252

    CAS  Google Scholar 

  • Hosokawa T, Kubota H (1957) On the osmotic pressure and resistance to desiccation of epiphytic mosses from a beech forest, southwest Japan. J Ecol 45:579–591

    Google Scholar 

  • Hsiao TC (1973) Plant responses to water stress. Annu Rev Plant Physiol 24:519–570

    CAS  Google Scholar 

  • Hsiao TC, Acevedo E (1974) Plant responses to water deficits, water-use efficiency, and drought resistance. Agric Meterol 14:59–84

    Google Scholar 

  • Hsiao TC, Acevedo E, Fereres E, Henderson DW (1976) Stress metabolism. Water stress, growth, and osmotic adjustment. Philos Trans R Soc London Ser B273:479–500

    Google Scholar 

  • Hutchinson J (1973) The families of flowering plants, 3rd edn. Oxford Univ Press, Oxon

    Google Scholar 

  • Iljin WS (1953) Causes of death of plants as a consequence of loss of water: conservation of life in desiccated tissues. Bull Torrey Bot Club 80:166–177

    CAS  Google Scholar 

  • Iljin WS (1957) Drought resistance in plants and physiological processes. Annu Rev Plant Physiol 8:257–274

    CAS  Google Scholar 

  • Johnson WS, Gigon A, Gulmon SL, Mooney HA (1974) Comparative photosynthetic capacities of intertidal algae under exposed and submerged conditions. Ecology 55:450–453

    Google Scholar 

  • Jones MM, Turner HC (1978) Osmotic adjustment in leaves of Sorghum in response to water deficits. Plant Physiol 61:122–126

    PubMed  CAS  Google Scholar 

  • Kanwisher J (1957) Freezing and drying in intertidal algae. Biol Bull 113:275–285

    Google Scholar 

  • Kappen L (1973) Response to extreme environments. In: Ahmadjian V, Hale ME (eds) The lichens. Academic Press, London New York, pp 311–380

    Google Scholar 

  • Kappen L, Lange OL, Schulze E-D, Evenari M, Buschbom U (1975) Primary production of lower plants (lichens) in the desert and its physiological basis. In: Cooper JP (ed) Photosynthesis and productivity in different environments. Univ Press, Cambridge, pp 133–143

    Google Scholar 

  • Kershaw KA (1972) The relationship between moisture content and net assimilation rate of lichen thalli and its ecological significance. Can J Bot 50:543–555

    Google Scholar 

  • Kershaw KA, Morris T, Tysiaczny MJ, MacFarlane JD (1979) Physiological-environmental interactions in lichens. VIII. The environmental control of dark CO 2 fixation in Parmelia caperata (L.) Ach and Peltigera canina var. praetextata Hue. New Phytol 83:433–444

    CAS  Google Scholar 

  • Kluge M (1976) Carbon and nitrogen metabolism under water stress. In: Lange OL, Kappen L, Schulze E-D (eds) Water and plant life: problems and modern approaches. Ecol Stud vol 19. Springer Berlin Heidelberg New York, pp 243–252

    Google Scholar 

  • Koch C (1962) The tenebrionidae of southern Africa. XXXI. Comprehensive notes on the tenebrionid fauna of the Namib desert. Ann Transvaal Mus 24:1–98

    Google Scholar 

  • Krochko JE (1979) Metabolism of a desiccation-tolerant and desiccation-sensitive moss during drying and after rehydration: Respiration, photosynthesis, ATP levels and protein synthesis. MSc Thesis, Univ Calgary

    Google Scholar 

  • Krochko JE, Bewley JD, Pacey J (1978) The effects of rapid and very slow speeds of drying on the ultrastructure and metabolism of the desiccation-sensitive moss Cratoneuron filicinum. J Exp Bot 29:905–917

    Google Scholar 

  • Krochko JE, Winner WE, Bewley JD (1979) Respiration in relation to adenosine triphosphate content during desiccation and rehydration of a desiccation-tolerant and a desiccation-intolerant moss. Plant Physiol 64:13–17

    PubMed  CAS  Google Scholar 

  • Lange OL (1953) Hitze- und Trockenresistenz der Flechten in Beziehung zu ihrer Verbreitung. Flora 140:39–97

    Google Scholar 

  • Lange OL (1969a) Ecophysiological investigations in lichens of the Negev desert. I. CO2 gas exchange of Ramalina maciformis (Del.) Bory under controlled conditions in the laboratory. Flora 158:324–359

    Google Scholar 

  • Lange OL (1969b) CO2-gas exchange of mosses following water vapour uptake. Planta 89:90–94

    Google Scholar 

  • Lange OL, Schulze E-D, Koch W (1970) Experimentell-ökologische Untersuchungen an Flechten der Negev-Wüste. IL CO2-Gaswechsel und Wasserhaushalt von Ramalina maciformis (Del.) Bory am natürlichen Standort während der sommerlichen Trockenperiode. Flora 159:38–62

    Google Scholar 

  • Lange OL, Schulze E-D, Kappen L, Buschbom U, Evenari M (1975) Adaptations of desert lichens to drought and extrme temperatures. In: Hadley NF (ed) Environmental physiology of desert organisms. Dowden, Hutchinson and Ross, Stroudsburg, pp 20–37

    Google Scholar 

  • Larson DW (1979) Lichen water relations under drying conditions. New Phytol 82:713–731

    Google Scholar 

  • Larson DW, Kershaw KA (1976) Studies on lichen-dominated systems. XVIII. Morphological control of evaporation in lichens. Can J Bot 54:2061–2073

    Google Scholar 

  • Lechowicz MJ, Adams MS (1974) Ecology of Cladonia lichens. II. Comparative physiological ecology of C. mitis, C. rangiferina and C. uncialis. Can J Bot 52:411–422

    Google Scholar 

  • Lee JA, Stewart GR (1971) Desiccation injury in mosses. I. Intra-specific difference in the effect of moisture stress on photosynthesis. New Phytol 70:1061–1068

    CAS  Google Scholar 

  • Levitt J (1956) The hardiness of plants. Academic Press, London New York

    Google Scholar 

  • Levitt J (1972) Responses of plants to environmental stresses. Academic Press, London New York

    Google Scholar 

  • Levitt J, Sullivan CY, Krull E (1960) Some problems in drought resistance. Bull Res Counc Isr Sect D:8 173–179

    Google Scholar 

  • Luzzati V, Husson F (1962) The structure of the liquid-crystalline phases of lipid-water systems. J Cell Biol 12:207–219

    PubMed  CAS  Google Scholar 

  • MacFarlane JD, Kershaw KA (1978) Thermal sensitivity in lichens. Science 201:739–741

    PubMed  CAS  Google Scholar 

  • MacFarlane JD, Kershaw KA (1980) Physiological-environmental interactions in lichens. IX. Thermal stress and lichen ecology. New Phytol 84:669–685

    CAS  Google Scholar 

  • Mahmoud MI (1965) Protoplasmics and drought resistance in mosses. PhD Thesis, Univ California, Davis

    Google Scholar 

  • Malek L, Bewley JD (1978a) Effects of various rates of freezing on the metabolism of a drought-tolerant plant, the moss Tortula ruralis. Plant Physiol 61:334–338

    PubMed  CAS  Google Scholar 

  • Malek L, Bewley JD (1978 b) Protein synthesis related to cold temperatures in the desiccation-tolerant moss Tortula ruralis. Physiol Plant 43:313–319

    CAS  Google Scholar 

  • Marinos NG, Fife DN (1972) Ultrastructural changes in wheat embryos during a “presowing drought hardening” treatment. Protoplasma 74:381–396

    Google Scholar 

  • Mathieson AE, Burns RL (1971) Ecological studies on economic red algae. I. Photosynthesis and respiration of Chondrus crispus Stackhouse and Gigartina stellata (Stackhouse) Batters. J Exp Mar Biol 7:197–206

    Google Scholar 

  • McKay E (1935) Photosynthesis in Grimmia montana. Plant Physiol 10:803–809

    PubMed  CAS  Google Scholar 

  • McKersie BD, Stinson RH (1980) Effect of dehydration on leakage and membrane structure in Lotus corniculatus L. seeds. Plant Physiol 66:316–320

    PubMed  CAS  Google Scholar 

  • McLean RJ (1967) Desiccation and heat resistance of the green alga Spongiochloris typica. Can J Bot 45:1933–1938

    Google Scholar 

  • Mead JF (1976) Free radical mechanisms of lipid damage and consequences for cellular membranes. In: Pryor WA (ed) Free radicals in biology vol I. Academic Press, London New York, pp 51–68

    Google Scholar 

  • Meguro M, Joly CA, Bittencourt MM (1977) Water deficit stress and some aspects of physiological behavior in Xerophyta plicata Spring. Velloziaceae. Bol Bot Univ S Paulo 5:27–42

    Google Scholar 

  • Montenegro G, Hoffmann AJ, Aljaro ME, Hoffmann AE (1979) Satureja gilliesii, a poikilohydric shrub from the Chilean mediterranean vegetation. Can J Bot 57:1206–1213

    Google Scholar 

  • Morgan JM (1977) Differences in osmoregulation between wheat genotypes. Nature (London) 270:234–235

    Google Scholar 

  • Nash TH III, White SL, Marsh JE (1977) Lichen and moss distribution and biomass in hot desert ecosystems. Bryologist 80:470–479

    Google Scholar 

  • Nir I, Klein S, Poljakoff-Mayber A (1969) Effect of moisture stress on submicroscopic structure of maize roots. Aust J Biol Sci 22:17–33

    Google Scholar 

  • Noailles M-C (1974) Comparison de I’ultrastructure du parenchyme des tiges et feuilles d’une mousse normalement hydratée et en cours de desiccation [Pleurozium schreberi (Willd.) Mitt.]. CR Acad Sci Ser B 278:2759–2762

    Google Scholar 

  • Noailles M-C (1977) Quelques aspects cytologiques et physiologiques de la reviviscence chez les Bryophytes. Congres International de Bryologie, Bordeaux. Bryophyt Bibl 13:45–94

    Google Scholar 

  • Noailles M-C (1978) Etude ultrastructurale de la récupération hydrique aprés une période de secheresse chez une Hypnobryale: Pleurozium schreberi (Willd.) Mitt. Ann Sci Nat Bot 19:249–265

    Google Scholar 

  • Nobel PS (1978) Microhabitat, water relations, and photosynthesis of a desert fern, Noiholaena parryi. Oecologia 31:293–309

    Google Scholar 

  • Nobel PS, Longstreth DJ, Hartsock TL (1978) Effect of water stress on the temperature optima of net CO2 exchange for two desert species. Physiol Plant 44:97–101

    Google Scholar 

  • Nörr M (1974a) Drought resistance of mosses. Flora 163:371–387

    Google Scholar 

  • Nörr M (1974b) Heat resistance of mosses. Flora 163:388–397

    Google Scholar 

  • Ochi H (1952) On the relationship between so-called ‘xeromorphic’ characters found in mosses and their drought resistance. Bull Soc Plant Ecol (Sendai) 1:183–187

    Google Scholar 

  • Ogata E (1968) Respiration of some marine plants as affected by dehydration and rehydration. J Shimonoseki Univ Fish 16:89–102

    Google Scholar 

  • Oppenheimer HR (1960) Adaptation to drought: xerophytism. In: Plant-water relationships in arid and semi-arid conditions. UNESCO, Paris, pp 105–138

    Google Scholar 

  • Oppenheimer HR, Halevy AH (1962) Anabiosis of Ceterach officinarum Lam. et DC. Bull Res Counc Isr D3 11:127–147

    Google Scholar 

  • Oppenheimer HR, Jacoby B (1961) Does plasmolysis increase the drought tolerance of plant cells? Protoplasma 57:619–627

    Google Scholar 

  • Owoseye JA, Sanford WW (1972) An ecological study of Vellozia schnitzleinia, a drought-enduring plant of northern Nigeria. J Ecol 60:807–817

    Google Scholar 

  • Pálfi G, Bitó M, Pálfi Z (1973) Free proline and water deficits in plant tissues. Sov Plant Physiol 20:189–193

    Google Scholar 

  • Parker J (1968) Drought-resistance mechanisms. In: Kozlowski TT (ed) Water deficits and plant growth Vol I. Academic Press, London New York, pp 195–234

    Google Scholar 

  • Parker J (1972) Protoplasmic resistance to water deficits. In: Kozlowski TT (ed) Water deficits and plant growth Vol III. Academic Press, London New York, pp 125–176

    Google Scholar 

  • Patterson PM (1946) Osmotic values of bryophytes and problems presented by refractory types. Am J Bot 33:604–611

    CAS  Google Scholar 

  • Pourrat Y, Hubac C (1974) Comparison des mécanismes de la résistance à la sécheresse chez deux plantes desertiques: Artemisia herba alba Asso et Carex pachystylis (J. Gay) Asch. et Graebn. Physiol Veg 12:135–147

    CAS  Google Scholar 

  • Pronina ND (1972) Effect of dehydration on ATPase activity in poikilohydrous and homeohydrous plants. Sov Plant Physiol 19:731–732

    Google Scholar 

  • Quadir A, Harrison PJ, Dewreede RE (1979) The effects of emergence and submergence on the photosynthesis and respiration of marine macrophytes. Phycologia 18:83–88

    CAS  Google Scholar 

  • Radford AE, Dickison WC, Massey JR, Bell CR (1974) Vascular plant systematics. Harper and Row, New York

    Google Scholar 

  • Richards PW (1957) Ecological notes on West African vegetation. I. The plant communities of the Idanre Hills, Nigeria. J Ecol 45:563–577

    Google Scholar 

  • Ried A (1953) Photosynthese und Atmung bei xerostabilen und xerolabilen Krustenflechten in der Nachwirkung vorausgegangener Entquellungen. Planta 41:436–438

    Google Scholar 

  • Ried A (1960) Thallusbau und Assimilationshaushalt von Laub- und Krustenflechten. Biol Zentralbl 79:129–151

    Google Scholar 

  • Rogers RW (1971) Distribution of the lichen Chondropsis semiviridis in relation to its heat and drought resistance. New Phytol 70:1069–1077

    Google Scholar 

  • Runyon EH (1934) The organization of the creosote bush with respect to drought. Ecology 15:128–138

    Google Scholar 

  • Santarius KA (1969) Der Einfluß von Elektrolyten auf Chloroplasten beim Gefrieren und Trocknen. Planta 89:23–46

    CAS  Google Scholar 

  • Santarius KA (1973) The protective effect of sugars on chloroplast membranes during temperature and water stress and its relationship to frost, desiccation and heat resistance. Planta 113:105–114

    CAS  Google Scholar 

  • Schneider MJT, Schneider AS (1972) Water in biological membranes: Adsorption isotherms and circular dichroism as a function of hydration. J Membr Biol 9:127–140

    PubMed  CAS  Google Scholar 

  • Schonbeck MW, Norton TA (1978) Factors controlling the upper limits of fucoid algae on the shore. J Exp Mar Biol Ecol 31:303–313

    Google Scholar 

  • Schonbeck MW, Norton TA (1979) Drought-hardening in the upper-shore seaweeds Fucus spiralis and Pelvetia canaliculata. J Ecol 67:687–696

    Google Scholar 

  • Schonbeck MW, Norton TA (1980) The effects on intertidal fucoid algae of exposure to air under various conditions. Bot Mar 23:141–147

    Google Scholar 

  • Schwabe WW, Nachmony-Bascomb S (1963) Growth and dormancy in Lunularia cruciata (L.) Dum. II. The response to daylength and temperature. J Exp Bot 14:353–378

    Google Scholar 

  • Seibert G, Loris K, Zollner J, Frenzel B, Zahn RK (1976) The conservation of poly-A-containing RNA during the dormant state of the moss Polytrichum commune. Nucleic Acids Res 3:1997–2003

    PubMed  CAS  Google Scholar 

  • Sen Gupta A (1977) Non-autotrophic CO2 fixation by mosses. MSc Thesis, Univ Calgary

    Google Scholar 

  • Simon EW (1974) Phospholipids and plant membrane permeability. New Phytol 73:377–420

    CAS  Google Scholar 

  • Simon EW (1978) Membranes in dry and imbibing seeds. In: Crowe JH, Clegg JS (eds) Dry biological systems. Academic Press, London New York, pp 205–224

    Google Scholar 

  • Singh TN, Aspinall D, Paleg LG (1972) Proline accumulation and varietal adaptability to drought in barley: A potential measure of drought resistance. Nature (London) New Biol 236:188–190

    CAS  Google Scholar 

  • Slavik B (1965) The influence of decreasing hydration on photosynthetic rate in the thalli of the hepatic Conocephalum conicum. In: Slavik B (ed) Water stress in plants. Proc Symp Prague 1963, Czech Acad Sci, Prague, p 195

    Google Scholar 

  • Smith DC (1962) The biology of lichen thalli. Biol Rev 37:537–570

    Google Scholar 

  • Smith DC (1975) Symbiosis and the biology of lichenised fungi. In: Symbiosis. Symp Soc Exp Biol 29:373–405

    Google Scholar 

  • Smith DC, Molesworth S (1973) Lichen physiology. XIII. Effect of rewetting dry lichens. New Phytol 72:525–533

    Google Scholar 

  • Stadelmann CJ (1971) A protoplasmic basis for drought-resistance. A quantitative approach for measuring protoplasmic properties. In: McGinnies WG, Goldman BJ, Paylore P (eds) Food, fibre and arid lands. Univ Ariz Press, Tucson, pp 337–352

    Google Scholar 

  • Stewart CR (1972) Proline content and metabolism during rehydration of wilted excised leaves in the dark. Plant Physiol 50:679–681

    PubMed  CAS  Google Scholar 

  • Stewart GR, Lee JA (1972) Desiccation injury in mosses. II. The effect of moisture stress on enzyme levels. New Phytol 71:461–466

    CAS  Google Scholar 

  • Stocker O (1960) Physiological and morphological changes in plants due to water deficiency. In: Plant-Water Relationships in Arid and Semi-Arid Conditions. UNESCO, Paris, pp 63–94

    Google Scholar 

  • Stoutjesdijk P (1974) The open shade, an interesting microclimate. Acta Bot Neerl 23:125–130

    Google Scholar 

  • Stuart TS (1968) Revival of respiration and photosynthesis in dried leaves of Polypodium polypodioides. Planta 83:185–206

    Google Scholar 

  • Swanson ES, Anderson WH, Gellerman JL, Schlenk H (1976) Ultrastructure and lipid composition of mosses. Bryologist 79:339–349

    CAS  Google Scholar 

  • Todd GW (1972) Water deficits and enzymatic activity. In: Kozlowski TT (ed) Water deficits and plant growth Vol III. Academic Press, London New York, pp 177–216

    Google Scholar 

  • Tucker EB, Bewley JD (1976) Plant desiccation and protein synthesis. III. Stability of cytoplasmic RNA during dehydration, and its synthesis on rehydration of the moss Tortula ruralis. Plant Physiol 57:564–567

    PubMed  CAS  Google Scholar 

  • Tucker EB, Costerton JW, Bewley JD (1975) The ultrastructure of the moss Tortula ruralis on recovery from desiccation. Can J Bot 53:94–101

    Google Scholar 

  • Tymms MJ, Gaff DF (1979) Proline accumulation during water stress in resurrection plants. J Exp Bot 30:165–168

    CAS  Google Scholar 

  • Vieira Da Silva J, Naylor AW, Kramer PJ (1974) Some ultrastructural and enzymatic effects of water stress in cotton (Gossypium hirsutum L.) leaves. Proc Natl Acad Sci USA 71:3243–3247

    CAS  Google Scholar 

  • Vieweg GH, Ziegler H (1969) Zur Physiologie von Myrothamnus flabellifolia. Ber Dtsch Bot Ges 82:29–36

    Google Scholar 

  • Waldren RP, Teare ID (1974) Free proline accumulation in drought-stressed plants under laboratory conditions. Plant Soil 40:689–692

    CAS  Google Scholar 

  • Walter H (1955) The water economy and the hydration of plants. Annu Rev Plant Physiol 6:239–252

    CAS  Google Scholar 

  • Walter H, Stadelmann EJ (1968) The physiological prerequisites for the transition of autotrophic plants from water to terrestrial life. Bio Science 18:694–701

    Google Scholar 

  • Walter H, Stadelmann E (1974) A new approach to the water relations of desert plants. In: Brown Jr GW (ed) Desert biology vol II. Academic Press, London New York, pp 213–310

    Google Scholar 

  • Wellburn, FAM, Wellburn AR (1976) Novel chloroplasts and unusual cellular ultrastructure in the ‘resurrection’ plant Myrothamnus flabellifolia (Myrothamnaceae). Bot J Linn Soc 72:51–54

    Google Scholar 

  • Willis AJ (1964) Investigations on the physiological ecology of Tortula ruraliformis. Trans Br Bryol Soc 4:668–683

    Google Scholar 

  • Willis JC (1973) A dictionary of flowering plants and ferns, 8th edn. Revised by KH Airy Shaw. Univ Press, Cambridge

    Google Scholar 

  • Wiltens J, Schrieber U, Vidaver W (1978) Chlorophyll fluorescence induction: an indicator of photo synthetic activity in marine algae undergoing desiccation. Can J Bot 56:2787–2794

    CAS  Google Scholar 

  • Zanefeld JS (1969) Factors controlling the delimitation of littoral benthic marine algal zonation. Am Zool 9:367–391

    Google Scholar 

  • Ziegler H, Vieweg GH (1970) Poikilohydre Pteridophyta (Farngewächse). Poikilohydre Spermatophyta (Samenpflanzen). In: Walter H, Kreeb K (eds) Die Hydratation und Hydratur des Protoplasmas der Pflanzen und ihre ökophysiologische Bedeutung. Protoplasmatologia vol II, C/6. Springer Wien New York, pp 88–108

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Bewley, J.D., Krochko, J.E. (1982). Desiccation-Tolerance. In: Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H. (eds) Physiological Plant Ecology II. Encyclopedia of Plant Physiology, vol 12 / B. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68150-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68150-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68152-3

  • Online ISBN: 978-3-642-68150-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics