Skip to main content

A role for nonvascular plants in management of arid and semiarid rangelands

  • Chapter
Vegetation science applications for rangeland analysis and management

Part of the book series: Handbook of vegetation science ((HAVS,volume 14))

Abstract

Blue-green algae, lichens and mosses are common features on soil surfaces of arid and semiarid rangelands worldwide. Such plants often cover as much or more of the soil surface as vascular plants and make useful contributions to arid and semiarid ecosystems via enhanced soil stability against wind and water erosion and greater availability of nitrogen. In some situations, cryptogamic plants roughen soil surfaces and increase water retention and eventual infiltration. Situations are documented in which cryptogamic covers (particularly those with blue-green algae) have improved establishment and growth of vascular plant seedlings. Responses of various cryptogamic species to a broad array of environmental challenges are discussed. Evidence is presented that cryptogamic plants complement the effects of vascular plants relative to soil stability and water infiltration. It is suggested that cryptogamic cover usually does not develop at the expense of higher plant cover. Data indicate that some range management practices are damaging to cryptogamic plants, while others permit those plants (particularly blue-green algae) to persist in the ecosystem. It is recommended that future management practices on arid rangelands be designed to retain at least blue-green algae and lichens having blue-green phycobionts in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmadjian, V. 1967. The lichen symbiosis. Blaisdell Publ. Co., Waltham, Mass.

    Google Scholar 

  • Ahmadjian, V., L. A. Russell, and K. C. Hildreth. 1980. Artificial establishment of lichens. I. Morphological interactions between the phycobionts of different lichens and the mycobionts of Cladonia cristatella and Lecanora chrysoleuca. Mycologia 72:73–89.

    Google Scholar 

  • Ali, S., and G. R. Sandhu. 1972. Blue-green algae of the saline soils of the Punjab. Oikos 23: 268–272.

    Google Scholar 

  • Allen, M. B. 1956. Photosynthetic nitrogen fixation of blue-green algae. Sci. Mon. 83: 100–106.

    CAS  Google Scholar 

  • Anantani, Y. S., and K. V. Marathe. 1974a. Observations on algae of some arid and semiarid soils of Rajasthan. J. of the Univ. of Bombay 41(68): 88–93.

    Google Scholar 

  • Anantani, Y. S., and K. V. Marathe. 1974b. Soil aggregation effects of some algae occurring in the soil of Kutch and Rajasthan. J. of the Univ. of Bombay 41(68): 94–100.

    Google Scholar 

  • Anderson, D. C, K. T. Harper, and R. C. Holmgren. 1982a. Factors influencing development of cryptogamic soil crusts in Utah deserts. J. Range Manager. 35:180–185.

    Google Scholar 

  • Anderson, D. C, K. T. Harper, and S. R. Rushforth. 1982b. Recovery of cryptogamic soil crusts from grazing on Utah winter ranges. J. Range Manage. 35: 355–359.

    Google Scholar 

  • Anderson, D. C, and S. R. Rushforth. 1976. The cryptogamic flora of desert soil crusts in Utah deserts. Nova Hedwigia 28:691–729.

    Google Scholar 

  • Andrew, M. H., and R. T. Lange. 1986. Development of a new piosphere in arid chenopod shrubland grazed by sheep. I. Changes to the soil surface. Aust. J. Ecol. 11:395–409.

    Google Scholar 

  • Ascaso, C., I. Orus, and P. Estevez. 1983. Chloroplast crystalloids and other alterations in response to lichen substances. Photosynthetica 17:198–203.

    CAS  Google Scholar 

  • Ashley, J., and S. R. Rushforth. 1984. Growth of soil algae on topsoil and processed oil shale from the Uintah Basin, Utah, U.S.A. Reclam. and Reveg. Res. 3:49–63.

    Google Scholar 

  • Bailey, D., A. P. Mazurak, and J. R. Rosowski. 1973. Aggregation of soil particles by algae. J.Phycol.9:99–101.

    Google Scholar 

  • Black, C. A. 1968. Soil-plant relationships, 2nd ed. John Wiley and Sons, Inc., New York.

    Google Scholar 

  • Blackburn, W. H. 1975. Factors influencing infiltration rate and sediment production of semiarid rangelands in Nevada. Water Resources Res. 11: 929–937.

    Google Scholar 

  • Bond, R. D., and J. R. Harris. 1964. The influence of the microflora on physical properties of soils. I. Effects associated with filamentous algae and fungi. Aust. J. Soil Res. 2: 111–122.

    Google Scholar 

  • Booth, W. E. 1941. Algae as pioneers in plant succession and their importance in erosion control. Ecol. 22: 38–46.

    Google Scholar 

  • Borut, S. 1960. An ecological and physiological study of soil fungi of the northern Negev (Israel). Bull. Res. Counc. Isr., Sect. D 8:65–80.

    Google Scholar 

  • Bourliere, F. 1964. The land and wildlife of Eurasia. Time Inc., New York.

    Google Scholar 

  • Breazeale, J. M. 1929. Algae and their effect upon the growth of citrus seedlings. Master’s Thesis, Univ. of Arizona, Tucson.

    Google Scholar 

  • Bristol, B. M. 1919. On the retention of vitality by algae from old stored soils. New Phytol. 18:92–107.

    Google Scholar 

  • Brock, T. D. 1973. Primary colonization of Surtsey, with special reference to the blue-green algae. Oikos 24: 239–243.

    Google Scholar 

  • Brotherson, J. D., and W. J. Masslich. 1985. Vegetation patterns in relation to slope position in the Castle Cliffs area of southern Utah. Great Basin Nat. 45: 535–541.

    Google Scholar 

  • Brotherson, J. D., and S. R. Rushforth. 1983. Influence of cryptogamic crusts on moisture relationships of soils in Navajo National Monument, Arizona. Great Basin Nat. 43: 73–78.

    Google Scholar 

  • Brotherson, J. D., S. R. Rushforth, and J. R. Johansen. 1983. Effects of long-term grazing on cryptogam crust cover in Navajo National Monument, Arizona. J. Range Manage. 36: 579–581.

    Google Scholar 

  • Brown, R. T. 1967. Influence of naturally occurring compounds on germination and growth of jack pine. Ecol. 48: 542–546.

    Google Scholar 

  • Brown, R. T., and P. Mikola. 1974. The influence of fruticose soil lichens upon the mycorrhizae and seedling growth of forest trees. Acta For. Fennica 141: 5–22.

    Google Scholar 

  • Burkholder, P. R., and A. W. Evans. 1945. Further studies on the antibiotic activity of lichens. Bull. Torrey Bot. Club 72:157–164.

    Google Scholar 

  • Burkholder, P. R., A. W. Evans, I. McVeigh, and H. K. Thornton. 1944. Antibiotic activity of lichens. Proc. Nat. Acad. Sci. 30: 250–255.

    PubMed  CAS  Google Scholar 

  • Burns, S. J. 1983. Nitrogen fixation and transformations in cryptogamic soil crusts as affected by disturbance. Master’s thesis, Brigham Young University, Provo, Utah.

    Google Scholar 

  • Buzer, J. S., R. A. Dohmeier, and D. R. DuToit. 1985. The survival of algae in dry soils exposed to high temperatures for extended time periods. Phycol. 24:249–251.

    Google Scholar 

  • Callison, J., J. D. Brotherson, and J. E. Bowns. 1985. The effects of fire on the blackbrush (Coleogyne ramosissima) community of southwestern Utah. J. Range Manage. 38: 535–538.

    Google Scholar 

  • Cameron, R. E. 1969. Abundance of microflora in soils of desert regions. Nat. Aeronautics and Space Admin., Jet Propulsion Lab., Tech. Report No. 32–1378. California Inst. of Tech., Pasadena.

    Google Scholar 

  • Cameron, R. E. 1972. A comparison of soil microbial ecosystems in hot, cold, and polar desert regions. p. 185–192. In: L. E. Rodin (ed.) Eco-physiological foundation of ecosystems productivity in arid zone. Publishing House “Nauk”, Leningrad, USSR.

    Google Scholar 

  • Cameron, R. E., and G. B. Blank. 1966. Desert algae: soil crusts and diaphanous substrata as algal habitats. Nat. Aeronautics and Space Admin., Jet Propulsion Lab., Tech. Report No. 32–971. California Inst. of Tech., Pasadena.

    Google Scholar 

  • Carson, J. L., and R. M. Brown, Jr. 1978. Studies of Hawaiian freshwater and soil algae. II. Algal colonization and succession on a dated volcanic substrate. J. Phycol. 14: 171–178.

    CAS  Google Scholar 

  • Cooke, W. B. 1955. Fungi, lichens and mosses in relation to vascular plant communities in eastern Washington and adjacent Idaho. Ecol. Monogr. 25:119–180.

    Google Scholar 

  • Cowles, S. 1982. Preliminary results investigating the effect of lichen ground cover on the growth of black spruce. Naturaliste Can. (Rev. Ecol. Syst.) 109: 573–581.

    Google Scholar 

  • Culbertson, C. F. 1969. Chemical and botanical guide to lichen products. Univ. of N. Carolina Press, Chapel Hill.

    Google Scholar 

  • Dadhich, K. S., A. K. Varma, and G. S. Venkataraman. 1969. The effect of Calothrix inoculation on vegetable crops. Plant and Soil. 31: 377–379.

    Google Scholar 

  • Daubenmire, R. 1970. Steppe vegetation of Washington. Agric. Exp. Stn. Tech. Bull. 62.

    Google Scholar 

  • Dean, K. C, R. Havens, K. T. Harper, and J. B. Rosenbaum. 1973. Vegetative stabilization of mill mineral wastes. p. 119–136. In: R. J. Hutnik, and G. Davis (eds.) Ecology and reclamation of devastated land, vol. 2. Gordon and Breach, Science Publ. Ltd., London.

    Google Scholar 

  • Delwiche, C. C., and J. Wijler. 1956. Nonsymbiotic nitrogen fixation in soil. Plant and Soil 7:113–129.

    CAS  Google Scholar 

  • Durrell, L. W., and L. M. Shields. 1960. Fungi isolated in culture from soils of the Nevada test site. Mycologia 52: 636–641.

    Google Scholar 

  • Durrell, L. W., and L. M. Shields. 1961. Characteristics of soil algae relating to crust formation. Trans. Amer. Microsc. Soc. 80: 73–79.

    Google Scholar 

  • Eckert, R. E., Jr., F. F. Peterson, and J. T. Belton. 1986a. Relation between ecological-range condition and proportion of soil-surface types. J. Range Manage. 39:409–414.

    Google Scholar 

  • Eckert, R. E., Jr., F. F. Peterson, M. S. Meurisse, and J. L. Stephens. 1986b. Effects of soil-surface morphology on emergence and survival of seedlings in big sagebrush communities. J. Range Manage. 39:414–420.

    Google Scholar 

  • Evenari, M. 1981. Synthesis. p. 555–591. In: D. W. Goodall, R. A. Perry, and K. M. W. Howes (eds.) Arid-land ecosystems: structure, functioning and management. Cambridge Univ. Press, Cambridge, U.K.

    Google Scholar 

  • Faurel, L., P. Ozenda, and G. Schotter. 1953. Les lichens du Sahara Algerien. Res. Counc. Israel Spec. Publ. 2: 310–317.

    Google Scholar 

  • Fields, R. D., and L. L. St. Clair. 1984. A comparison of methods for evaluating SO2 impact on selected lichen species: Parmelia chlorochroa, Collema polycarpon and Lecanora muralis. Bryol. 87: 297–301.

    Google Scholar 

  • Fletcher, J. E., and W. P. Martin. 1948. Some effects of algae and moulds in the rain crust of desert soils. Ecol. 29: 95–100.

    Google Scholar 

  • Flint, E. A. 1958. Biological studies of some tussock-grassland soils. IX. Algae: preliminary observations. New Zealand J. of Agric. Res. 1:991–997.

    Google Scholar 

  • Fogg, G. E., and W. D. P. Stewart. 1968. In situ determinations of biological nitrogen fixation in Antarctica. Brit. Antarctic Survey Bull. 15: 39–46.

    Google Scholar 

  • Follmann, G., and J. Redon. 1972. Ergaenzungen zur flechtenflora der nordchilenischen nebeloasen fray jorge und talinay. Willdenowia 6:431–459.

    Google Scholar 

  • Forest, H. S., and C. R. Weston. 1966. Blue-green algae from the Atacama Desert of Northern Chile. J. Phycol. 2:163–164.

    Google Scholar 

  • Friedmann, E. I., and M. Galun. 1974. Desert algae, lichens, and fungi. p. 165–212. In: G. W. Brown, Jr. (ed.) Desert biology. Academic Press, New York.

    Google Scholar 

  • Fritsch, F. E. 1922. The terrestrial algae. J. of Ecol. 10:220–236.

    Google Scholar 

  • Fuller, W. H., R. E. Cameron, and N. Raica. 1960. Fixation of nitrogen in desert soils by algae. Working Papers of Seventh Congr. Intern. Soc. of Soil Sci. for 19 August. Madison, Wisconsin.

    Google Scholar 

  • Galun, M. 1963. Autecological and synecological observations on lichens of the Negev, Israel. Israel J. of Bot. 12:179–187.

    Google Scholar 

  • Gayel, A. G., and E. A. Shtina. 1974. Algae on the sands of arid regions and their role in soil formation. Soviet Soil Sci. 6(3): 311–319.

    Google Scholar 

  • Hale, M. E., Jr. 1974. The biology of lichens, 2nd ed. American Elsevier Publ. Co., Inc., New York.

    Google Scholar 

  • Hale, M. E., Jr. 1979. How to know the lichens, 2nd ed. W. C. Brown Co. Publ., Dubuque, Iowa.

    Google Scholar 

  • Harper, K. T., and G. Holmstead. In review. Effects of cryptogamic plants on some aspects of the water relations of Utah desert soils.

    Google Scholar 

  • Harper, K. T., and L. L. St. Clair. 1985. Cryptogamic soil crusts on arid and semiarid rangelands in Utah: effects on seedling establishment and soil stability. Final report Bureau of Land Management, Utah State Office, Salt Lake City.

    Google Scholar 

  • Harris, E., R. N. Mack, and M. S. B. Ku. 1987. Death of steppe cryptogams under the ash from Mount St. Helens. Amer. J. Bot. 74:1249–1253.

    Google Scholar 

  • Henriksson, E., and L. C. Pearson. 1981. Nitrogen fixation rate and chlorophyll content of the lichen Peltigera canina exposed to sulfur dioxide. Amer. J. Bot. 68:680–684.

    CAS  Google Scholar 

  • Hunt, C. B., and L. W. Durrell. 1966. Distribution of fungi and algae. U. S. Geol. Surv., Prof. Pap. 509: 55–66.

    Google Scholar 

  • Huss-Danell, K. 1978. Seasonal variation in the capacity for nitrogenase activity in the lichen Stereocaulon paschale. New Phytol. 81: 89–98.

    CAS  Google Scholar 

  • Johansen, J. R., A. Javakul, and S. R. Rushforth. 1982. Effects of burning on the algal communities of a high desert soil near Wallsburg, Utah. J. Range Manage. 35: 598–600.

    Google Scholar 

  • Johansen, J. R., and S. R. Rushforth. 1985. Cryptogamic soil crusts: seasonal variation in algal populations in the Tintic Mountains, Juab County, Utah. Great Basin Nat. 45:14–21.

    Google Scholar 

  • Johansen, J. R., S. R. Rushforth, and J. D. Brotherson. 1981. Subaerial algae of Navajo National Monument, Arizona. Great Basin Nat. 41: 433–439.

    Google Scholar 

  • Johansen, J. R., and L. L. St. Clair. 1986. Cryptogamic soil crusts: recovery from grazing near Camp Floyd State Park, Utah. Great Basin Nat. 46:632–640.

    Google Scholar 

  • Johansen, J. R., L. L. St. Clair, B. L. Webb, and G. T. Nebeker. 1984. Recovery patterns of cryptogamic soil crusts in desert rangelands following fire disturbance. Bryol. 87: 238– 243.

    Google Scholar 

  • Jones, J. 1930. An investigation into the bacterial associations of some Cyanobacteria, with special reference to their nitrogen supply. Ann. Bot. 44: 721–740.

    CAS  Google Scholar 

  • Kappen, L., O. L. Lange, E. D. Schulze, M. Evenari, and U. Buschbom. 1979. Ecophysiological investigations on lichens of the Negev Desert. VI. Annual course of the photosynthetic production of Ramalina maciformis (Del.) Bory. Flora 168: 85–108.

    Google Scholar 

  • Kershaw, K. A. 1972. The relationship between moisture content and net assimilation rate of lichen thalli and its ecological significance. Can. J. Bot. 50: 543–555.

    Google Scholar 

  • Kershaw, K. A. 1974. Dependence of the level of nitrogenase activity on the water content of the thallus in Peltigera canina, P. evansiana, P. polydactyla ,and P. praetextata. Can. J. Bot. 52:1423–1427.

    CAS  Google Scholar 

  • King, J. M., and C. H. Ward. 1977. Distribution of edaphic algae as related to land usage. Phycol. 16:23–30.

    Google Scholar 

  • Kleiner, E. F., and K. T. Harper. 1972. Environment and community organization in the grasslands of Canyonlands National Park. Ecol. 53: 229–309.

    Google Scholar 

  • Kleiner, E. F., and K. T. Harper. 1977a. Soil properties in relation to cryptogamic ground-cover in Canyonlands National Park. J. Range Manage. 30: 202–205.

    CAS  Google Scholar 

  • Kleiner, E. F., and K. T. Harper. 1977b. Occurrence of four major perennial grasses in relation to edaphic factors in a pristine community. J. Range Manage. 30: 286–289.

    Google Scholar 

  • Klubek, B., and J. Skujins. 1980. Heterotrophic nitrogen fixation in arid soil crusts. Soil Biol. Biochem. 12: 229–236.

    CAS  Google Scholar 

  • Lange, O. L. 1980. Moisture content and CO2 exchange of lichens. I. Influence of temperature on moisture-dependent net photosynthesis and dark respiration in Ramalina maciformis. Oecologia 45: 82–87.

    Google Scholar 

  • Lewin, R. A. 1977. The use of algae as soil conditioners. CIBCASIO Trans. 3: 33–35. (Publ. of Centros de Investigacion de Baja California, Scripps Inst. f Oceanography, Lajolla, Calif.)

    Google Scholar 

  • Lipman, C. B. 1941. The successful revival of Nostoc commune from an herbarium specimen eighty-seven years old. Bull. Torrey Bot. Club 68:664–666.

    Google Scholar 

  • Looman, J. 1964. The distribution of some lichen communities of the prairie provinces and adjacent parts of the Great Plains. Bryol. 67: 209–224.

    Google Scholar 

  • Loope, W. L., and G. F. Gifford. 1972. Influence of a soil microfloral crust on selected properties of soils under pinyon-juniper in southeastern Utah. J. Soil and Water Conserv. 27:164–167.

    Google Scholar 

  • MacFarlane, J. D., and K. A. Kershaw. 1978. Thermal sensitivity in lichens. Sci. 201: 739–740.

    CAS  Google Scholar 

  • MacGregor, A. N. 1972. Gaseous losses of nitrogen from freshly wetted desert soils. Soil Sci. Soc. Amer. Proc. 36: 594–596.

    CAS  Google Scholar 

  • MacGregor, A. N., and D. E. Johnson. 1971. Capacity of desert algal crusts to fix atmospheric nitrogen. Soil Sci. Soc. Amer. Proc. 35:843–844.

    CAS  Google Scholar 

  • Mack, R. N., and J. N. Thompson. 1982. Evolution in steppe with few large, hooved mammals. Amer. Nat. 119:757–773.

    Google Scholar 

  • MacKenzie, H. J., and H. W. Pearson. 1979. Preliminary studies on the potential use of algae in the stabilization of sand wastes and wind blow situations. British Phycol. J. 14: 126.

    Google Scholar 

  • Marble, J. R., and K. T. Harper (In Press). 1988. The effect of timing of grazing on soil-surface cryptogamic communities in a Great Basin low-shrub desert: a preliminary report. Great Basin Nat.

    Google Scholar 

  • Marsh, J. E., and T. H. Nash, III. 1979. Lichens in relation to the Four Corners Power Plant in New Mexico. Bryol. 82: 20–28.

    Google Scholar 

  • Martin, J. P., and S. A. Waksman. 1940. Influence of microorganisms on soil aggregation and erosion. Soil Sci. 50: 29–47.

    CAS  Google Scholar 

  • Mayland, H. F., and T. H. Mcintosh. 1966. Availability of biologically fixed atmosphere nitrogen-15 to higher plants. Nature 209:421–422.

    CAS  Google Scholar 

  • Mayland, H. F., T. H. Mcintosh, and W. H. Fuller. 1966. Fixation of isotopic nitrogen in a semi-arid soil by algal crust organisms. Soil Sci. Amer. Proc. 30: 56–60.

    CAS  Google Scholar 

  • McKnight, K. B. 1980. Factors influencing size and hyphal pigmentation of soil microfungal populations: a study from gypsiferous soils of a Utah desert. Master’s thesis, Brigham Young University, Provo, Utah.

    Google Scholar 

  • Meyer, S. E. 1986. The ecology of gypsophile endemism in the eastern Mojave Desert. Ecol. 67:1303–1313.

    Google Scholar 

  • Millbank, J. W. 1972. Nitrogen metabolism in lichens. IV. The nitrogenase activity of the Nostoc phycobiont in Peltigera canina. New Phytol. 71:1–10.

    CAS  Google Scholar 

  • Millbank, J. W. 1976. Aspects of nitrogen metabolism in lichens. p. 441–555. In: D. H. Brown, D. L. Hawksworth, and R. H. Bailey (eds.) Lichenology: process and problems. Academic Press, London.

    Google Scholar 

  • Miller, E. V., R. Greene, A. S. Cancilla, and C. Curry. 1963. Antimetabolites in lichens. A preliminary report. Penn. Acad of Sci. 37:104–108.

    Google Scholar 

  • Mooney, H. A., O. Bjorkman, and J. Berry. 1975. Photosynthetic adaptation to high temperatures. p. 138–151. In: N. F. Hadley (ed.) Environmental physiology of desert organisms. Dowden, Hutchinson and Ross, Stroudsberg, Penn.

    Google Scholar 

  • Nash, T. H., III. 1974. Lichens of the Page environs as potential indicators of air pollution. J. Ariz. Acad. Sci. 9: 97–101.

    Google Scholar 

  • Nash, T. H., III. 1975. Influence of effluent from a zinc factory on lichens. Ecol. Mongr. 45: 183–198.

    Google Scholar 

  • Nash, T. H., III. 1976a. Lichens as indicators of air pollution. Naturwissenschaften 63: 364–367.

    PubMed  CAS  Google Scholar 

  • Nash, T. H., III. 1976b. Sensitivity of lichens to nitrogen dioxide fumigations. Bryol. 79: 103–106.

    CAS  Google Scholar 

  • Nash, T. H., III, O. L. Lange, and L. Kappen. 1982a. Photosynthetic patterns of Sonoran desert lichens. II. A multivariate laboratory analysis. Flora 172:419–426.

    Google Scholar 

  • Nash, T. H., III, and T. J. Moser. 1982. Vegetational and physiological patterns of lichens in North American deserts. J. Hattori Bot. Lab. No. 53: 331–336.

    Google Scholar 

  • Nash, T. H., III, T. J. Moser, C. C. Bertke, S. O. Link, L. L. Sigal, S. L. White, and C. A. Fox. 1982b. Photosynthetic patterns of Sonoran desert lichens. I. Environmental considerations and preliminary field measurements. Flora 172: 335–345.

    Google Scholar 

  • Nash, T. H., III, T. J. Moser, S. D. Link, L. J. Ross, A. Olafsen, and U. Matthes. 1983. Lichen photosynthesis in relation to CO2 concentration. Oecologia 58: 52–56.

    Google Scholar 

  • Nash, T. H., III, and E. A. Nash. 1974. Sensitivity of mosses to sulfur dioxide. Oecologia 17: 257–263.

    Google Scholar 

  • Nash, T. H., III, and L. L. Sigal. 1979. Gross photosynthetic response of lichens to short-term ozone fumigations. Bryol. 82:280–285.

    Google Scholar 

  • Nash, T. H., III, and M. R. Sommerfeld. 1981. Elemental concentrations in lichens in the area of the Four Corners Power Plant, New Mexico. Environ. and Experi. Bot. 21: 153–162.

    CAS  Google Scholar 

  • Nash, T. H., III, S. L. White, and J. E. Marsh. 1977. Lichen and moss distribution and biomass in hot desert ecosystems. Bryol. 80:470–479.

    Google Scholar 

  • Nicot, J. 1960. Some characteristics of the microflora of desert soils. p. 94–97. In: D. Parkinson and J. S. Ward (eds.) International Symposium on the ecology of soil fungi. Liverpool Univ. Press, Liverpool, U.K.

    Google Scholar 

  • Novichkova-Ivanova, L. N. 1972. Soil algae of middle Asia deserts. p. 180–182. In: L. E. Rodin (ed.) Eco-physiological foundation of ecosystems productivity in arid zone, Publishing House “Nauka”, Leningrad, USSR.

    Google Scholar 

  • Pankratova, Ye. M., and A. S. Vakhrushev. 1971. Field determination of the fixation of atmospheric nitrogen by blue-green algae using N15. Soviet Soil Sic. 3: 726–733.

    Google Scholar 

  • Pearson, L. C, and G. A. Rodgers. 1982. Air pollution damage to cell membranes in lichens. III. Field experiments. Phyton 22: 329–337.

    CAS  Google Scholar 

  • Pegau, R. E. 1970. Effect of reindeer trampling and grazing on lichens. J. Range Manage. 23: 95–97.

    Google Scholar 

  • Platou, K. A., and P. T. Tueller. 1985. Evolutionary implications for grazing management systems. Rangelands 7: 57–61.

    Google Scholar 

  • Poulton, C. E. 1955. Ecology of non-forested vegetation in Umatilla and Morrow Counties, Oregon. Ph.D. diss., Washington State Univ., Pullman.

    Google Scholar 

  • Pyatt, F. B. 1967. The inhibitory influence of Peltigera canina on the germination of graminaceous seeds and the subsequent growth of the seedlings. Bryol. 70: 326– 329.

    Google Scholar 

  • Reddy, G. B., and J. Giddens. 1975. Nitrogen fixation by algae in fescuegrass soil crusts. Soil Sci. Soc. Amer. Proc. 39: 654–656.

    CAS  Google Scholar 

  • Reichert, I. 1936. Steppe and desert in the light of lichen vegetation. Proc. of the Linnean Soc. of London 149:19–23.

    Google Scholar 

  • Rice, E. L. 1964. Inhibition of nitrogen-fixing and nitrifying bacteria by seed plants. Ecol. 45: 824–837.

    Google Scholar 

  • Rogers, R. W. 1977. Lichens of hot arid and semi-arid lands. p. 211–252. In: M. R. D. Seaward (ed.) Lichen ecology. Academic Press, New York.

    Google Scholar 

  • Rogers, R. W., and R. T. Lange. 1971. Lichen populations on arid soil crusts around sheep watering places in South Australia. Oikos 22: 93–100.

    Google Scholar 

  • Rogers, R. W., and R. T. Lange. 1966. Nitrogen fixation by lichens of arid soil crusts. Nature 209: 96–97.

    Google Scholar 

  • Rogers, R. W., and R. T. Lange. 1971. Lichen populations on arid soil crusts around sheep watering places in South Australia. Oikos 22: 93–100.

    Google Scholar 

  • Rogers, R. W., and R. T. Lange. 1972. Soil surface lichens in arid and subarid south-eastern Australia. I. Introduction and floristics. Aust. J. Bot. 20:197–213.

    Google Scholar 

  • Ross, L. J., and T. H. Nash III. 1983. Effect of ozone on gross photosynthesis of lichens. Environ. and Experi. Bot. 23: 71–77.

    CAS  Google Scholar 

  • Rundel, P. W. 1978a. Ecological relationships of desert fog zone lichens. Bryol. 81: 277–293.

    Google Scholar 

  • Rundel, P. W. 1978b. The ecological role of secondary lichen substances. Biochem. Syst. and Ecol. 6:157–170.

    CAS  Google Scholar 

  • Rychert, R. C., and J. Skujins. 1974. Nitrogen fixation by blue-green algae-lichen crusts in the Great Basin desert. Soil Sci. Soc. Amer. Proc. 38: 768–771.

    CAS  Google Scholar 

  • Rychert, R., J. Skujins, D. Sorensen, and D. Porcella. 1978. Nitrogen fixation by lichens and free-living microorganisms in deserts. p. 20–30. In: N. E. West and J. Skujins (eds.) Nitrogen in desert ecosystems. Dowden, Hutchinson & Ross, Inc., Stroudsburg, Penn.

    Google Scholar 

  • Savory, A., and S. D. Parsons. 1980. The Savory grazing method. Rangelands 2:234–237.

    Google Scholar 

  • Schlatterer, E. F., and E. W. Tisdale. 1969. Effects of litter of Artemisia, Chrysothamnus and Tortula on germination and growth of three perennial grasses. Ecol. 50:869–873.

    Google Scholar 

  • Schulten, J. A. 1985. Soil aggregation by cryptogams of a sand prairie. Amer. J. Bot. 72: 1657–1661.

    Google Scholar 

  • Scott, G. D. 1956. Further investigation of some lichens for fixation of nitrogen. New Phytol. 55:111–116.

    CAS  Google Scholar 

  • Scheridan, R. P. 1979. Impact of emissions from coal-fired electrical generating facilities on N2-fixing lichens. Bryol. 82: 54–58.

    Google Scholar 

  • Shields, L. M. 1957. Algal and lichen floras in relation to nitrogen content of certain volcanic and arid range soils. Ecol. 38: 661–663.

    Google Scholar 

  • Shields, L. M., and F. Drouet. 1962. Distribution of terrestrial algae within the Nevada Test Site. Amer. J. Bot. 49: 547–554.

    Google Scholar 

  • Shields, L. M., and L. W. Durrell. 1964. Algae in relation to soil fertility. Bot. Rev. 30: 92– 128.

    CAS  Google Scholar 

  • Shields, L. M., C. Mitchell, and F. Drouet. 1957. Alga-and lichen stabilized surface crusts as nitrogen sources. Amer. J. Bot. 44: 489–498.

    CAS  Google Scholar 

  • Shubert, L. E., and T. L. Starks. 1979. Algal succession on orphaned coal mine spoils. p. 661–669. In: M. K. Wali (ed.) Ecology and coal development, Pergamon Press, New York.

    Google Scholar 

  • Shubert, L. E., and T. L. Starks. 1980. Soil-algal relationships from surface mined soils. British Phycol. J. 15:417–428.

    Google Scholar 

  • Sinclair, J. G. 1922. Temperatures of the soil and air in a desert. Monthly Weath. Rev. 49: 142–144.

    Google Scholar 

  • Singh, R. N. 1950. Reclamation of “Usar” lands in India through blue-green algae. Nature 165:325–326.

    Google Scholar 

  • Skujins, J., and B. Klubek. 1978. Nitrogen fixation and denitrification in arid soil crypto-gamic crust microenvironments. p. 543–552. In: Environmental biogeochemistry and geomicrobiology, Vol. 2. Ann Arbor Publ., Ann Arbor, Mich.

    Google Scholar 

  • Snyder, J. M., and L. H. Wullstein. 1973. The role of desert cryptogams in nitrogen fixation. Amer. Midl. Nat. 90: 257–265.

    Google Scholar 

  • Starks, T. L., and L. E. Shubert. 1982. Colonization and succession of algae and soil-algal interactions associated with disturbed areas. J. Phycol. 18: 99–107.

    Google Scholar 

  • States, J. S. 1978. Soil fungi of cool-desert plant communities in northern Arizona and southern Utah. Arizona-Nevada Acad. Sci. 13:13–17.

    Google Scholar 

  • St. Clair, L. L., J. E. Johnsen, and B. L. Webb. 1986. Rapid stabilization of fire-disturbed sites using a soil crust slurry: Inoculation studies. Recl. and Reveg. Res. 4: 261–269.

    Google Scholar 

  • St. Clair, L. L., B. L. Webb, J. R. Johansen, and G. T. Nebeker. 1984. Cryptogamic soil crusts: Enhancement of seedling establishment in disturbed and undisturbed areas. Reclam. and Reveg. Res. 3:129–136.

    Google Scholar 

  • Stewart, W. D. P. 1967. Transfer of biologically fixed nitrogen in a sand dune slack region. Nature 214: 603–604.

    Google Scholar 

  • Stewart, W. D. P., and M. Lex. 1970. Nitrogenase activity in the blue-green alga Plectronema boryanum strain 594. Archiv. Mikrobiol. 73: 250–260.

    CAS  Google Scholar 

  • Steyn, P. L., and C. C. Delwiche. 1970. Nitrogen fixation by nonsymbiotic microorganisms in some California soils. Environ. Sci. and Tech. 4:1122–1128.

    CAS  Google Scholar 

  • Stokes, J. L. 1940. The influence of environmental factors upon the development of algae and other microorganisms in soil. Soil Sci. 49:171–184.

    CAS  Google Scholar 

  • Stokes, J. L. 1941. The relation of algae to the nitrogen economy of the soil. Chronica Bot. 6: 202–203.

    CAS  Google Scholar 

  • Sutton, J. C, and B. R. Sheppard. 1976. Aggregation of sand-dune soil by endomycorrhizal fungi. Can. J. of Bot. 54: 326–333.

    Google Scholar 

  • Terry, R. E., and S. J. Burns. 1987. Nitrogen fixation in cryptogamic soil crusts as affected by disturbance. p. 369–372. In: Proceedings -pinyon-juniper conference. USDA For. Serv. Gen. Tech. Report INT-215.

    Google Scholar 

  • Trainor, F. R. 1982. Survival of algae in soil after high temperature treatment. Phycol. 22: 201–212.

    Google Scholar 

  • Treshow, M. 1970. Environment and plant response. McGraw-Hill Book Co., New York.

    Google Scholar 

  • Vollmer, A. T., F. Au, and S. A. Bamberg. 1977. Observations on distribution of microorganisms in desert soil. Great Basin Nat. 37: 81–86.

    Google Scholar 

  • Walp, L., and R. Schopbach. 1942. Influence of pH on the proliferation of Nostoc muscorum. Growth 6: 33–37.

    CAS  Google Scholar 

  • Watanabe, A., A. S. Nishigake, and C. Konishi. 1951. Effect on nitrogen-fixing blue-green algae on growth of rice plants. Nature 168: 748–749.

    PubMed  CAS  Google Scholar 

  • Watson, A. 1979. Gypsum crusts in deserts. J. Arid Environ. 2: 3–20.

    Google Scholar 

  • Weier, T. E., C. R. Stocking, and M. G. Barbour. 1974. Botany -an introduction to plant biology. 5th ed. John Wiley & Sons, New York.

    Google Scholar 

  • Went, F. W., and N. Stark. 1968. The biological and mechanical role of soil fungi. Proc. Nat. Acad. Sci. 60:497–504.

    PubMed  CAS  Google Scholar 

  • West, N. E. 1981. Nutrient cycling in desert ecosystems. p. 301–324. In: D. W. Goodall, R. A. Perry, and K. M. W. Howes (eds.) Arid-land ecosystems: Structure, functioning and management. Cambridge Univ. Press, Cambridge, U.K.

    Google Scholar 

  • West, N. E., and J. Skujins. 1977. The nitrogen cycle in North American cold-winter semi-desert ecosystems. Oecol. Plant. 12:45–53.

    CAS  Google Scholar 

  • Worley, I. A. 1973. The “black crust” phenomenon in upper Glacier Bay, Alaska. Northwest Sci. 47: 20–29.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers, Dordrecht, Boston, London

About this chapter

Cite this chapter

Harper, K.T., Marble, J.R. (1988). A role for nonvascular plants in management of arid and semiarid rangelands. In: Tueller, P.T. (eds) Vegetation science applications for rangeland analysis and management. Handbook of vegetation science, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3085-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3085-8_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7886-3

  • Online ISBN: 978-94-009-3085-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics