Skip to main content
Log in

Small RNAs as regulators of primary and secondary metabolism in Pseudomonas species

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Small RNAs (sRNAs) exert important functions in pseudomonads. Classical sRNAs comprise the 4.5S, 6S, 10Sa and 10Sb RNAs, which are known in enteric bacteria as part of the signal recognition particle, a regulatory component of RNA polymerase, transfer–messenger RNA (tmRNA) and the RNA component of RNase P, respectively. Their homologues in pseudomonads are presumed to have analogous functions. Other sRNAs of pseudomonads generally have little or no sequence similarity with sRNAs of enteric bacteria. Numerous sRNAs repress or activate the translation of target mRNAs by a base-pairing mechanism. Examples of this group in Pseudomonas aeruginosa are the iron-repressible PrrF1 and PrrF2 sRNAs, which repress the translation of genes encoding iron-containing proteins, and PhrS, an anaerobically inducible sRNA, which activates the expression of PqsR, a regulator of the Pseudomonas quinolone signal. Other sRNAs sequester RNA-binding proteins that act as translational repressors. Examples of this group in P. aeruginosa include RsmY and RsmZ, which are central regulatory elements in the GacS/GacA signal transduction pathway, and CrcZ, which is a key regulator in the CbrA/CbrB signal transduction pathway. These pathways largely control the extracellular activities (including virulence traits) and the selection of the energetically most favourable carbon sources, respectively, in pseudomonads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aarons S, Abbas A, Adams C, Fenton A, O’Gara F (2000) A regulatory RNA (PrrB RNA) modulates expression of secondary metabolite genes in Pseudomonas fluorescens F113. J Bacteriol 182:3913–3919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abdou L, Chou H-T, Haas D, Lu C-D (2011) Promoter recognition and activation by the global response regulator CbrB in Pseudomonas aeruginosa. J Bacteriol. doi:https://doi.org/10.1128/JB.00164-11

  • Altuvia S (2007) Identification of bacterial small non-coding RNAs: experimental approaches. Curr Opin Microbiol 10:257–261

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Ortega C, Harwood CS (2007) Responses of Pseudomonas aeruginosa to low oxygen indicate that growth in the cystic fibrosis lung is by aerobic respiration. Mol Microbiol 65:153–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amador C, Canosa I, Govantes F, Santero E (2010) Lack of CbrB in Pseudomonas putida affects not only amino acid metabolism but also different stress responses and biofilm development. Environ Microbiol 12:1748–1761

    Article  CAS  PubMed  Google Scholar 

  • Aranda-Olmedo I, Ramos JL, Marqués S (2005) Integration of signals through Crc and PtsN in catabolite repression of Pseudomonas putida TOL plasmid pWW0. Appl Environ Microbiol 71:4191–4198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babitzke P, Romeo T (2007) CsrB sRNA family: sequestration of RNA-binding regulatory proteins. Curr Opin Microbiol 10:156–163

    Article  CAS  PubMed  Google Scholar 

  • Backofen R, Hess WR (2010) Computational prediction of sRNAs and their targets in bacteria. RNA Biol 7:33–42

    Article  CAS  PubMed  Google Scholar 

  • Barrick JE, Sudarsan N, Weinberg Z, Ruzzo WL, Breaker RR (2005) 6S RNA is a widespread regulator of eubacterial RNA polymerase that resembles an open promoter. RNA 11:774–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beisel CL, Storz G (2010) Base pairing small RNAs and their roles in global regulatory networks. FEMS Microbiol Rev 34:866–882

    Article  CAS  PubMed  Google Scholar 

  • Blumer C, Haas D (2000a) Iron regulation of the hcnABC genes encoding hydrogen cyanide synthase depend on the anaerobic regulator ANR rather than on the global activator GacA in Pseudomonas fluorescens CHA0. Microbiology 146:2417–2424

    Article  CAS  PubMed  Google Scholar 

  • Blumer C, Haas D (2000b) Multicopy suppression of a gacA mutation by the infC operon in Pseudomonas fluorescens CHA0: competition with the global translational regulator RsmA. FEMS Microbiol Lett 187:53–58

    Article  CAS  PubMed  Google Scholar 

  • Blumer C, Heeb S, Pessi G, Haas D (1999) Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding sites. Proc Natl Acad Sci USA 96:14073–14078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boisset S, Geissmann T, Huntzinger E, Fechter P, Bendridi N, Possedko M, Chevalier C, Helfer AC, Benito Y, Jacquier A, Gaspin C, Vandenesch F, Romby P (2007) Staphylococcus aureus RNAIII coordinately represses the synthesis of virulence factors and the transcription regulator Rot by an antisense mechanism. Genes Dev 21:1353–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bordi C, Lamy M-C, Ventre I, Termine E, Hachani A, Fillet S, Roche B, Bleves S, Méjean V, Lazdunski A, Filloux A (2010) Regulatory RNAs and the HptB/RetS signalling pathways fine tune Pseudomonas aeruginosa pathogenesis. Mol Microbiol 76:1427–1443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brencic A, Lory S (2009) Determination of the regulon and identification of novel mRNA targets of Pseudomonas aeruginosa RsmA. Mol Microbiol 72:612–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brencic A, McFarland KA, McManus HR, Castang S, Mogno I, Dove SL, Lory S (2009) The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs. Mol Microbiol 73:434–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bronstein PA, Filiatrault MJ, Myers CR, Rutzke M, Schneider DJ, Cartinhour SW (2008) Global transcriptional responses of Pseudomonas syringae DC3000 to changes in iron bioavailability in vitro. BMC Microbiol 8:209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown D (2010) A mathematical model of the Gac/Rsm quorum sensing network in Pseudomonas fluorescens. Biosystems 101:200–212

    Article  CAS  PubMed  Google Scholar 

  • Burrowes E, Abbas A, O’Neill A, Adams C, O’Gara F (2005) Characterisation of the regulatory RNA RsmB from Pseudomonas aeruginosa PAO1. Res Microbiol 156:7–16

    Article  CAS  PubMed  Google Scholar 

  • Burrowes E, Baysse C, Adams C, O’Gara F (2006) Influence of the regulatory protein RsmA on cellular functions in Pseudomonas aeruginosa PAO1, as revealed by transcriptome analysis. Microbiology 152:405–418

    Article  CAS  PubMed  Google Scholar 

  • Cases I, Pérez-Martín J, de Lorenzo V (1999) The IIANtr (PtsN) protein of Pseudomonas putida mediates the C source inhibition of the σ54-dependent Pu promoter of the TOL plasmid. J Biol Chem 274:15562–15568

    Article  CAS  PubMed  Google Scholar 

  • Collier DN, Hager PW, Phibbs PV Jr (1996) Catabolite repression control in the pseudomonads. Res Microbiol 147:551–561

    Article  CAS  PubMed  Google Scholar 

  • Comolli JC, Donohue TJ (2004) Differences in two Pseudomonas aeruginosa cbb 3 cytochrome oxidases. Mol Microbiol 51:1193–1203

    Article  CAS  PubMed  Google Scholar 

  • Cornelis P (2010) Iron uptake and metabolism in pseudomonads. Appl Microbiol Biotechnol 86:1637–1645

    Article  CAS  PubMed  Google Scholar 

  • Dubey AK, Baker CS, Romeo T, Babitzke P (2005) RNA sequence and secondary structure participate in high-affinity CsrA–RNA interaction. RNA 11:1579–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubuis C, Keel C, Haas D (2007) Dialogues of root-colonizing biocontrol pseudomonads. Eur J Plant Pathol 119:311–328

    Article  Google Scholar 

  • Filiatrault MJ, Stodghill PV, Bronstein PA, Moll S, Lindeberg M, Grills G, Schweitzer P, Wang W, Schroth GP, Luo S, Khrebtukova I, Yang Y, Thannhauser T, Butcher BG, Cartinhour S, Schneider DJ (2010) Transcriptome analysis of Pseudomonas syringae identifies new genes, noncoding RNAs, and antisense activity. J Bacteriol 192:2359–2372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaffney TD, Lam ST, Ligon J, Gates K, Frazelle A, Di Maio J, Hill S, Goodwin S, Torkewitz N, Allshouse AM, Kempf H-J, Becker JO (1994) Global regulation of antifungal factors by a Pseudomonas fluorescens biological control strain. Mol Plant-Microb Interact 7:455–463

    Article  CAS  Google Scholar 

  • Gallagher LA, Manoil C (2001) Pseudomonas aeruginosa PAO1 kills Caenorhabditis elegans by cyanide poisoning. J Bacteriol 183:6207–6214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González N, Heeb S, Valverde C, Kay E, Reimmann C, Junier T, Haas D (2008) Genome-wide search reveals a novel GacA-regulated small RNA in Pseudomonas species. BMC Genomics 9:167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodman AL, Kulasekara B, Rietsch A, Boyd D, Smith RS, Lory S (2004) A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev Cell 7:745–754

    Article  CAS  PubMed  Google Scholar 

  • Goodman AL, Merighi M, Hyodo M, Ventre I, Filloux A, Lory S (2009) Direct interaction between sensor kinase proteins mediates acute and chronic disease phenotypes in a bacterial pathogen. Genes Dev 23:249–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Görke B, Stülke J (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6:613–624

    Article  CAS  PubMed  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  PubMed  Google Scholar 

  • Haas D, Gamper M, Zimmermann A (1992) Anaerobic control in Pseudomonas aeruginosa. In: Galli E, Silver S, Witholt B (eds) Pseudomonas, molecular biology and biotechnology. American Society for Microbiology, Washington, pp 177–187

    Google Scholar 

  • Hassan KA, Johnson A, Shaffer BT, Ren Q, Kidarsa TA, Elbourne LDH, Hartney S, Duboy R, Goebel NC, Zabriskie MT, Paulsen IT, Loper JE (2010) Inactivation of the GacA response regulator in Pseudomonas fluorescens Pf-5 has far-reaching transcriptomic consequences. Environ Microbiol 12:899–915

    Article  CAS  PubMed  Google Scholar 

  • Heeb S, Blumer C, Haas D (2002) Regulatory RNA as mediator in GacA/RsmA-dependent global control of exoproduct formation in Pseudomonas fluorescens CHA0. J Bacteriol 184:1046–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heeb S, Heurlier K, Valverde C, Cámara M, Haas D, Williams P (2004) Post-transcriptional regulation in Pseudomonas spp. via the Gac/Rsm regulatory network. In: Ramos J-L (ed) Pseudomonas—virulence and gene regulation, vol 2. Kluwer Academic, New York, pp 239–255

    Google Scholar 

  • Heeb S, Valverde C, Gigot-Bonnefoy C, Haas D (2005) Role of the stress sigma factor RpoS in GacA/RsmA-controlled secondary metabolism and resistance to oxidative stress in Pseudomonas fluorescens CHA0. FEMS Microbiol Lett 243:251–258

    Article  CAS  PubMed  Google Scholar 

  • Heeb S, Kuehne SA, Bycroft M, Crivii S, Allen MD, Haas D, Cámara M, Williams P (2006) Functional analysis of the post-transcriptional regulator RsmA reveals a novel RNA-binding site. J Mol Biol 355:1026–1036

    Article  CAS  PubMed  Google Scholar 

  • Heeb S, Fletcher MP, Chhabra SR, Diggle SP, Williams P, Camara M (2011) Quinolones: from antibiotics to autoinducers. FEMS Microbiol Rev 35:247–274

    Article  CAS  PubMed  Google Scholar 

  • Hemm MR, Paul BJ, Schneider TD, Storz G, Rudd KE (2008) Small membrane proteins found by comparative genomics and ribosome binding site models. Mol Microbiol 70:1487–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heurlier K, Williams F, Heeb S, Dormond C, Pessi G, Singer D, Cámara M, Williams P, Haas D (2004) Positive control of swarming, rhamnolipid synthesis, and lipase production by the posttranscriptional RsmA/RsmZ system in Pseudomonas aeruginosa PAO1. J Bacteriol 186:2936–2945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hobbs EC, Astarita JL, Storz G (2010) Small RNAs and small proteins involved in resistance to cell envelope stress and acid shock in Escherichia coli: analysis of a bar-coded mutant collection. J Bacteriol 192:59–67

    Article  CAS  PubMed  Google Scholar 

  • Hood RD, Singh P, Hsu F, Güvener T, Carl MA, Trinidad RR, Silverman JM, Ohlson BB, Hicks KG, Plemel RL, Li M, Schwarz S, Wang WY, Merz AJ, Goodlett DR, Mougous JD (2010) A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 7:25–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hrabak EM, Willis DK (1992) The lemA gene required for pathogenicity of Pseudomonas syringae pv. syringae on bean is a member of a family of two-component regulators. J Bacteriol 174:3011–3020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu J-L, Chen H-C, Peng H-L, Chang H-Y (2008) Characterization of the histidine-containing phosphotransfer protein B-mediated multistep phosphorelay system in Pseudomonas aeruginosa PAO1. J Biol Chem 283:9933–9944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humair B, González N, Mossialos D, Reimmann C, Haas D (2009) Temperature-responsive sensing regulates biocontrol factor expression in Pseudomonas fluorescens CHA0. ISME J 3:955–965

    Article  CAS  PubMed  Google Scholar 

  • Humair B, Wackwitz B, Haas D (2010) GacA-controlled activation of promoters for small RNA genes in Pseudomonas fluorescens. Appl Environ Microbiol 76:1497–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh Y, Nishijyo T, Nakada Y (2007) Histidine catabolism and catabolic regulation. In: Ramos J-L, Filloux A (eds) Pseudomonas–a model system in biology, vol 5. Springer, Dordrecht, pp 371–395

    Google Scholar 

  • Jacobs MA, Alwood A, Thaipisuttikul I, Spencer D, Haugen E, Ernst S, Will O, Kaul R, Raymond C, Levy R, Chun-Rong L, Guenthner D, Bovee D, Olson MV, Manoil C (2003) Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 100:14339–14344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James BD, Olsen GJ, Liu JS, Pace NR (1988) The secondary structure of ribonuclease P RNA, the catalytic element of a ribonucleoprotein enzyme. Cell 52:19–26

    Article  CAS  PubMed  Google Scholar 

  • Jing X, Jaw J, Robinson HH, Schubot FD (2010) Crystal structure and oligomeric state of the RetS signaling kinase sensory domain. Proteins 78:1631–1640

    CAS  PubMed  PubMed Central  Google Scholar 

  • Juhas M, Eberl L, Tümmler B (2005) Quorum sensing: the power of cooperation in the world of Pseudomonas. Environ Microbiol 7:459–471

    Article  CAS  PubMed  Google Scholar 

  • Jung YS, Kwon YM (2008) Small RNA ArrF regulates the expression of sodB and feSII genes in Azotobacter vinelandii. Curr Microbiol 57:593–597

    Article  CAS  PubMed  Google Scholar 

  • Kawakami T, Kuroki M, Ishii M, Igarashi Y, Arai H (2010) Differential expression of multiple terminal oxidases for aerobic respiration in Pseudomonas aeruginosa. Environ Microbiol 12:1399–1412

    CAS  PubMed  Google Scholar 

  • Kay E, Dubuis C, Haas D (2005) Three small RNAs jointly ensure secondary metabolism and biocontrol in Pseudomonas fluorescens CHA0. Proc Natl Acad Sci USA 102:17136–17141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kay E, Humair B, Dénervaud V, Riedel K, Spahr S, Eberl L, Valverde C, Haas D (2006) Two GacA-dependent small RNAs modulate the quorum sensing response in Pseudomonas aeruginosa. J Bacteriol 188:6026–6033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keenan RJ, Freymann DM, Stroud RM, Walter P (2001) The signal recognition particle. Annu Rev Biochem 70:755–775

    Article  CAS  PubMed  Google Scholar 

  • Keiler KC (2007) Physiology of tmRNA: what gets tagged and why? Curr Opin Microbiol 10:169–175

    Article  CAS  PubMed  Google Scholar 

  • Kitten T, Willis DK (1996) Suppression of a sensor kinase-dependent phenotype in Pseudomonas syringae by ribosomal proteins L35 and L20. J Bacteriol 178:1548–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulkarni PR, Cui X, Williams JW, Stevens AM, Kulkarni RV (2006) Prediction of CsrA-regulating small RNAs in bacteria and their experimental verification in Vibrio fischeri. Nucleic Acids Res 34:3361–3369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lapouge K, Sineva E, Lindell M, Starke K, Baker CS, Babitzke P, Haas D (2007) Mechanism of hcnA mRNA recognition in the Gac/Rsm signal transduction pathway of Pseudomonas fluorescens. Mol Microbiol 66:341–356

    Article  CAS  PubMed  Google Scholar 

  • Lapouge K, Schubert M, Allain FHT, Haas D (2008) Gac/Rsm signal transduction pathway of γ-proteobacteria: from RNA recognition to regulation of social behaviour. Mol Microbiol 67:241–253

    Article  CAS  PubMed  Google Scholar 

  • Laskowski MA, Kazmierczak BI (2006) Mutational analysis of RetS, an unusual sensor kinase-response regulator hybrid required for Pseudomonas aeruginosa virulence. Infect Immun 74:4462–4473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laville J, Voisard C, Keel C, Maurhofer M, Défago G, Haas D (1992) Global control in Pseudomonas fluorescens mediating antibiotic synthesis and suppression of black root rot of tobacco. Proc Natl Acad Sci USA 89:1562–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazdunski AM, Ventre I, Bleves S (2007) Cell-cell communication: quorum sensing and regulatory circuits in Pseudomonas aeruginosa. In: Ramos J-L, Filloux A (eds) Pseudomonas, a model system in biology, vol 5. Springer, Dordrecht, pp 279–310

    Google Scholar 

  • Li Y, Altman S (2004) In search of RNase P RNA from microbial genomes. RNA 10:1533–1540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Lu C-D (2007) Regulation of carbon and nitrogen utilization by CbrAB and NtrBC two-component systems in Pseudomonas aeruginosa. J Bacteriol 189:5413–5420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linares JF, Moreno R, Fajardo A, Martínez L, Escalante R, Rojo F, Martínez JL (2010) The global regulator Crc modulates metabolism, susceptibility to antibiotics and virulence in Pseudomonas aeruginosa. Environ Microbiol 12:3196–3212

    Article  CAS  PubMed  Google Scholar 

  • Liu JM, Camilli A (2010) A broadening world of bacterial small RNAs. Curr Opin Microbiol 13:18–23

    Article  CAS  PubMed  Google Scholar 

  • Livny J, Brencic A, Lory S, Waldor MK (2006) Identification of 17 Pseudomonas aeruginosa sRNAs and prediction of sRNA-encoding genes in 10 diverse pathogens using the bioinformatic tool sRNAPredict2. Nucleic Acids Res 34:3484–3493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loper JE, Kobayashi DY, Paulsen IT (2007) The genomic sequence of Pseudomonas fluorescens Pf-5: insights into biological control. Phytopathology 97:233–238

    Article  CAS  PubMed  Google Scholar 

  • MacGregor CH, Wolff JA, Arora SK, Phibbs PV Jr (1991) Cloning of a catabolite repression control (crc) gene from Pseudomonas aeruginosa, expression of the gene in Escherichia coli, and identification of the gene product in Pseudomonas aeruginosa. J Bacteriol 173:7204–7212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massé E, Gottesman S (2002) A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci USA 99:4620–4625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno R, Rojo F (2008) The target for the Pseudomonas putida Crc global regulator in the benzoate degradation pathway is the BenR transcriptional regulator. J Bacteriol 190:1539–1545

    Article  CAS  PubMed  Google Scholar 

  • Moreno R, Ruiz-Manzano A, Yuste L, Rojo F (2007) The Pseudomonas putida Crc global regulator is an RNA binding protein that inhibits translation of the AlkS transcriptional regulator. Mol Microbiol 64:665–675

    Article  CAS  PubMed  Google Scholar 

  • Moreno R, Marzi S, Romby P, Rojo F (2009) The Crc global regulator binds to an unpaired A-rich motif at the Pseudomonas putida alkS mRNA coding sequence and inhibits translation initiation. Nucleic Acids Res 37:7678–7690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno R, Fonseca P, Rojo F (2010) The Crc global regulator inhibits the Pseudomonas putida pWW0 toluene/xylene assimilation pathway by repressing translation of regulatory and structural genes. J Biol Chem 285:24412–24419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mougous JD, Cuff ME, Raunser S, Shen A, Zhou M, Gifford CA, Goodman AL, Joachimiak G, Ordoñez CL, Lory S, Walz T, Joachimiak A, Mekalanos JJ (2006) A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312:1526–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müsken M, Di Fiore S, Dötsch A, Fischer R, Häussler S (2010) Genetic determinants of Pseudomonas aeruginosa biofilm establishment. Microbiology 156:431–441

    Article  CAS  PubMed  Google Scholar 

  • Nishijyo T, Haas D, Itoh Y (2001) The CbrA–CbrB two-component regulatory system controls the utilization of multiple carbon and nitrogen sources in Pseudomonas aeruginosa. Mol Microbiol 40:917–931

    Article  CAS  PubMed  Google Scholar 

  • Oglesby AG, Farrow JM 3rd, Lee JH, Tomaras AP, Greenberg EP, Pesci EC, Vasil ML (2008) The influence of iron on Pseudomonas aeruginosa physiology: a regulatory link between iron and quorum sensing. J Biol Chem 283:15558–15567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oglesby-Sherrouse AG, Vasil ML (2010) Characterization of a heme-regulated non-coding RNA encoded by the prrF locus of Pseudomonas aeruginosa. PLoS ONE 5:e9930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Toole GA, Gibbs KA, Hager PW, Phibbs PV Jr, Kolter R (2000) The global carbon metabolism regulator Crc is a component of a signal transduction pathway required for biofilm development by Pseudomonas aeruginosa. J Bacteriol 182:425–431

    Article  PubMed  PubMed Central  Google Scholar 

  • Parkins MD, Ceri H, Storey DG (2001) Pseudomonas aeruginosa GacA, a factor in multihost virulence, is also essential for biofilm formation. Mol Microbiol 40:1215–1226

    Article  CAS  PubMed  Google Scholar 

  • Pernestig AK, Melefors O, Georgellis D (2001) Identification of UvrY as the cognate response regulator for the BarA sensor kinase in Escherichia coli. J Biol Chem 276:225–231

    Article  CAS  PubMed  Google Scholar 

  • Pessi G, Haas D (2001) Dual control of hydrogen cyanide biosynthesis by the global activator GacA in Pseudomonas aeruginosa PAO1. FEMS Microbiol Lett 200:73–78

    Article  CAS  PubMed  Google Scholar 

  • Pessi G, Williams F, Hindle Z, Heurlier K, Holden MT, Cámara M, Haas D, Williams P (2001) The global posttranscriptional regulator RsmA modulates production of virulence determinants and N-acylhomoserine lactones in Pseudomonas aeruginosa. J Bacteriol 183:6676–6683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrova OE, Sauer K (2010) The novel two-component regulatory system BfiSR regulates biofilm development by controlling the small RNA rsmZ through CafA. J Bacteriol 192:5275–5288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petruschka L, Burchhardt G, Müller C, Weihe C, Herrmann H (2001) The cyo operon of Pseudomonas putida is involved in catabolic repression of phenol degradation. Mol Genet Genomics 266:199–206

    Article  CAS  PubMed  Google Scholar 

  • Pyla R, Kim TJ, Silva JL, Jung YS (2009) Overproduction of poly-β-hydroxybutyrate in the Azotobacter vinelandii mutant that does not express small RNA ArrF. Appl Microbiol Biotechnol 84:717–724

    Article  CAS  PubMed  Google Scholar 

  • Rahme LG, Ausubel FM, Cao H, Drenkard E, Goumnerov BC, Lau GW, Mahajan-Miklos S, Plotnikova J, Tan MW, Tsongalis J, Walendziewicz CL, Tompkins RG (2000) Plants and animals share functionally common bacterial virulence factors. Proc Natl Acad Sci USA 97:8815–8821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reimmann C, Beyeler M, Latifi A, Winteler H, Foglino M, Lazdunski A, Haas D (1997) The global activator GacA of Pseudomonas aeruginosa PAO1 positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase. Mol Microbiol 24:309–319

    Article  CAS  PubMed  Google Scholar 

  • Reimmann C, Valverde C, Kay E, Haas D (2005) Posttranscriptional repression of GacS/GacA-controlled genes by the RNA-binding protein RsmE acting together with RsmA in the biocontrol strain Pseudomonas fluorescens CHA0. J Bacteriol 187:276–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rich JJ, Kinscherf TG, Kitten T, Willis DK (1994) Genetic evidence that the gacA gene encodes the cognate response regulator for the lemA sensor in Pseudomonas syringae. J Bacteriol 176:7468–7475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rojo F (2010) Carbon catabolite repression in Pseudomonas: optimizing metabolic versatility and the interaction with the environment. FEMS Microbiol Rev 34:658–784

    Article  CAS  PubMed  Google Scholar 

  • Rowley KB, Clements DE, Mandel M, Humphreys T, Patil SS (1993) Multiple copies of a DNA sequence from Pseudomonas syringae pathovar phaseolicola abolish thermoregulation of phaseolotoxin production. Mol Microbiol 8:625–635

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Manzano A, Yuste L, Rojo F (2005) Levels and activity of the Pseudomonas putida global regulatory protein Crc vary according to growth conditions. J Bacteriol 187:3678–3686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabra W, Kim EJ, Zeng AP (2002) Physiological responses of Pseudomonas aeruginosa PAO1 to oxidative stress in controlled microaerobic and aerobic cultures. Microbiology 148:3195–3202

    Article  CAS  PubMed  Google Scholar 

  • Schobert M, Tielen P (2010) Contribution of oxygen-limiting conditions to persistent infection of Pseudomonas aeruginosa. Future Microbiol 5:603–621

    Article  CAS  PubMed  Google Scholar 

  • Schubert M, Lapouge K, Duss O, Oberstrass FC, Jelesarov I, Haas D, Allain FH (2007) Molecular basis of messenger RNA recognition by the specific bacterial repressing clamp RsmA/CsrA. Nat Struct Mol Biol 14:807–813

    Article  CAS  PubMed  Google Scholar 

  • Sharma CM, Vogel J (2009) Experimental approaches for the discovery and characterization of regulatory small RNA. Curr Opin Microbiol 12:536–546

    Article  CAS  PubMed  Google Scholar 

  • Siegel LS, Hylemon PB, Phibbs PV Jr (1977) Cyclic adenosine 3′,5′-monophosphate levels and activities of adenyl cyclase and cyclic adenosine 3′,5′-monophosphate phosphodiesterase in Pseudomonas and Bacteroides. J Bacteriol 129:87–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silby MW, Rainey PB, Levy SB (2004) IVET experiments in Pseudomonas fluorescens reveal cryptic promoters at loci associated with recognizable overlapping genes. Microbiology 150:518–520

    Article  CAS  PubMed  Google Scholar 

  • Smyth PF, Clarke PH (1975) Catabolite repression of Pseudomonas aeruginosa amidase: the effect of carbon source on amidase synthesis. J Gen Microbiol 90:81–90

    Article  CAS  PubMed  Google Scholar 

  • Sonnleitner E, Schuster M, Sorger-Domenigg T, Greenberg EP, Bläsi U (2006) Hfq-dependent alterations of the transcriptome profile and effects on quorum sensing in Pseudomonas aeruginosa. Mol Microbiol 59:1542–1558

    Article  CAS  PubMed  Google Scholar 

  • Sonnleitner E, Sorger-Domenigg T, Madej MJ, Findeiss S, Hackermüller J, Hüttenhofer A, Stadler PF, Bläsi U, Moll I (2008) Detection of small RNAs in Pseudomonas aeruginosa by RNomics and structure-based bioinformatic tools. Microbiology 154:3175–3187

    Article  CAS  PubMed  Google Scholar 

  • Sonnleitner E, Abdou L, Haas D (2009) Small RNA as global regulator of carbon catabolite repression in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 106:21866–21871

    Article  PubMed  PubMed Central  Google Scholar 

  • Sonnleitner E, González N, Haas D (2010) Small RNAs of Pseudomonas spp. In: Ramos J-L, Filloux A (eds) Pseudomonas—molecular microbiology, infection and biodiversity, vol 6. Springer, Dordrecht, pp 3–28

    Google Scholar 

  • Sonnleitner E, Gonzalez N, Sorger-Domenigg T, Heeb S, Richter AS, Backofen R, Williams P, Hüttenhofer A, Haas D, Bläsi U (2011) The small RNA PhrS stimulates synthesis of the Pseudomonas aeruginosa quinolone signal. Mol Microbiol. doi:https://doi.org/10.1111/j.1365-2958.2011.07620.x

  • Soper T, Mandin P, Majdalani N, Gottesman S, Woodson SA (2010) Positive regulation by small RNAs and the role of Hfq. Proc Natl Acad Sci USA 107:9602–9607

    Article  PubMed  PubMed Central  Google Scholar 

  • Sorek R, Cossart P (2010) Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity. Nat Rev Genet 11:9–16

    Article  CAS  PubMed  Google Scholar 

  • Sorger-Domenigg T, Sonnleitner E, Kaberdin VR, Bläsi U (2007) Distinct and overlapping binding sites of Pseudomonas aeruginosa Hfq and RsmA proteins on the non-coding RNA RsmY. Biochem Biophys Res Commun 352:769–773

    Article  CAS  PubMed  Google Scholar 

  • Soscia C, Hachani A, Bernadac A, Filloux A, Bleves S (2007) Cross talk between type III secretion and flagellar assembly systems in Pseudomonas aeruginosa. J Bacteriol 189:3124–3132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suh S-J, Runyen-Janecky LJ, Maleniak TC, Hager P, MacGregor CH, Zielinski-Mozny NA, Phibbs PV Jr, West SHE (2002) Effect of vfr mutation on global gene expression and catabolite repression control of Pseudomonas aeruginosa. Microbiology 148:1561–1569

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi K, Kiefer P, Reimmann C, Keel C, Dubuis C, Rolli J, Vorholt JA, Haas D (2009) Small RNA-dependent expression of secondary metabolism is controlled by Krebs cycle function in Pseudomonas fluorescens. J Biol Chem 284:34976–34985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toschka HY, Struck JC, Erdmann VA (1989) The 4.5S RNA gene from Pseudomonas aeruginosa. Nucleic Acids Res 17:31–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toyofuku M, Nomura N, Kuno E, Tashiro Y, Nakajima T, Uchiyama HJ (2008) Influence of the Pseudomonas quinolone signal on denitrification in Pseudomonas aeruginosa. J Bacteriol 190:7947–7956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valverde C, Heeb S, Keel C, Haas D (2003) RsmY, a small regulatory RNA, is required in concert with RsmZ for GacA-dependent expression of biocontrol traits in Pseudomonas fluorescens CHA0. Mol Microbiol 50:1361–1379

    Article  CAS  PubMed  Google Scholar 

  • Valverde C, Lindell M, Wagner EG, Haas D (2004) A repeated GGA motif is critical for the activity and stability of the riboregulator RsmY of Pseudomonas fluorescens. J Biol Chem 279:25066–25074

    Article  CAS  PubMed  Google Scholar 

  • Vasil ML (2007) How we learnt about iron acquisition in Pseudomonas aeruginosa: a series of very fortunate events. Biometals 20:587–601

    Article  CAS  PubMed  Google Scholar 

  • Ventre I, Goodman AL, Valley-Gely I, Vasseur P, Soscia C, Molin S, Bleves S, Lazdunski A, Lory S, Filloux A (2006) Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proc Natl Acad Sci USA 103:171–176

    Article  CAS  PubMed  Google Scholar 

  • Ventre I, Goodman AL, Filloux A, Lory S (2007) Modulation of bacterial lifestyles via two-component regulatory networks. In: Ramos J-L, Filloux A (eds) Pseudomonas—a model system in biology, vol 5. Springer, Dordrecht, pp 311–340

    Google Scholar 

  • Vincent F, Round A, Reynaud A, Bordi C, Filloux A, Bourne Y (2010) Distinct oligomeric forms of the Pseudomonas aeruginosa RetS sensor domain modulate accessability to the ligand binding site. Environ Microbiol 12:1775–1786

    Article  CAS  PubMed  Google Scholar 

  • Visca P (2004) Iron regulation and siderophore signalling in virulence by Pseudomonas aeruginosa. In: Ramos J-L (ed) Pseudomonas—virulence and gene regulation, vol 2. Springer, Dordrecht, pp 69–123

    Google Scholar 

  • Vogel J (2009) A rough guide to the non-coding RNA world of Salmonella. Mol Microbiol 71:1–11

    Article  CAS  PubMed  Google Scholar 

  • Vogel DW, Hartmann RK, Struck JC, Ulbrich N, Erdmann VA (1987) The sequence of the 6S RNA gene of Pseudomonas aeruginosa. Nucleic Acids Res 15:4583–4591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wadler CS, Vanderpool CK (2007) A dual function for a bacterial small RNA: SgrS performs base pairing-dependent regulation and encodes a functional polypeptide. Proc Natl Acad Sci USA 104:20454–20459

    Article  PubMed  PubMed Central  Google Scholar 

  • Wassarman KM (2007) 6S RNA: a regulator of transcription. Mol Microbiol 65:1425–1431

    Article  CAS  PubMed  Google Scholar 

  • Wassarman KM, Zhang A, Storz G (1999) Small RNAs in Escherichia coli. Trends Microbiol 7:37–45

    Article  CAS  PubMed  Google Scholar 

  • Waters LS, Storz G (2009) Regulatory RNAs in bacteria. Cell 136:615–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whistler CA, Corbell NA, Sarniguet A, Ream W, Loper JE (1998) The two-component regulators GacS and GacA influence accumulation of the stationary-phase sigma factor σS and the stress response in Pseudomonas fluorescens Pf-5. J Bacteriol 180:6635–6641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilderman PJ, Sowa NA, FitzGerald DJ, FitzGerald PC, Gottesman S, Ochsner UA, Vasil ML (2004) Identification of tandem duplicate regulatory small RNAs in Pseudomonas aeruginosa involved in iron homeostasis. Proc Natl Acad Sci USA 101:9792–9797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams KP, Bartel DP (1996) Phylogenetic analysis of tmRNA secondary structure. RNA 2:1306–1310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Winteler HV, Haas D (1996) The homologous regulators ANR of Pseudomonas aeruginosa and FNR of Escherichia coli have overlapping but distinct specificities for anaerobically inducible promoters. Microbiology 142:685–693

    Article  CAS  PubMed  Google Scholar 

  • Workentine M-L, Chang L, Ceri H, Turner RJ (2009) The GacS–GacA two-component regulatory system of Pseudomonas fluorescens: a bacterial two-hybrid analysis. FEMS Microbiol Lett 292:50–56

    Article  CAS  PubMed  Google Scholar 

  • Ye RW, Haas D, Ka JO, Krishnapillai V, Zimmermann A, Baird C, Tiedje JM (1995) Anaerobic activation of the entire denitrification pathway in Pseudomonas aeruginosa requires Anr, an analog of Fnr. J Bacteriol 177:3606–3609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X-X, Liu Y-H, Rainey PB (2010) CbrAB-dependent regulation of pcnB, a pola(A) polymerase gene involved in polyadenylation of RNA in Pseudomonas fluorescens. Environ Microbiol 12:1674–1683

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann A, Reimmann C, Galimand M, Haas D (1991) Anaerobic growth and cyanide synthesis of Pseudomonas aeruginosa depend on anr, a regulatory gene homologous with fnr of Escherichia coli. Mol Microbiol 5:1483–1490

    Article  CAS  PubMed  Google Scholar 

  • Zolfaghar I, Evans DJ, Ronaghi R, Fleiszig SM (2006) Type III secretion-dependent modulation of innate immunity as one of multiple factors regulated by Pseudomonas aeruginosa RetS. Infect Immun 74:3880–3889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuber S, Carruthers F, Keel C, Mattart A, Blumer C, Pessi G, Gigot-Bonnefoy C, Schnider-Keel U, Heeb S, Reimmann C, Haas D (2003) GacS sensor domains pertinent to the regulation of exoproduct formation and to the biocontrol potential of Pseudomonas fluorescens CHA0. Mol Plant-Microb Interact 16:634–644

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Swiss National Foundation, the Hertha-Firnberg Research fellowship from the Austrian Science Fund (to E.S.) and a genomics project of the University of Lausanne. We thank Cornelia Reimmann and Karine Lapouge for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Sonnleitner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sonnleitner, E., Haas, D. Small RNAs as regulators of primary and secondary metabolism in Pseudomonas species. Appl Microbiol Biotechnol 91, 63–79 (2011). https://doi.org/10.1007/s00253-011-3332-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3332-1

Keywords

Navigation