Skip to main content

Fermentative Production of Bacterial Phenazines

  • Chapter
  • First Online:
Microbial Phenazines

Abstract

Phenazines, a nitrogen containing heterocyclic antibiotic biosynthesized by a diverse range of bacteria. Owing its enormous importance as (1) electron shuttles to alternate terminal acceptors in bacteria, (2) modify cellular redox states to modify host response, (3) contributing to biofilm formation and cell signaling, as well as (4) biotechnological applications such as environmental sensor, microbial fuel cell, antitumor, and biocontrol activity attracted attention of scientific community to target phenazine as lead molecule. Similarly, emerging application of phenazines insisted high productivity fermentative process. Current chapter focuses on sources of natural phenazines and impact of nutritional as well as environmental dynamics on fermentative production of phenazine in different bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abken HJ, Tietze M, Brodersen J et al (1998) Isolation and characterization of methanophenazine and function of phenazines in membrane-bound electron transport of Methanosarcina mazei Gö1. J Bacteriol 180:2027–2032

    PubMed  CAS  Google Scholar 

  • Beifuss U, Tietze M, Bäumer S et al (2000) Methanophenazine: structure, total synthesis, and function of a new cofactor from methanogenic archaea. Angew Chem Int Ed 39:2470–2472

    Article  CAS  Google Scholar 

  • Byng GS, Eustice DC, Jensen R (1979) Biosynthesis of phenazine pigments in mutant and wild-type cultures of Pseudomonas aeruginosa. J Bacteriol 138:846–852

    PubMed  CAS  Google Scholar 

  • Chang PC, Blackwood AC (1969) Simultaneous production of three phenazine pigments by Pseudomonas aeruginosa Mac 436. Can J Microbiol 15:439–444

    Article  PubMed  CAS  Google Scholar 

  • Chen JP, Xiao-Chang CL (2004) Organic light-emitting device having phenanthroline-fused phenazine. US Patent 6713781

    Google Scholar 

  • Chin-A-Woeng TFC, van den Broek D, de Voer G et al (2001) Phenazine-1-carboxamide production in the biocontrol strain Pseudomonas chlororaphis PCL1391 is regulated by multiple factors secreted into the growth medium. Mol Plant Microbe Interact 14:969–979

    Article  PubMed  CAS  Google Scholar 

  • Chin-A-Woeng TFC, van den Broek D, Lugtenberg BJJ et al (2005) The Pseudomonas chlororaphis PCL1391 sigma regulator psrA represses the production of the antifungal metabolite phenazine-1-carboxamide. Mol Plant Microbe Interact 18:244–253

    Article  PubMed  CAS  Google Scholar 

  • Clinton W, Mocek U, Floss HG (1993) Biosynthesis of the phenazine antibiotics, the saphenamycins and esmeraldins, in Streptomyces an tibioticus. J Org Chem 58:6576–6582

    Article  Google Scholar 

  • Ding ZG, Li MG, Ren J et al (2011) Phenazinolins A–E: novel diphenazines from a tin mine tailings-derived Streptomyces species. Org Biomol Chem 9:2771–2776

    Article  PubMed  CAS  Google Scholar 

  • Fotso S, Santosa DA, Saraswati R et al (2010) Modified phenazines from an Indonesian Streptomyces sp. J Nat Prod 73:472–475

    Article  PubMed  CAS  Google Scholar 

  • Frank L, DeMoss R (1959) On the biosynthesis of pyocyanine. J Bacteriol 77:776–782

    PubMed  CAS  Google Scholar 

  • Ge YH, Huang XQ, Wang SL et al (2004) Phenazine-1-carboxylic acid is negatively regulated and pyoluteorin positively regulated by gacA in Pseudomonas sp. M18. FEMS Microbiol Lett 237:41–47

    Article  PubMed  CAS  Google Scholar 

  • Gebhardt K, Schimana J, Krastel P et al (2002) Endophenazines A-D, new phenazine antibiotics from the arthropod associated endosymbiont Streptomyces anulatus. I. Taxonomy, fermentation, isolation and biological activities. J Antibiot 55:794–800

    Article  PubMed  CAS  Google Scholar 

  • Giddens SR, Bean DC (2007) Investigations into the in vitro antimicrobial activity and mode of action of the phenazine antibiotic D-alanylgriseoluteic acid. Int J Antimicrob Agents 29:93–97

    Article  PubMed  CAS  Google Scholar 

  • Gohain N, Thomashow LS, Mavrodi DV et al (2006) The purification, crystallization and preliminary structural characterization of PhzM, a phenazine-modifying methyltransferase from Pseudomonas aeruginosa. Acta Crystallogr, Sect F: Struct Biol Cryst Commun 62:887–890

    Article  CAS  Google Scholar 

  • Haynes WC, Stodola FH, Locke JM et al (1956) Pseudomaons aureofaciens Kluyver and phenazine α-carboxylic acid, its characteristic pigment. J Bacteriol 72:412–417

    PubMed  CAS  Google Scholar 

  • He L, Xu YQ, Zhang XH (2008) Medium factor optimization and fermentation kinetics for phenazine-1-carboxylic acid production by Pseudomonas sp. M18G. Biotechnol Bioeng 100:250–259

    Article  PubMed  CAS  Google Scholar 

  • Herbert RB, Holliman FG (1969) Pigments of Pseudomonas species. Part II. Structure of aeruginosin B. J Chem Soc C 19:2517–2520

    Article  Google Scholar 

  • Hernandez ME, Kappler A, Newman DK (2004) Phenazines and other redox-active antibiotics promote microbial mineral reduction. Appl Environ Microbiol 70:921–928

    Article  PubMed  CAS  Google Scholar 

  • Holliman FG (1969) Pigments of Pseudomonas species. Part I. Structure and synthesis of aeruginosin A. J Chem Soc C 19:2514–2516

    Article  Google Scholar 

  • Huang L, Chen MM, Wang W et al (2011) Enhanced production of 2-hydroxyphenazine in Pseudomonas chlororaphis GP72. Appl Microbiol Biotechnol 89:169–177

    Article  PubMed  CAS  Google Scholar 

  • Kaleli I, Demir M, Cevahir N et al (2006) Serum neopterin levels in patients with replicative and nonreplicative HBV carriers. BMC Infect Dis 6:157

    Article  PubMed  Google Scholar 

  • Kerr JR, Taylor GW, Rutman A et al (1999) Pseudomonas aeruginosa pyocyanin and 1-hydroxyphenazine inhibit fungal growth. J Clin Pathol 52:385–387

    Article  PubMed  CAS  Google Scholar 

  • Kim KJ (2000) Phenazine 1-carboxylic acid resistance in phenazine 1-carboxylic acid producing Bacillus sp. B-6. J Biochem Mol Biol 33:332–336

    CAS  Google Scholar 

  • Kluyver AJ (1956) Pseudomonas aureofaciens nov. spec., and its pigments. J Bacteriol 72:406–411

    PubMed  CAS  Google Scholar 

  • Kondratyuk TP, Park EJ, Yu R et al (2012) Novel marine phenazines as potential cancer chemopreventive and anti-inflammatory agents. Mar Drugs 10:451–464

    Article  PubMed  CAS  Google Scholar 

  • Labeyrie S, Neuzil E (1981) Addition de tyrosine ou de phénylalanine aux cultures de Pseudomonas aeruginosa: influence sur la croissance microbienne et la pigmentation. Ann Microbiol 132:31–40

    Google Scholar 

  • Laursen JB, Nielsen J (2004) Phenazine natural products: biosynthesis, synthetic analogues, and biological activity. Chem Rev 104:1663–1685

    Article  PubMed  CAS  Google Scholar 

  • Li D, Wang F, Xiao X et al (2007) A new cytotoxic phenazine derivative from a deep sea bacterium Bacillus sp. Arch Pharmacal Res 30:552–555

    Article  Google Scholar 

  • Li YQ, Jiang HX, Xu YQ et al (2008) Optimization of nutrient components for enhanced phenazine-1-carboxylic acid production by gacA-inactivated Pseudomonas sp. M18G using response surface method. Appl Microbiol Biotechnol 77:1207–1217

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Jiang H, Dua X et al (2010) Enhancement of phenazine-1-carboxylic acid production using batch and fed-batch culture of gacA inactivated Pseudomonas sp. M18G. Bioresour Technol 101:3649–3656

    Article  PubMed  CAS  Google Scholar 

  • Linares JF, Gustafsson I, Baquero F et al (2006) Antibiotics as intermicrobial signaling agents instead of weapons. Proc Natl Acad Sci USA 103:19484–19489

    Article  PubMed  CAS  Google Scholar 

  • MacDonald JC (1967) Pyocyanine. In: Gottlieb D, Shaw PD (eds) Antibiotics. Biosynthesis. Springer, Berlin, pp 52–65

    Chapter  Google Scholar 

  • Maddula VS, Pierson EA, Pierson LS (2008) Altering the ratio of phenazines in Pseudomonas chlororaphis (aureofaciens) strain 30-84: effects on biofilm formation and pathogen inhibition. J Bacteriol 190:2759–2766

    Article  PubMed  CAS  Google Scholar 

  • Mann S (1970) Zur identifizierung und redoxfunktion der pigmente von Pseudomonas aureofaciens und P. iodine. Arch Microbiol 71:304–318

    CAS  Google Scholar 

  • Mavrodi DV, Blankenfeldt W, Thomashow LS (2006) Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu Rev Phytopathol 44:417–445

    Article  PubMed  CAS  Google Scholar 

  • Meyer JM, Abdallah MA (1978) The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physicochemical properties. J Gen Microbiol 107:319–328

    Article  CAS  Google Scholar 

  • Mitova MI, Lang G, Wiese J et al (2008) Subinhibitory concentrations of antibiotics induce phenazine production in a marine Streptomyces sp. J Nat Prod 71:824–827

    Article  PubMed  CAS  Google Scholar 

  • Morales DK, Jacobs NJ, Rajamani S et al (2010) Antifungal mechanisms by which a novel Pseudomonas aeruginosa phenazine toxin kills Candida albicans in biofilms. Mol Microbiol 78:1379–1392

    Article  PubMed  CAS  Google Scholar 

  • Nansathit A, Apipattarakul S, Phaosiri C et al (2009) Synthesis, isolation of phenazine derivatives and their antimicrobial activities. Walailak J Sci Tech 6:79–91

    Google Scholar 

  • Norman RS, Moeller P, McDonald TJ et al (2004) Effect of pyocyanin on a crude-oil-degrading microbial community. Appl Environ Microbiol 70:4004–4011

    Article  PubMed  CAS  Google Scholar 

  • Ohfuji K, Sato N, Hamada-Sato N et al (2004) Construction of a glucose sensor based on a screen-printed electrode and a novel mediator pyocyanin from Pseudomonas aeruginosa. Biosens Bioelectron 19:1237–1244

    Article  PubMed  CAS  Google Scholar 

  • Ohlendorf B, Schulz D, Erhard A et al (2012) Geranylphenazinediol, an acetylcholinesterase inhibitor produced by a Streptomyces species. J Nat Prod 75:1400–1404

    Article  PubMed  CAS  Google Scholar 

  • Pierson LS, Pierson EA (2010) Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. Appl Microbiol Biotechnol 86:1659–1670

    Article  PubMed  CAS  Google Scholar 

  • Pierson LS 3rd, Gaffney T, Lam S et al (1995) Molecular analysis of genes encoding phenazine biosynthesis in the biological control bacterium. Pseudomonas aureofaciens 30-84. FEMS Microbiol Lett 134:299–307

    PubMed  CAS  Google Scholar 

  • Podojilt M, Gerber NN (1967) The biosynthesis of 1,6-phenazinediol 5, lO-dioxide (iodinin) by Brevibacterium iodinum. Biochemistry 6:2701–2705

    Article  Google Scholar 

  • Rane MR, Sarode PD, Chaudhari BL, Chincholkar SB (2007a) Foliar application of Pseudomonas metabolite protects Capsicum annum (chilli) from fungal phytopathogens. Bionano Frontier 1:46–53

    Google Scholar 

  • Rane MR, Sarode PD, Chaudhari BL, Chicholkar SB (2007b) Detection, isolation and identification of phenazine-1-carboxylic acid produced by biocontrol strains of Pseudomonas aeruginosa. J Sci Ind Res 66:627–631

    CAS  Google Scholar 

  • Ra’oof WM, Latif IAR (2010) In vitro study of the swarming phenomena and antimicrobial activity of pyocyanin produced by Pseudomonas aeruginosa isolated from different human infections. Eur J Sci Res 47:405–421

    Google Scholar 

  • Saha S, Thavasi R, Jayalakshmi S (2008) Phenazine pigments from Pseudomonas aeruginosa and their application as antibacterial agent and food colourent. Res J Microbiol 3:122–128

    Article  CAS  Google Scholar 

  • Saleh O, Gust B, Boll B et al (2009) Aromatic prenylation in phenazine biosynthesis: dihydrophenazine-1-carboxylate dimethylallyltransferase from Streptomyces anulatus. J Biol Chem 284:14439–14447

    Article  PubMed  CAS  Google Scholar 

  • Sanderson DG, Gross EL, Seibert M (1987) A photosynthetic photoelectrochemical cell using phenazine methosulfate and phenazine ethosulfate as electron acceptors. Appl Biochem Biotechnol 14:1–12

    Article  CAS  Google Scholar 

  • Santos AS, Dura′n N, Kubotaa LT (2005) Biosensor for H2O2 response based on horseradish peroxidase: effect of different mediators adsorbed on silica gel modified with niobium oxide. Electroanalysis 17:1103–1111

    Article  CAS  Google Scholar 

  • Saranya R, Jayapriyaa J, Tamilselvi A (2012) Dyeing of silk fabric with phenazine from Pseudomonas species. Color Technol 128:440–445

    Article  CAS  Google Scholar 

  • Schoental R (1941) The nature of the antibacterial agents present in Pseudomonas pyocyanea culture. Brit J Exp Pathol 22:137–147

    CAS  Google Scholar 

  • Shanmugaiah V, Mathivanan N, Varghese B (2010) Purification, crystal structure and antimicrobial activity of phenazine-1-carboxamide produced by a growth promoting biocontrol bacterium, Pseudomonas aeruginosa MML2212. J Appl Microbiol 108:703–711

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui IA, Shaukat SS (2004) Liquid culture carbon, nitrogen and inorganic phosphate source regulate nematicidal activity by fluorescent pseudomonads in vitro. Lett Appl Microbiol 38:185–190

    Article  PubMed  CAS  Google Scholar 

  • Slininger PJ, Jackson MA (1992) Nutritional factors regulating growth and accumulation of phenazine 1-carboxylic acid by Pseudomonas fluorescens 2–79. Appl Microbiol Biotechnol 37:388–392

    Article  CAS  Google Scholar 

  • Slininger PJ, Shea-Wibur MA (1995) Liquid-culture pH, temperature, and carbon (not nitrogen) source regulate phenazine productivity of the take-all biocontrol agent Pseudomonas fluorescens 2–79. Appl Microbiol Biotechnol 43:794–800

    Article  PubMed  CAS  Google Scholar 

  • Torres CI, Marcus AK, Lee HS et al (2010) A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiol Rev 34:3–17

    Article  PubMed  CAS  Google Scholar 

  • Van Rij ET, Wesselink M, Chin-A-Woeng TF et al (2004) Influence of environmental conditions on the production of phenazine-1-carboxamide by Pseudomonas chlororaphis PCL1391. Mol Plant-Microbe Interact 17:557–566

    Article  PubMed  Google Scholar 

  • Van Rij ET, Girard G, Lugtenberg BJJ et al (2005) Influence of fusaric acid on phenazine-1-carboxamide synthesis and gene expression of Pseudomonas chlororaphis strain PCL1391. Microbiology 151:2805–2814

    Article  PubMed  Google Scholar 

  • Whooley MA, McLoughlin AJ (1982) The regulation of pyocyanin production in Pseudomonas aeruginosa. Eu J Appl Microbiol and Biotechnol 15:161–166

    Article  CAS  Google Scholar 

  • Yuan LL, Li YQ, Wang Y et al (2008) Optimization of critical medium components using response surface methodology for phenazine-1-carboxylic acid production by Pseudomonas sp. M-18Q. J Biosci Bioeng 105:232–237

    Article  PubMed  CAS  Google Scholar 

  • Zendah I, Riaz N, Nasr H et al (2012) Chromophenazines from the terrestrial Streptomyces sp. Ank 315. J Nat Prod 75:2–8

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhir Chincholkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chincholkar, S., Patil, S., Sarode, P., Rane, M. (2013). Fermentative Production of Bacterial Phenazines. In: Chincholkar, S., Thomashow, L. (eds) Microbial Phenazines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40573-0_5

Download citation

Publish with us

Policies and ethics