Skip to main content

Phenazines in the Environment: Microbes, Habitats, and Ecological Relevance

  • Chapter
  • First Online:
Microbial Phenazines

Abstract

Phenazines, the pigmented, redox-active metabolites produced by certain fluorescent pseudomonads, streptomycetes, and members of a few other bacterial genera, have long been recognized for their broad-spectrum antibiotic activity. Much has been learned in recent years about the synthesis of these compounds and the diverse roles they play in the physiology of the microorganisms that produce them, but surprisingly little is known about their presence and turnover in natural ecosystems or their significance in microbial habitats. Phenazine producers are found throughout nature in association with plant and animal hosts and in terrestrial, freshwater, and marine habitats, and may reach sufficient numbers that the phenazines they produce can be extracted directly from environmental samples. This chapter focuses on recent reports that highlight the diversity of habitats from which phenazine producers have been recovered and the significance of the phenazines they produce in the ecosystems in which they reside.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Mageed WM, Milne BF, Wagner M et al (2010) Dermacozines, a new phenazine family from deep-sea dermacocci isolated from a Mariana Trench sediment. Org Biomol Chem 8:2352–2362

    Article  PubMed  CAS  Google Scholar 

  • Allen L, Dockrell DH, Pattery T et al (2005) Pyocyanin production by Pseudomonas aeruginosa induces neutrophil apoptosis and impairs neutrophil-mediated host defenses in vivo. J Immunol 174:3643–3649

    PubMed  CAS  Google Scholar 

  • Angell S, Bench BJ, Williams H et al (2008) Pyocyanin isolated from a marine microbial population: synergistic production between two distinct bacterial species and mode of action. Chem Biol 13:1349–1359

    Article  Google Scholar 

  • Anjaiah V, Koedam N, Nowak-Thompson B et al (1998) Involvement of phenazines and anthranilate in the antagonism of Pseudomonas aeruginosa PNA1 and Tn5-derivatives towards Fusarium sp. and Pythium sp. Mol Plant-Microbe Interact 11:847–854

    Article  CAS  Google Scholar 

  • Aravind R, Kumar A, Eapen SJ et al (2009) Endophytic bacterial flora in root and stem tissues of black pepper (Piper nigrum L.) genotype: isolation, identification and evaluation against Phytophthora capsici. Lett Appl Microbiol 48:58–64

    Article  PubMed  CAS  Google Scholar 

  • Berg G, Eberl L, Hartmann A (2005) The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol 7:1673–1685

    Article  PubMed  CAS  Google Scholar 

  • Botelho GR, Mendonça-Hagler LC (2006) Fluorescent Pseudomonads associated with the rhizosphere of crops—an overview. Brazilian J Microbiol 37:401–416

    Article  CAS  Google Scholar 

  • Caldwell CC, Chen Y, Goetzmann HS et al (2009) Pseudomonas aeruginosa exotoxin pyocyanin causes cystic fibrosis airway pathogenesis. Am J Pathol 175:2473–2488

    Article  PubMed  CAS  Google Scholar 

  • Chin-A-Woeng TFC, Bloemberg GV, Van der Bij AJ et al (1998) Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici. Mol Plant-Microbe Interact 10:79–86

    Article  Google Scholar 

  • Choi EJ, Kwon HC, Ham J et al (2009) 6-hydroxymethyl-1-phenazine-carboxamide and 1,6-phenazinedimethanol from a marine bacterium, Brevibacterium sp. KMD 003, associated with marine purple vase sponge. J Antibiot 62:621–624

    Article  PubMed  CAS  Google Scholar 

  • Cimmino A, Evidente A, Mathieu V et al (2012) Phenazines and cancer. Nat Prod Rep 29:487–501

    Article  PubMed  CAS  Google Scholar 

  • De Vleesschauwer D, Höfte M (2009) Rhizobacteria-induced systemic resistance. Adv Botan Res 51:223–281

    Article  Google Scholar 

  • Denning G, Railsback M, Rasmussen G et al (1998) Pseudomonas pyocyanin alters calcium signaling in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 274:L893–L900

    CAS  Google Scholar 

  • Dietrich LEP, Price-Whelan A, Peterson A et al (2006) The phenazine pyocyanin is a terminal signaling factor in the quorum-sensing network of Pseudomonas aeruginosa. Mol Microbiol 61:1308–1321

    Article  PubMed  CAS  Google Scholar 

  • Dietrich LEP, Price-Whelan A, Teal T et al (2008) Redox-active antibiotics control gene expression and community behavior in divergent bacteria. Science 321:1203–1206

    Article  PubMed  CAS  Google Scholar 

  • Fariman B, Meon S (2009) Molecular characterization of Pseudomonas aeruginosa UPM P3 from oil palm rhizosphere. Am J Appl Sci 6:1915

    Article  Google Scholar 

  • Fitzpatrick DA (2009) Lines of evidence for horizontal gene transfer of a phenazine producing operon into multiple bacterial species. J Mol Evol 68:171–185

    Article  PubMed  CAS  Google Scholar 

  • Fordos J (1859) Receuil des Travaux de la Societe d’Emulation pour les Sciences. Pharmaceutiques 3:30

    Google Scholar 

  • Gao XC, Lu YY, Xing YY et al (2012) A novel anticancer and antifungus phenazine derivative from a marine actinomycete BM-17. Microb Res 167:616–622

    Article  CAS  Google Scholar 

  • Gebhardt K, Schimana J, Krastel P et al (2002) Endophenazines A-D, new phenazine antibiotics from the arthropod associated endosymbiont Streptomyces anulatus. J Antibiot 55:794–800

    Article  PubMed  CAS  Google Scholar 

  • Georgakopolous D, Hendson M, Panopolous NJ et al (1994) Cloning of a phenazine biosynthesis locus of Pseudomonas aureofaciens PGS12 and analysis of its expression in vitro with the ice nucleation reporter gene. Appl Environ Microbiol 60:2931–2938

    Google Scholar 

  • Giddens SR, Houliston GJ, Mahanty HK (2003) The influence of antibiotic production and pre-emptive colonization on the population dynamics of Pantoea agglomerans (Erwinia herbicola) Eh1087 and Erwinia amylovora in planta. Environ Microbiol 5:1016–1021

    Article  PubMed  CAS  Google Scholar 

  • Guo B, Peng H, Wang W et al (2010) Determination of a novel fungicide phenazine-1-carboxylic acid in soil samples using sample stacking capillary electrophoresis combined with solid phase extraction. Anal Lett 43:1823–1833

    Article  Google Scholar 

  • Handelsman J (2002) Future trends in biocontrol. In: Gnanamanickam S (ed) Biological control of crop diseases. Marcel Dekker, New York, pp 443–448

    Google Scholar 

  • He YW, Xu Y (2011) Development and application of a new antifungal pesticide “Shenquinmycin” by genetically modifying the melon rhizosphere-originating strain Pseudomonas sp. M18. In: Reddy MS, Wang QI (eds) Plant growth-promoting rhizobacteria (PGPR) for sustainable agriculture. Proceedings of the 2nd Asian PGPR conference. Beijing, P. R. China, p 474

    Google Scholar 

  • Hu HB, Xu YQ, Chen F et al (2005) Isolation and characterization of a new fluorescent Pseudomonas strain that produces both phenazine-1-carboxylic acid and pyoluteorin. J Microbiol Biotechnol 15:86–90

    CAS  Google Scholar 

  • Hunter RC, Klepac-Ceraj V, Lorenzi MM et al (2012) Phenazine content in the cystic fibrosis respiratory tract negatively correlates with lung function and microbial complexity. Am J Respir Cell Mol Biol 47:738–745

    Article  PubMed  CAS  Google Scholar 

  • Iswandi A, Bossier P, Vandenabeele J et al (1987) Relation between soil microbial activity and the effect of seed inoculation with the rhizopseudomonas strain 7NSK2 on plant growth. Biol Fertil Soils 3:147–151

    Article  Google Scholar 

  • Kilani-Feki O, Khiari O, Culioli G et al (2010) Antifungal activities of an endophytic Pseudomonas fluorescens strain Pf1TZ harbouring genes from pyoluteorin and phenazine clusters. Biotechnol Lett 32:1279–1285

    Article  PubMed  CAS  Google Scholar 

  • Kochetkov VV (2012) pers. comm.

    Google Scholar 

  • Kumar RS, Ayyadurai N, Pandiaraja P et al (2005) Characterization of antifungal metabolite produced by a new strain of Pseudomonas aeruginosa PUPa3 that exhibits broad-spectrum antifungal activity and biofertilizing traits. J Appl Microbiol 98:145–154

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Munder A, Aravind R et al (2012) Friend or foe: genetic and functional characterization of plant endophytic Pseudomonas aeruginosa. Environ Microbiol doi. doi:10.1111/1462-2920.12031

    Google Scholar 

  • Lau GW, Hassett DJ, Ran H et al (2004a) The role of pyocyanin in Pseudomonas infection. Trends Mol Med 10:599–606

    Google Scholar 

  • Lau GW, Ran H, Kong F et al (2004b) Pseudomonas aeruginosa pyocyanin is critical for lung infection in mice. Infect Immun 72:4275–4278

    Article  PubMed  CAS  Google Scholar 

  • Laursen JB, Nielsen J (2004) Phenazine natural products: biosynthesis, synthetic analogues, and biological activity. Chem Rev 104:1663–1685

    Article  PubMed  CAS  Google Scholar 

  • Lee JY, Moon SS, Hwang BK (2003) Isolation and in vitro and in vivo activity against Phytophthora capsici and Colletotrichum obiculare of phenazine-1-carboxylic acid from Pseudomonas aeruginosa strain GC-B26. Pest Management Sci 59:872–882

    Article  CAS  Google Scholar 

  • Lemanceau P, Bakker PAHM, De Kogel WJ et al (1993) Antagonistic effect of nonpathogenic Fusarium oxyxporum Fo47 and pseudobactin 358 upon pathogenic Fusarium oxysporum f. sp. dianthi. Appl Environ Microbiol 59:74–82

    PubMed  CAS  Google Scholar 

  • Liu HM, He YJ, Jiang HX et al (2007) Characterization of a phenazine-producing strain Pseudomonas chlororaphis GP72 with broad-spectrum antifungal activity from green pepper rhizosphere. Curr Microbiol 54:302–306

    Article  PubMed  CAS  Google Scholar 

  • Ma Z, Shen X, Hu H et al (2012) Genome sequence of Sphingomonas wittichii Dp58, the first reported phenazine-1-carboxylic acid-degrading strain. J Bacteriol 194:3535–3536

    Article  PubMed  Google Scholar 

  • Maddula VS, Zhang Z, Pierson EA et al (2006) Quorum sensing and phenazines are involved in biofilm formation by Pseudomonas chlororaphis (aureofaciens) strain 30–84. Microbial Ecol 52:289–301

    Article  CAS  Google Scholar 

  • Maddula VS, Pierson EA, Pierson LS 3rd (2008) Altering the ratio of phenazines in Pseudomonas chlororaphis (aureofaciens) strain 30–84: effects on biofilm formation and pathogen inhibition. J Bacteriol 190:2759–2766

    Article  PubMed  CAS  Google Scholar 

  • Mahajan-Miklos S, Tan MW, Rahme LG et al (1999) Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model. Cell 96:47–56

    Article  PubMed  CAS  Google Scholar 

  • Mavrodi DV, Blankenfeldt W, Thomashow LS (2006) Phenazine compounds in fluorescent Pseudomonas spp.: biosynthesis and regulation. Annu Rev Phytopathol 44:417–445

    Article  PubMed  CAS  Google Scholar 

  • Mavrodi DV, Blankenfeldt W, Thomashow LS (2008) Biosynthesis and regulation of phenazine compounds in Pseudomonas spp. In: Rehm BHA (ed) Pseudomonas model organism, pathogen, cell factory. Wiley-VCH, Weinheim, pp 331–351

    Google Scholar 

  • Mavrodi DV, Peever TL, Mavrodi OV et al (2010) Diversity and evolution of the phenazine biosynthesis pathway. Appl Environ Microbiol 76:866–879

    Article  PubMed  CAS  Google Scholar 

  • Mavrodi DV, Mavrodi OV, Parejko JA et al (2012a) Accumulation of the antibiotic phenazine-1-carboxylic acid in the rhizosphere of dryland cereals. Appl Environ Microbiol 78:804–812

    Article  PubMed  CAS  Google Scholar 

  • Mavrodi DV, Parejko JA, Mavrodi OV et al (2012b) Recent insights into the diversity, frequency and ecological roles of phenazines in fluorescent Pseudomonas spp. Environ Microbiol. doi:10.1111/j.1462-2920.2012.02846.x

    PubMed  Google Scholar 

  • Mavrodi OV, Mavrodi DV, Parejko JA et al (2012c) Irrigation differentially impacts populations of indigenous antibiotic-producing Pseudomonas spp. in the rhizosphere of wheat. Appl Environ Microbiol 78:3214–3220

    Article  PubMed  CAS  Google Scholar 

  • Mazurier S, Corberand T, Lemanceau P et al (2009) Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt. ISME 3:977–991

    Article  CAS  Google Scholar 

  • Mazzola M, Cook RJ, Thomashow LS et al (1992) Contribution of phenazine antibiotic synthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Appl Environ Microbiol 58:2616–2624

    PubMed  CAS  Google Scholar 

  • Mehnaz S, Baig DN, Jamil F et al (2009) Characterization of a phenazine and hexanoylhomoserine lactone producing Pseudomonas aurantiaca strain PB-St2, isolated from sugarcane stem. J Microbiol Biotechnol 19:1688–1694

    Article  PubMed  CAS  Google Scholar 

  • Mentel M, Ahuja EG, Mavrodi DV et al (2009) Of two make one: the biosynthesis of phenazines. ChemBioChem 10:2295–2304

    Article  PubMed  CAS  Google Scholar 

  • Minaxi, Saxena J (2010) Characterization of Pseudomonas aeruginosa RM-3 as a potential biocontrol agent. Mycopathologia 170:181–193

    Google Scholar 

  • Mitova MI, Lang G, Wiese J et al (2008) Subinhibitory concentrations of antibiotics induce phenazine production in a marine Streptomyces sp. J Nat Prod 71:824–827

    Article  PubMed  CAS  Google Scholar 

  • Ohlendorf B, Schulz D, Erhard A et al (2012) Geranylphenazinediol, an acetylcholinesterase inhibitor produced by a Streptomyces species. J Nat Prod 75:1400–1404

    Google Scholar 

  • Parejko JA, Mavrodi DV, Mavrodi OV et al (2012) Population structure and diversity of phenazine-1-carboxylic acid-producing fluorescent Pseudomonas spp. from dryland cereal fields of central Washington State (USA). Microb Ecol 64:226–241

    Article  PubMed  Google Scholar 

  • Patil PB, Zeng Y, Coursey T et al (2010) Isolation and characterization of a Nocardiopsis sp. from honeybee guts. FEMS Microbiol Lett 312:110–118

    Article  PubMed  CAS  Google Scholar 

  • Perneel M, Heyrman J, Adiobo A et al (2007) Characterization of CMR5c and CMR12a, novel fluorescent Pseudomonas strains from the cocoyam rhizosphere with biocontrol activity. J Appl Microbiol 103:1007–1020

    Article  PubMed  CAS  Google Scholar 

  • Phillips DA, Fox TC, King MD et al (2004) Microbial products trigger amino acid exudation from plant roots. Plant Physiol 136:2887–2894

    Article  PubMed  CAS  Google Scholar 

  • Pierson LS 3rd, Pierson EA (2006) Phenazine antibiotic production by the biological control bacterium Pseudomonas aureofaciens: role in ecology and disease suppression. FEMS Microbiol Lett 136:101–108

    Article  Google Scholar 

  • Pierson LS 3rd, Pierson EA (2010) Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. Appl Microbiol Biotechnol 86:1659–1670

    Article  PubMed  CAS  Google Scholar 

  • Pierson LS 3rd, Thomashow LS (1992) Cloning and heterologous expression of the phenazine biosynthetic locus from Pseudomonas aureofaciens 30–84. Mol Plant-Microbe Interact 5:330–339

    Article  PubMed  CAS  Google Scholar 

  • Powell JF, Vargas JM Jr, Nair MG et al (2000) Management of dollar spot on creeping bentgrass with metabolites of Pseudomonas aureofaciens (TX-1). Plant Dis 84:19–24

    Article  CAS  Google Scholar 

  • Price-Whelan A, Dietrich LE, Newman DK (2007) Pyocyanin alters redox homeostasis and carbon flux through central metabolic pathways in Pseudomonas aeruginosa PA14. J Bacteriol 189:6372–6381

    Article  PubMed  CAS  Google Scholar 

  • Rahme LG, Stevens EJ, Wolfort SF et al (1995) Common virulence factors for bacterial pathogenesis in plants and animals. Science 268:1899–1902

    Article  PubMed  CAS  Google Scholar 

  • Raaijmakers J (2012) pers. comm.

    Google Scholar 

  • Ramos I, Dietrich LEP, Price-Whelan A et al (2010) Phenazines affect biofilm formation by Pseudomonas aeruginosa in similar ways at various scales. Res Microbiol 61:187–191

    Article  Google Scholar 

  • Recinos DA, Sekedat MD, Hernandez A et al (2012) Redundant phenazine operons in Pseudomonas aeruginosa exhibit environment-dependent expression and differential roles in pathogenicity. Proc Natl Acad Sci USA 109:19420–19425

    Article  PubMed  CAS  Google Scholar 

  • Rosales AM, Thomashow L, Cook RJ et al (1995) Isolation and identification of antifungal metabolites produced by rice-associated antagonistic Pseudomonas spp. Phytopathology 85:1028–1032

    Article  CAS  Google Scholar 

  • Savchuk SC, Fernando WGD (2004) Effect of timing of application and population dynamics on the degree of biological control of Sclerotinia sclerotiorum by bacterial antagonists. FEMS Microbiol Ecol 49:379–388

    Article  PubMed  CAS  Google Scholar 

  • Scheuring I, Yu DW (2012) How to assemble a beneficial microbiome in three easy steps. Ecol Lett 15:1300–1307

    Article  PubMed  Google Scholar 

  • Schneemann I, Wiese J, Kunz AL et al (2011) Genetic approach for the fast discovery of phenazine-producing bacteria. Mar Drugs 9:772–789

    Article  PubMed  CAS  Google Scholar 

  • Schoonbeek H, Raaijmakers JM, De Waard MA (2002) Fungal ABC transporters and microbial interactions in natural environments. Mol Plant-Microbe Interact 15:1165–1172

    Article  PubMed  CAS  Google Scholar 

  • Selezska K, Kazmierczak M, Müsken M et al (2012) Pseudomonas aeruginosa population structure revisited under environmental focus: impact of water quality and phage pressure. Environ Microbiol 14:1952–1967

    Article  PubMed  CAS  Google Scholar 

  • Steindler L, Bertani I, de Sordi L et al (2009) LasI/R and RhlI/R quorum sensing in a strain of Pseudomonas aeruginosa beneficial to plants. Appl Environ Microbiol 75:5131–5140

    Article  PubMed  CAS  Google Scholar 

  • St.-Onge R, Gadkar VJ, Arseneault T et al (2011) The ability of Pseudomonas sp. LBUM to produce phenazine-1-carboxylic acid affects the growth of Streptomyces scabies, the expression of thaxtomin biosynthesis genes and the biological control potential against common scab of potato. FEMS Microbiol Ecol 75:173–183

    Article  PubMed  CAS  Google Scholar 

  • Upadhyay A, Srivastava S (2011) Phenazine-1-carboxylic acid is a more important contributor to biocontrol Fusarium oxysporum than pyrrolnitrin in Pseudomonas fluorescens strain Psd. Microbiol Res 166:323–335

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Kern SE, Newman DK (2010) Endogenous phenazine antibiotics promote anaerobic survival of Pseudomonas aeruginosa via extracellular electron transfer. J Bacteriol 192:365–369

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Wilks JC, Danhorn T et al (2011) Phenazine-1-carboxylic acid promotes bacterial biofilm development via ferrous iron acquisition. J Bacteriol 193:3606–3617

    Article  PubMed  CAS  Google Scholar 

  • Weller DM, Cook RJ (1983) Suppression of take-all of wheat by seed treatment with fluorescent pseudomonads. Phytopathology 73:463–469

    Article  Google Scholar 

  • Wilson R, Sykes DA, Watson D et al (1988) Measurement of Pseudomonas aeruginosa phenazine pigments in sputum and assessment of their contribution to sputum sol toxicity for respiratory epithelium. Infect Immun 56:2515–2517

    PubMed  CAS  Google Scholar 

  • Wink M (2009) Evolution and secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19

    Article  Google Scholar 

  • Wu DQ, Li Y, Xu Y (2012) Comparative analysis of temperature-dependent transcriptome of Pseudomonas aeruginosa strains from rhizosphere and human habitats. Appl Microbiol biotechnol 96:1007–1019

    Google Scholar 

  • Wu DQ, Ye J, Ou HY et al (2011) Genomic analysis and temperature-dependent transcriptome profiles of the rhizosphere originating strain Pseudomonas aeruginosa M18. BMC Genomics 12:438

    Article  PubMed  CAS  Google Scholar 

  • Yang MM, Mavrodi DV, Mavrodi OV et al (2011) Biological control of take-all by fluorescent Pseudomonas spp. from Chinese wheat fields. Phytopathology 101:1481–1491

    Article  PubMed  Google Scholar 

  • Yang ZJ, Wang W, Jin Y et al (2007) Isolation, identification, and degradation characteristics of phenazine-1-carboxylic acid-degrading strain Sphingomonas sp. DP58. Curr Microbiol 55:284–287

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Parts of this work were supported by USDA-NRI Grant No. 2011-67019-30212 from the USDA-NIFA Soil Processes program. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer. I thank Dr. David Weller for review comments and Dr. Dmitri Mavrodi for translation of information provided by Dr. V. V. Kochetkov.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda S. Thomashow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thomashow, L.S. (2013). Phenazines in the Environment: Microbes, Habitats, and Ecological Relevance. In: Chincholkar, S., Thomashow, L. (eds) Microbial Phenazines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40573-0_10

Download citation

Publish with us

Policies and ethics